Utilization of a Hubbard U Model to Understand the Valence Band Photoelectron Data for the High-Temperature Superconductors

By

D. E. Ramaker

Prepared for Publication

in the

Physical Review B

George Washington University
Department of Chemistry
Washington, D.C. 20052

December, 1988

Reproduction in whole or in part is permitted for any purpose of the United States Government

This document has been approved for public release and sale; its distribution is unlimited.
The valence band photoelectron spectra are interpreted within a Hubbard model. The 9.5 eV "mystery" peak in the photoelectron spectra for YBa$_2$Cu$_3$O$_7$ is identified as arising from a state with two holes localized on nearest neighbor oxygen atoms. Hubbard U parameters are obtained from the data and found to be larger than expected for metallic systems.

Keywords:

- Superconductivity
- Photoelectron Spectroscopy
- Hubbard Model
- Electron Correlation
We interpret the valence band (VB) photoelectron spectra (UPS and XPS) for the high-temperature superconductors (HTSC's), La$_{2-x}$Ba$_x$CuO$_4$ and YBa$_2$Cu$_3$O$_y$ (herein referred to as La and 123). We identify the source of the "mystery" feature at 9.5 eV in the UPS [1], and explain the large differences seen between the calculated density of states (DOS) and the experimental spectra in the VB region [2].

The basic VB electronic structure of the HTSC's can be described by an extended Hubbard model, characterized by the transfer or hopping integral t, the Cu and O orbital energies e_α and e_β, the intra-site Coulomb repulsion energies U_α and U_β, and the inter-site repulsion energies $U_{\alpha\beta}$ and $U_{\beta\alpha}$ (i.e. between neighboring Cu-O and O-O atoms). The magnitudes of these U parameters are critical to the mechanism for the superconductivity. As a consequence, much effort has gone into theoretically calculating these parameters, but wide disagreement still exists over the magnitudes.

Theoretical values for U_α in the range 6.5-10 eV, U_β (actually $U_{\alpha\beta}$) in the range 7-14 eV, and $U_{\alpha\beta}$ in the range 0.5-1.5 eV have been reported [3], with the smaller results favored based on the quality of the calculations. No results for $U_{\beta\alpha}$ have been reported. Our empirical results indicate that $U_\alpha = 9.5$, $U_\beta = 12$, and $U_{\alpha\beta} = 4.5$ eV for 123. The latter two are much larger than previously thought for these metallic systems, although $U_{\alpha\beta}$ is in agreement with the best theoretical results above.

We generalize the theory of vanderLaan et al [4] in an extended Hubbard model to interpret the spectra. All of the data can be understood within a CuO$_4^{(2+2)-}$ cluster model, which is valid when the U's are large relative to the bandwidths [4], i.e. when correlation effects dominate covalent or hybridization effects. Both La and CuO contain CuO$_4$ groups [5], having 4 short and 2 long Cu-O bonds. The 123 HTSC contains CuO$_4$ and planar CuO$_4$.
groups [5]. The different n may alter the relative intensities of various features as pointed out below, but similar features are present in each case. The different bond lengths may increase the widths of the spectral features, but little else since correlation dominates.

The CuO$_4$(sq-e) cluster has one hole shared between the Cu 3d and O 2p shells in the ground state, which we term the v (valence) states. We indicate the location of the v hole by d (Cu 3d) or p (O 2p). In the case of two holes on the oxygens, we distinguish two holes on the same O (p^s), on ortho neighboring O atoms (pp^s), or on para O atoms (pp^p) of the cluster. Furthermore, neighboring pp^s holes can dimerize [6], so we distinguish between two holes in bonded (pp^s) and antibonded (pp^p) O pairs.

Most of the O atoms actually participate in two CuO$_4$ clusters. Consistent with previous work [7], we account for this by defining the effective parameter, $\epsilon_v = \epsilon_{v}' + U_{pp}$, where U_{pp} includes the interaction of a hole in an O p orbital with its environment. In general U_{pp} will be less than U_{pp} due to polarization.

The v states, as reflected by the theoretical DOS [2], can be described as having the Cu-O bonding (t_b) and antibonding (t_a) orbitals centered at 4 and 0 eV and the nonbonding Cu and O orbitals at 2 eV. The O features each have a width $2\Gamma = 4$ eV due to the O-O bonding and antibonding character and the Cu-O dispersion. The t_b and t_a wavefunctions can be expressed as [4],

$$t_b = d \cos \phi_1 - p \sin \phi_1 \quad (1a)$$

$$t_a = d \sin \phi_1 + p \cos \phi_1 \quad (1b)$$

where $\phi_1 = 0.5 \tan^{-1}(2t/\Delta)$. We also define the Cu-O hybridization shift $\delta_1 = 0.5 \sqrt{(\Delta^2 - 4t^2)} - \Delta/2$, which is utilized in Table 1 to give the energies. In this picture, the ground state of an average CuO$_4$ cluster is located at 1 eV.
having the energy $c - d \gamma /2 = e - \Delta$, which we use as a reference energy for the v^2 states. In CuO, the hybridization shift γ is smaller, and we shall see below that $\Delta = \varepsilon_2 - \varepsilon_4$ has increased to 1 eV. This increase can be attributed to an increase in ε_p, or U_{pt}, and reflects a smaller lattice polarization response due to the more ionic character in CuO.

The photoemission process involves excitation from the ground v state (i.e. the v_0 state) to the v^2 states. Consistent with the final state rule [8], the photoelectron spectra reflect the v^2 DOS, not the v DOS. In a highly correlated system, the v and v^2 DOS are very different, explaining the well-known differences seen [2] between the theoretical DOS and the photoelectron spectra for the HTSC's.

Table 1 lists the 6 different v^2 configurations. These configurations hybridize, i.e. 1,2,5 & 6 have the same symmetry and mix together to give $v_0 = \Sigma_6 c_m v_m$. The coefficients c_m are obtained by diagonalizing the 4x4 Hamiltonian matrix, assuming each of the 4 configurations (pp*, dp, d*, & p*) are orthogonal, and that pp*, p*, and d* have non-zero off-diagonal matrix elements with dp but zero with each other. The two pp* states (3 & 4) have different symmetry and mix separately. The sudden approximation and the cross-sections for ionization from the O 2p and Cu 3d shells, σ_p and σ_d, can then be utilized to give the expected relative photoemission intensities,

$$I(m) = \Sigma_6 (\langle \psi_m \psi_0 \rangle)^2 \sigma_1 = \Sigma_6 (\Sigma_m c_m \langle \psi_m \psi_0 \rangle)^2 \sigma_1,$$ \hspace{1cm} (2)

for the six v^2 states. In eq. 2, ψ_i indicates the orbital of the hole created by the photoemission process, either d or p, where the new p hole may be created ortho, para or on the same O atom as the initial p hole, (i.e. to create the pp*, p*, or pp* configurations with relative cross-section $\sigma_1 = \sigma_p/n$, $(n-2)\sigma_p/n$, and σ_p/n, respectively). σ_p/σ_d is roughly 2 for 21 eV, 1 for 45, and 0.3 for 100 eV photons [2,9]. Results from eq. 2 utilizing the parameters
in Table 1 are given in Fig. 2. States 1 & 2 and 3 & 4 are heavily mixed so that they are the only ones to experience a significant hybridization shift, δ_1 and Γ, as shown in Table 1.

At low photon energies, the sudden approximation assumed above breaks down [10]. The opposite extreme, the adiabatic limit, gives intensity only in the lowest state of each symmetry, 1 and 3, since the system is able to relax before escape of the photoelectron. Since the relaxation time goes as the reciprocal of the shakeup energy [10], we expect that the high energy features, such as the d^2 and p^2 "satellites", will have much smaller intensity than that predicted by eq. 2.

The valence band features. Photon energy dependent data [11-13] in Figure 1 show that the VB features around 5.5 eV in CuO and 2.5 and 5 eV in 123 arise more from σ_p, and the feature at 3 in CuO and 4.2 eV in 123 from σ_d [13-15]. Based on our estimated energies, for CuO we assign the 5.5-eV feature to pp^* and pp' and the 3-eV to dp. In 123, we assign the 5-eV to pp^*, the 4.2 to dp, and the 2.5 to pp', where we indicate the dominant character of each hybridized state.

These assignments are also consistent with the results in Fig. 2. At low hv when σ_d dominates σ_p, $I(pp^*) + I(2)$ is about equal to $I(1)$ at $\Delta = 1$ in agreement with the data for CuO, while it is much greater than $I(1)$ at $\Delta = 0$ in agreement with the data for 123. At large hv when σ_d dominates σ_p, $I(1)$ and $I(2)$ dominate. The calculated results in Fig. 2 indicate that $I(1)/I(2)$ should equal about 1 at $\Delta = 1$, and about 0.5 at $\Delta = 0$, whereas the XPS results in Fig. 1 indicate that these ratios are qualitatively much larger. The enhancement of $I(1)$ in both cases arises because of intensity transfer from the d^2 state as a result of relaxation, which occurs even at XPS energies.

A character switch of state 1 from more dp to pp^* and vice versa for
state 2 between CuO and 123 arises because Δ decreases from 1 eV to 0 eV. The smaller Δ in 123, due to a smaller t_p or U_p, is consistent with the Cu 2p XPS and XES data to be discussed elsewhere [15]. States 1 and 2 remain a few eV apart in spite of this switch because of the heavy CI mixing. Since state 1 is more of pp^* character in the SC's, the additional "charge carrier holes" (present in the La after Sr doping and in the 123 when $7-x$ is greater than 6.5) are more on the oxygens.

Angle resolved PES data on single crystals of 123 show that the 2.5 eV feature is the only one which shows a small angular dispersion and a photon energy dependence [13]. The near lack of dispersion is consistent with our highly correlated cluster model. The small dispersion of the 2.5 eV feature probably comes from inter-CuO$_4$ cluster interaction, which is expected to be the largest when both holes are on the bordering O atoms.

The d^* satellite. The principal multiplet of the d^* final state for CuO is known to fall at 12.5 with a smaller one around 10 eV [11]. The intensity of the d^* final state is enhanced by the Cu 2p \rightarrow 3d (or 2p \rightarrow 4sp in Cu$_2$O and Cu) resonant excitation process followed by an Auger decay [11]. This process is resonant between 72-80 eV. The SC's exhibit a behavior similar to CuO [14]. The satellites in Cu$_2$O and Cu do not have non-resonant components [11] because the UPS for Cu$_2$O and Cu reflect the one-hole DOS. However, the VB XPS of CuO and the RTSC's can and do show a significant nonresonant d^* satellite (see Figure 1) [17]; indeed, it should grow as one approaches the sudden limit. This possibility makes it even more difficult to interpret the data for the HTSC's, since the d^* satellite at 12.5 in the VB XPS falls at or near the same energy as the Ba spin-orbit split 5p features [1], which have been very controversial.

For the XPS (Figure 1a), Miller et al [1] have indicated that the 12.5 eV
feature results from the Ba representative of the bulk, and the 14 and 16 eV features result from Ba bonded to OH- and CO2 on the surface. Steiner et al [18] indicate that the 12.5 eV feature is representative of those Ba atoms surrounded by O atoms, but that the 14 and 16 eV features arise from those Ba atoms with either neighboring O defects or O atoms with holes (i.e. O- instead of O2-). Recent data [13] on single crystals cleaved in-situ (Fig. 1), when impurities are not expected, reveal only the 14 and 16 eV features at glancing emission (i.e. representative of the surface), and two additional features shifted up by about 1 eV at normal emission (i.e. more representative of the bulk). This shift has been interpreted as a surface chemical shift, but it is actually consistent with the Steiner data and interpretation, if one assumes more O defects exist at the surface than in the bulk. Recently Weaver et al [19] reported XPS data for sintered 123 which actually revealed only the features at 12.5 and 14 eV. This indicates either that their surfaces were free of impurities or that the bulk and surface were totally oxidized (i.e. within the Miller or Steiner interpretations). More experimental data is required here to conclusively decide on these two alternatives, but in our opinion the Steiner interpretation appears the more plausible at this time. Regardless of the interpretation, the intensity of the d^2 feature is clearly much smaller than that predicted in Fig. 2 because of the relaxation to state 1. Theory indicates that I(d^2) should be smaller in 123 than in CuO, so the amount of the d^2 satellite actually present in the XPS for the HTSC's is still uncertain.

The p^2 state is believed to be responsible for the "mystery" peak found at 9.5 eV in the UPS. Although initially it was thought to arise from carbon on the surface [20], more recent data [13, 21] (Fig. 1b) indicate that it is intrinsic to the material. Figure 1b indicates that such a
feature also appears for CuO \([11,12]\). This feature does not appear for Cu\(_2\)O, as expected since UPS reflects the one-hole DOS in Cu\(_2\)O. Thus this feature is not unique to the SC's; it naturally appears for those systems with two-hole photoemission final states.

The 9.5 eV feature has a cross-sectional dependence similar to \(\sigma_p\) \([14,15]\), consistent with the pp\(^*\) identification. Figure 2 gives the combined intensity, \(I(pp%) + I(pp^*)\). We expect that \(I(pp%) / I(pp^*)\) will be near 1 at XPS energies (this may also depend on the \(n\) in Cu\(_2\)O), and will be much smaller at UPS energies due to relaxation. Therefore \(I(pp%)\) should decrease because of relaxation, but increase because of \(\sigma_p\) as \(h\nu\) decreases. A small contribution also exists from \(\sigma_s\) so that it is visible even at XPS energies. The data show that \(I(pp%)\) is larger for 123 than for CuO and La. This is consistent with Fig. 2, and with the larger pp\(^*\) cross-section expected for smaller \(n\).

An upper estimate of the two-center pp\(^*\) hole-hole repulsion, \(U_{pp^*}\), can be obtained from the Klopman approximation \([22]\),

\[
U_U = \frac{e^2}{(r_0^2 + (2e^2/\left(U _1 + U _j\right)))^{1/2}},
\]

where \(r_0\) is the interatomic distance and \(U_1\) and \(U_j\) are the corresponding intra-atomic repulsion energies. Equation 2 gives a value for \(U_{pp^*}\) around 4.8 eV assuming \(r_{so}\) is 2.7 A. The experimental energies of 9.5 and 5.0 eV for pp\(^*\) and pp\(^*\) in 123 suggests that the pp\(^*\) final state energy is 7.2 eV. This gives an empirical estimate for \(U_{pp^*}\) of 4.2 eV, very close to the Klopman theoretical result, which does not include the effects of interatomic screening.

The above result shows that metallic screening of two holes, which are spatially separated on neighboring O atoms, is not very significant. This is in contrast to two Cu-O holes, where Table 1 indicates the optimal \(U_{so} = 1\) eV, while eq. 2 estimates \(U_{so}\) at 6.1 eV assuming \(r_{so}\) is 1.9 A. This large
reduction in U_{d} may result from charge transfer into the Cu $4sp$ levels to screen the Cu-O holes. Although metallic screening, which results from virtual electron-hole (e-p) pair excitations at the Fermi level, is not expected to be large in an insulator such as CuO, screening effects are expected to be much larger in metals, such as the HTSC's. The above results show that U_{d} is significantly reduced in both, and U_{sp} remains large in both. The lack of a significant change in the U's between CuO and the HTSC's indicates that the DOS at the Fermi level in the HTSC's must be very small.

The assignment of the 9.5 eV feature explains some of its interesting characteristics. Comparison of data [14] for YBa$_2$Cu$_3$O$_7$ (123) with O levels at $x = 6.95$, 5.5, and 6.05 reveal that the reduced O materials, 123$_{6.95}$ and 123$_{5.5}$, have two peaks around 9.4 and 11.5 eV. It is known that the oxygen decrease resulting from quenching or heating in vacuum occurs primarily from the CuO$_{1.5}$ chains [23]. This may leave distorted CuO or even peroxide O$_2^-$ clusters [6] which have an O-O distance less than that in the ordered CuO$_{1.5}$ groups, and hence a larger U_{sp}. A U_{sp} of 6.5 eV requires an O-O distance of less than 2 Å. Very recent data [24] on the new Bi and Th type HTSC's indicate a single feature around 10 eV similar to that for 123.

The p^d feature. Evidence for the existence of the p^d feature, estimated to appear at 17.5 eV for CuO can indeed be found around 17 eV in the XPS for CuO in Figure 1. UPS data for 123 [13] may reveal the p^d feature around 16 eV, moved up by at least 1 eV as predicted. Figure 1 shows UPS at $\h v = 100$ and 40 eV. The relative intensity of these two peaks changes when normally one would expect the relative intensity of the $5p_{1/2}$ and $5p_{3/2}$ peaks to remain constant with photon energy. But, the 40 eV spectrum should have a larger σ_p contribution. This suggests that the $\h v = 40$ eV spectrum may have a contribution from the p^d state, such as that indicated in Figure 1.
Its intensity may arise as much from σ_α as from σ_δ at large $h\nu$, although we indicate only the σ_δ component in Fig. 2. Its theoretical intensity is remarkably independent of Δ. At low $h\nu$, when σ_δ dominates, its intensity remains small because of relaxation.

In summary, we have obtained a set of Hubbard parameters and derived intensity expressions which consistently predict the various features seen in the UPS data. The U's involving the O atoms, U_δ and U_p^α, are much larger in the metallic HTSC's than expected. We have assigned the UPS feature at 9.5 eV, and explained its characteristics. We will show elsewhere [16] that the Hubbard parameters determined here are consistent with core level XPS, x-ray emission and absorption, and Auger data.
StatTable 1 Summary of hole states revealed in the photoelectron data, and estimated energies using the following optimal values for the Hubbard parameters in eV:

<table>
<thead>
<tr>
<th>State</th>
<th>Energy expression</th>
<th>Calc. E</th>
<th>Exp. E</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>G.S. and IPES, v</td>
<td>e_s - e_d ± \Gamma</td>
<td>0 ± 2</td>
<td>-</td>
<td>heavily</td>
</tr>
<tr>
<td>UPS and XES, v^*</td>
<td>e_s + e_d ± \Gamma</td>
<td>4 ± 2</td>
<td>-</td>
<td>mixed</td>
</tr>
<tr>
<td>1) ppp</td>
<td>e_s + \Delta + e_d + \alpha</td>
<td>2.5</td>
<td>2.5</td>
<td>heavily</td>
</tr>
<tr>
<td>2) dp</td>
<td>e_s + U_{pp} + e_d + \alpha</td>
<td>4.5</td>
<td>4.2</td>
<td>mixed</td>
</tr>
<tr>
<td>3) pp^*</td>
<td>e_s + \Delta + U_{pp}^* - \Gamma + \alpha</td>
<td>5.5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>4) pp^*</td>
<td>e_s + \Delta + U_{pp}^* + \Gamma + \alpha</td>
<td>9.5</td>
<td>9.5</td>
<td>mystery peak</td>
</tr>
<tr>
<td>5) d^*</td>
<td>e_s + e_d + \alpha</td>
<td>12.5</td>
<td>12.5</td>
<td>Cu sat.</td>
</tr>
<tr>
<td>6) p^*</td>
<td>e_s + \Delta + U_{p} + \alpha</td>
<td>15</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

*The dominant character in the hybridized states is given.
*The Calc. E and Exp. E columns indicate the results for 123.
*The calculated E is defined relative to the ground v (d) state energy \epsilon_s - \epsilon_d. The v (d) energy defines the Fermi level relative to the vacuum level at zero.
*The dominant character switches as described in the text, and thus the sign in front of \epsilon_d is the opposite for CuO.
References

*Supported in part by the Office of Naval Research

19. J. Weaver et al., preprint.
24. Y. Chang et al., preprint; M. Onellion et al., preprint.
Figure Captions

Figure 1a) Comparison of photoelectron spectra in the range 10-18 eV for 123.
 Data from refs. 13 (hv = 100 and 40) and 1 (hv = 1487).

1b) Comparison of UPS spectra for CuO and 123 taken with the
 indicated photon energies in eV. Data for CuO from refs. 17 (hv =
 1487), 11 (hv = 74) and 12 (hv = 21). Data for 123 from ref. 13
 (hv = 25 and 74) and 1 (hv = 1487).

Figure 2) Calculated photoemission intensities for the vA states obtained
from evaluation of eq. 2, utilizing the parameters in Table 1 for
CuO4 clusters. The intensities have been normalized so that the
sum is $\sigma_p + \sigma_d$.
<table>
<thead>
<tr>
<th>Office of Naval Research</th>
<th>2</th>
<th>Dr. David Young</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attn: Code 1113</td>
<td></td>
<td>Code 334</td>
</tr>
<tr>
<td>800 N. Quincy Street</td>
<td></td>
<td>MORDA</td>
</tr>
<tr>
<td>Arlington, Virginia 22217-5000</td>
<td></td>
<td>NSSL, Mississippi 39529</td>
</tr>
<tr>
<td>Dr. Bernard Dauda</td>
<td>1</td>
<td>Naval Weapons Center</td>
</tr>
<tr>
<td>Naval Weapons Support Center</td>
<td></td>
<td>Attn: Dr. Ron Atkins</td>
</tr>
<tr>
<td>Code 50C</td>
<td></td>
<td>Chemistry Division</td>
</tr>
<tr>
<td>Crane, Indiana 47522-5050</td>
<td></td>
<td>China Lake, California 93555</td>
</tr>
<tr>
<td>Naval Civil Engineering Laboratory</td>
<td>1</td>
<td>Scientific Advisor</td>
</tr>
<tr>
<td>Attn: Dr. R. W. Drisko, Code L52</td>
<td></td>
<td>Commandant of the Marine Corps</td>
</tr>
<tr>
<td>Port Hueneme, California 93401</td>
<td></td>
<td>Code RD-1</td>
</tr>
<tr>
<td>Defense Technical Information Center</td>
<td>12 high quality</td>
<td>U.S. Army Research Office</td>
</tr>
<tr>
<td>Attn: CED-44-P</td>
<td></td>
<td>P.O. Box 12211</td>
</tr>
<tr>
<td>Building S, Cameron Station</td>
<td></td>
<td>Research Triangle Park, NC 27709</td>
</tr>
<tr>
<td>Alexandria, Virginia 22314</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DTNSRDC</td>
<td>1</td>
<td>Mr. John Boyle</td>
</tr>
<tr>
<td>Attn: Dr. H. Singerman</td>
<td></td>
<td>Materials Branch</td>
</tr>
<tr>
<td>Applied Chemistry Division</td>
<td></td>
<td>Naval Ship Engineering Center</td>
</tr>
<tr>
<td>Annapolis, Maryland 21401</td>
<td></td>
<td>Philadelphia, Pennsylvania 19112</td>
</tr>
<tr>
<td>Dr. William Tolles</td>
<td>1</td>
<td>Naval Ocean Systems Center</td>
</tr>
<tr>
<td>Superintendent</td>
<td></td>
<td>Attn: Dr. S. Yamamoto</td>
</tr>
<tr>
<td>Chemistry Division, Code 6100</td>
<td></td>
<td>Marine Sciences Division</td>
</tr>
<tr>
<td>Naval Research Laboratory</td>
<td></td>
<td>San Diego, California 91232</td>
</tr>
<tr>
<td>Washington, D.C. 20375-5000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Department</td>
<td>Institution</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>Dr. F. Carter</td>
<td>Code 6170</td>
<td>Naval Research Laboratory</td>
</tr>
<tr>
<td>Dr. Richard Colton</td>
<td>Code 6170</td>
<td>Naval Research Laboratory</td>
</tr>
<tr>
<td>Dr. Dan Pierce</td>
<td>National Bureau of Standards</td>
<td>Optical Physics Division</td>
</tr>
<tr>
<td>Dr. R.G. Wallis</td>
<td>Department of Physics</td>
<td>University of California</td>
</tr>
<tr>
<td>Dr. D. Bemiller</td>
<td>Chemistry Department</td>
<td>George Washington University</td>
</tr>
<tr>
<td>Dr. J.C. Hemminger</td>
<td>Chemistry Department</td>
<td>University of California</td>
</tr>
<tr>
<td>Dr. T.F. George</td>
<td>Chemistry Department</td>
<td>University of Rochester</td>
</tr>
<tr>
<td>Dr. G. Rubloff</td>
<td>IBM</td>
<td>Thomas J. Watson Research Center</td>
</tr>
<tr>
<td>Dr. J. Baldeschwieler</td>
<td>Department of Chemistry and Chemical Engineering</td>
<td>California Institute of Technology</td>
</tr>
<tr>
<td>Galen O. Stucky</td>
<td>Chemistry Department</td>
<td>University of California</td>
</tr>
<tr>
<td>Dr. A. Steckl</td>
<td>Department of Electrical and Systems Engineering</td>
<td>Rensselaer Polytechnic Institute</td>
</tr>
<tr>
<td>Dr. John T. Yates</td>
<td>Department of Chemistry</td>
<td>University of Pittsburgh</td>
</tr>
<tr>
<td>Dr. R. Stanley Williams</td>
<td>Department of Chemistry</td>
<td>University of California</td>
</tr>
<tr>
<td>Dr. J. T. Kaiser</td>
<td>Department of Chemistry</td>
<td>University of Richmond</td>
</tr>
<tr>
<td>Dr. R.W. Plummer</td>
<td>Department of Physics</td>
<td>University of Pennsylvania</td>
</tr>
<tr>
<td>Dr. E. Yeager</td>
<td>Department of Chemistry</td>
<td>Case Western Reserve University</td>
</tr>
<tr>
<td>Dr. N. Winograd</td>
<td>Department of Chemistry</td>
<td>Pennsylvania State University</td>
</tr>
<tr>
<td>Dr. Roald Hoffmann</td>
<td>Department of Chemistry</td>
<td>Cornell University</td>
</tr>
<tr>
<td>Dr. A. Steckl</td>
<td>Department of Electrical and Systems Engineering</td>
<td>Rensselaer Polytechnic Institute</td>
</tr>
<tr>
<td>Dr. Robert L. Whetten</td>
<td>Department of Chemistry</td>
<td>University of California</td>
</tr>
<tr>
<td>Dr. Daniel M. Neumark</td>
<td>Department of Chemistry</td>
<td>University of California</td>
</tr>
<tr>
<td>Dr. J. B. Morrison</td>
<td>Department of Chemistry</td>
<td>University of California</td>
</tr>
</tbody>
</table>
Dr. J. E. Jensen
Hughes Research Laboratory
3011 Malibu Canyon Road
Malibu, California 90265

Dr. J. H. Weaver
Department of Chemical Engineering
and Materials Science
University of Minnesota
Minneapolis, Minnesota 55455

Dr. A. Reisman
Microelectronics Center of North Carolina
Research Triangle Park, North Carolina 27709

Dr. M. Grunze
Laboratory for Surface Science and Technology
University of Maine
Orono, Maine 04469

Dr. J. Butler
Naval Research Laboratory
Code 6115
Washington, D.C. 20375-5000

Dr. L. Interante
Chemistry Department
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. Irwin Heard
Chemistry and Physics Department
Lincoln University
Lincoln University, Pennsylvania 19352

Dr. K. J. Klaubunde
Department of Chemistry
Kansas State University
Manhattan, Kansas 66506

Dr. C. B. Harris
Department of Chemistry
University of California
Berkeley, California 94720

Dr. R. Bruce King
Department of Chemistry
University of California
Athens, Georgia 30602

Dr. R. Reeves
Chemistry Department
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. Steven M. George
Stanford University
Department of Chemistry
Stanford, CA 94305

Dr. Mark Johnson
Yale University
Department of Chemistry
New Haven, CT 06511-8118

Dr. W. Knauer
Hughes Research Laboratory
3011 Malibu Canyon Road
Malibu, California 90265

Dr. Theodore E. Macey
Surface Chemistry Section
Department of Commerce
National Bureau of Standards
Washington, D.C. 20234

Dr. J. E. Demuth
IBM Corporation
Thomas J. Watson Research Center
P.O. Box 218
Yorktown Heights, New York 10598

Dr. M. G. Legally
Department of Metallurgical and Mining Engineering
University of Wisconsin
Madison, Wisconsin 53706

Dr. R. P. Van Duyne
Chemistry Department
Northwestern University
Evanston, Illinois 60208

Dr. J. M. White
Department of Chemistry
University of Texas
Austin, Texas 78712

Dr. Richard J. Saykally
Department of Chemistry
University of California
Berkeley, California 94720
Dr. G. A. Somorjai
Department of Chemistry
University of California
Berkeley, California 94720

Dr. J. Murdoch
Naval Research Laboratory
Code 6170
Washington, D.C. 20375-5000

Dr. W. T. Peria
Electrical Engineering Department
University of Minnesota
Minneapolis, Minnesota 55455

Dr. Keith H. Johnson
Department of Metallurgy and Materials Science
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Dr. S. Sibener
Department of Chemistry
James Franck Institute
5640 Ellis Avenue
Chicago, Illinois 60637

Dr. Arald Green
Quantum Surface Dynamics Branch
Naval Weapons Center
China Lake, California 93555

Dr. A. Wold
Department of Chemistry
Brown University
Providence, Rhode Island 02912

Dr. S. L. Bernasek
Department of Chemistry
Princeton University
Princeton, New Jersey 08544

Dr. W. Kohn
Department of Physics
University of California, San Diego
La Jolla, California 92037

Dr. Stephen D. Kevan
Physics Department
University of Oregon
Eugene, Oregon 97403

Dr. David M. Walba
Department of Chemistry
University of Colorado
Boulder, CO 80309-0215

Dr. L. Kesmodel
Department of Physics
Indiana University
Bloomington, Indiana 47403

Dr. K. C. Janda
University of Pittsburgh
Chemistry Building
Pittsburgh, PA 15260

Dr. E. A. Irene
Department of Chemistry
University of North Carolina
Chapel Hill, North Carolina 27514

Dr. Adam Heller
Bell Laboratories
Murray Hill, New Jersey 07974

Dr. Martin Fleischmann
Department of Chemistry
University of Southampton
Southampton S09 SNH
UNITED KINGDOM

Dr. H. Tachikawa
Chemistry Department
Jackson State University
Jackson, Mississippi 39217

Dr. John W. Wilkins
Cornell University
Laboratory of Atomic and Solid State Physics
Ithaca, New York 14853

Dr. Ronald Lee
Naval Surface Weapons Center
White Oak
Silver Spring, Maryland 20910

Dr. Robert Gomer
Department of Chemistry
James Franck Institute
5640 Ellis Avenue
Chicago, Illinois 60637

Dr. Morita Metiu
Chemistry Department
University of California
Santa Barbara, California 93106

Dr. W. Goddard
Department of Chemistry and Chemical Engineering
California Institute of Technology
Pasadena, California 91125