Title: Conformational Changes Upon $S_1 \leftrightarrow S_0$ Excitation In 4-Dimethylaminobenzonitrile and Some of Its Chemical Analogs

Authors: V.H. Grassian, J.A. Warren, and E.R. Bernstein

Abstract:

One color time-of-flight mass spectra (mass resolved excitation spectra) for jet-cooled 4-dimethylamino benzonitrile (4-DMABN), 3-dimethylamino benzonitrile (3-DMABN), N,N-dimethyl-4-(trifluoromethyl)benzeneamine (4-CF$_3$-DNA) and 4-(d$_2$-dimethylamino)benzonitrile (4-d$_2$-DMABN), are presented and analyzed. Near the origin of the $S_1 \leftrightarrow S_0$ transition the low frequency modes can be assigned to motions of the dimethylamino group and the dimethylamino group torsion about the motion of the dimethylamino group and the dimethylamino group torsion about the C$_{atom}$-N bond (the twist coordinate) in S_1 give rise to the most prominent peaks in this spectrum. The potential parameters for the twist coordinate of 4-DMABN and 3-DMABN are quite similar in S_1: $B = 0.546$, $V_2 = 175$, and $V_4 = 525$ cm$^{-1}$ for 4-DMABNand $B = 0.546$, $V_2 = 175$, and $V_4 = 515$ cm$^{-1}$ for 3-DMABN. The V_2 and V_4 terms are slightly larger for 3-DMABN and 4-CF$_3$-DNA. The inversion motion is also similar for these molecules but is more anharmonic for the para-substituted dimethylamines, 4-DMABN and 4-CF$_3$-DNA, than for the meta and unsubstituted molecules. A Franck-Condon intensity analysis for the dimethylamino twist in these molecules suggests that this group in 4-DMABN is displaced in the excitation...
19. twisted by ca. 30° with respect to its planar orientation in the ground state. In both solutions and monosolvate clusters of 4-DMABN with polar aprotic solvents, a low lying charge transfer (CT) state is identified in addition to the usual $\pi\pi^*$ excited state of the bare molecule. The relation between the bare molecule 4-DMABN twisting displacement upon excitation and the low lying CT state is discussed.
CONFORMATIONAL CHANGES UPON S1 - S0 EXCITATION
IN 4-DIMETHYLAMINOBENZONITRILE AND SOME OF ITS CHEMICAL ANALOGS

by

V.H. Grassian, J.A. Warren, and E.R. Bernstein

Prepared for Publication

in the

Journal of Chemical Physics

Department of Chemistry
Colorado State University
Fort Collins, Colorado 80523

November, 1988

Reproduction in whole or in part is permitted for any purpose of the United States Government.

This document has been approved for public release and sale: its distribution is unlimited.
CONFORMATIONAL CHANGES UPON S₁ - S₀ EXCITATION IN
4-DIMETHYLAMINOFENZONITRIILE AND SOME OF ITS CHEMICAL ANALOGS

V.H. Grassian, J.A. Warren, and E.R. Bernstein
Colorado State University
Department of Chemistry
Fort Collins, Colorado

Henry V. Secor
Philip Morris U.S.A.
Research Center
P.O. Box 26583
Richmond, VA 23261

*Present address - Westhollow Research Center, Shell Development Corporation,
P.O. Box 1380, Houston, Texas 77251-138
ABSTRACT

One-color time-of-flight mass spectra (mass resolved excitation spectra) for jet-cooled 4-dimethylaminobenzonitrile (4-DMARN) and some of its chemical analogs, dimethylaniline (DMA), 3-dimethylaminobenzonitrile (3-DMABN), N,N-dimethyl-4-((trifluoromethyl)benzamine (4-CF₃-DMA) and 4-(d₆-dimethylamino)benzonitrile (4-d₆-DMARN), are presented and analyzed. Near the origin of the $S_1 - S_0$ transition the low frequency modes can be assigned to motions of the dimethylamino group for this series of molecules. The inversion motion of the dimethylamino group and the dimethylamino group torsion about the Cipso-N bond (the twist coordinate) in S_1 give rise to the most prominent peaks in this spectrum. The potential parameters for the twist coordinate of 4-DMABN and DMA are quite similar in S_1: $B = 0.546$, $V_2 = 175$, and $V_4 = 525 \text{ cm}^{-1}$ for 4-DMABN and $B = 0.546$, $V_2 = 175$, and $V_4 = 515 \text{ cm}^{-1}$ for DMA. The V_2 and V_4 terms are slightly larger for 3-DMABN and 4-CF₃-DMA. The inversion motion is also similar for these molecules but is more anharmonic for the para-substituted dimethylanilines, 4-DMARN and 4-CF₃-DMA, than for the meta and unsubstituted molecules. A Franck-Condon intensity analysis for the dimethylamino twist in these molecules suggests that this group in 4-DMARN is displaced in the excited state by ca. 30° with respect to its planar orientation in the ground state. In both solutions and monosolvate clusters of 4-DMABN with polar aprotic solvents, a low lying charge transfer (CT) state is identified in addition to the usual π^* excited state of the bare molecule. The relation between the bare molecule 4-DMARN twisting displacement upon excitation and the low lying CT state is discussed.
I. **INTRODUCTION**

Intramolecular charge transfer (CT) reactions constitute an important class of unimolecular reactions; however, experimentally observed solvent effects on the intramolecular CT reaction suggest that these reactions are solvent assisted and thus not purely intramolecular. Polar solvents have the ability to stabilize the charge transfer state and can consequently lower the barrier to reaction. A considerable amount of interest has been generated in the solution phase emission studies of molecules which undergo such behavior because they exhibit anomalous dual fluorescence in polar solvents (e.g., acetonitrile) and normal fluorescence in non-polar solvents (e.g., hexane).\(^1\)\(^-\)\(^10\) The dual fluorescence is attributed to "normal" fluorescence from \(S_1\) and red-shifted emission from a CT state.

The nature of the charge transfer state has been the subject of some debate. Grabowski and co-workers\(^1\)\(^-\)\(^3\) have suggested a twisted intramolecular charge transfer (TICT) state to explain the supposed viscosity dependence of the dual fluorescence of molecules such as 4-dimethylaminobenzonitrile (4-DMABN). They postulated that after excitation, 4-DMABN undergoes electron transfer from the dimethylamino group to the benzonitrile group with a concomitant 90° twist of the dimethylamino group. The complete loss of conjugation between the dimethylamino group and the benzonitrile group (due to the proposed 90° twist) would prohibit electron transfer from proceeding in the reverse direction. This intramolecular charge transfer state is stabilized by solvent interactions in polar solvents. Eisenthal and co-workers have carefully studied the role of the solvent on the kinetics in the formation of the TICT state,\(^5\)\(^,\)\(^6\) and find that the viscosity dependence of the fluorescence is an experimental artifact. Thus the original basis for the TICT mechanism no longer appears to be valid, although
this TICT mechanism is still invoked to rationalize the presence of the low lying CT state of 4-DMABN in polar solvents.

Recently we have published a spectroscopic study of jet-cooled 4-DMABN both isolated and clustered with polar and non-polar solvents. These studies were undertaken in hopes of providing some insight into the solution phase behavior of 4-DMABN and related molecules which exhibit dual fluorescence in polar solvents. The correlation between the mono-solvated clusters, formed in the supersonic jet expansion, and the solution phase behavior is quite good. Similar to what is observed in solution, we were able to identify spectroscopically two distinct regions in the time-of-flight mass spectrum (TOFMS-mass resolved excitation spectrum) of monosolvated 4-DMABN when clustered with polar solvents such as acetonitrile, acetone and dichloromethane. The TOFMS of 4-DMABN clustered with these three polar solvents shows a broad red-shifted (with respect to the 4-DMABN spectral origin) peak which we associate with the "anomalous" emission found in solution phase and a slightly blue shifted (again with respect to the 4-DMABN origin) set of spectrally sharp features which we attribute to normal cluster emission. These spectra were suggested to arise from clusters of different configurations and therefore clusters with different degrees of CT state stabilization. The frequency shift of the broad peak is proportional to the dipole moment of the solvent as is expected for a CT state. Although other workers have published fluorescence excitation studies on jet-cooled 4-DMABN clustered with various solvents they did not detect the broad, relatively weak red-shifted features associated with the charge transfer state.

The solution phase spectra are broad with little or no sharp features present. The jet-cooled cluster species are preferable to study...
spectroscopically because they yield relatively uncongested spectra.15 Although several studies on jet-cooled 4-DMABN have appeared in the literature, the spectrum has yet to be assigned. The full analysis of the spectrum for 4-DMABN and some of its chemical analogs is the subject of this paper. Assignment of the TOFMS (or the fluorescence excitation spectra which are identical, vide infra) for jet-cooled 4-DMABN is of course an important first step in understanding the excited state potential energy surface of the isolated molecule. The spectrum for jet-cooled 4-DMABN displays a Franck-Condon envelope clearly evident in the origin region. We attribute these features to a twist of the dimethylamino group upon excitation of the molecule from \(S_0\) to \(S_1\). This implies the molecule is already in a twisted form in the \(S_1\) state before the solvent assisted charge transfer occurs. The degree to which the amino group twists for isolated 4-DMABN in \(S_1\) and its relation to the TICT state is discussed in this paper.

In this study we present TOFMS for dimethylaniline (DMA), 4-N,N-dimethyl-4-(trifluoromethyl)benzamine (4-CF\(_3\)-DMA) and the specifically labeled d\(_6\)-4-DMABN (deuterated methyl groups), as well as the TOFMS for 3- and 4-DMABN. These chemical analogs of 4-DMABN are studied so as to aid in the assignment of the spectrum. We have analyzed the spectra in terms of the dimethylamino torsional motion about the C-N bond, i.e. the twist coordinate, and the dimethylamino inversion motion. The similarity in the spectra of all these closely related molecules near the origin region shows that the low frequency peaks can be solely attributed to motions of the dimethylamino group. Since only 4-DMABN, of this set of molecules, evidences a low lying charge transfer state in solution and in clusters, we can conclude that the twisting motion in \(S_1\) is not mechanistically related to the charge transfer mechanism.
II. EXPERIMENTAL PROCEDURE

The time of flight system has been described previously. The supersonic jet expansion is generated by a pulsed R.M. Jordan valve. The supersonic beam is skimmed before it interacts with the laser beams in the ionization region of the TOFMS. The jet cooled molecules are excited to S_1 and photoionized with the same laser frequency in these one color experiments. The doubled output of a Nd:YAG laser (532 nm) is used to pump a dye laser. The dye (DCM for 4-DMABN, 4-CF$_3$-DMA and d$_6$-4-DMABN; and LDS 698 for 3-DMABN) output is frequency doubled by a KDP crystal. The laser beam and the skimmed, molecular beam cross at right angles. The ions that are formed from the one photon resonant, two photon ionization process are accelerated into the flight tube and detected by a microchannel plate.

4-DMABN was purchased from Aldrich Chemical Co., and used without further purification. 3-DMABN was prepared as described previously. The synthesis of d$_6$-4-DMABN and 4-CF$_3$-DMA are described in the supplementary material for this report.
III. **Theory**

A. **Torsional Analysis (Dimethylamino Twist)**

The observed torsional energy levels of the dimethylamine group are fitted with a one-dimensional potential of the general form

\[V(\tau) = \frac{1}{2} \sum_{n} E_n (1 - \cos n \tau) \]

\(n, \) in which \(\tau \) is the torsion angle. The eigenvalues and eigenvectors of this torsional motion are calculated from the equation,

\[\frac{\partial^2}{\partial \tau^2} (-B - V(\tau)) \psi(\tau) = E(\tau) \psi(\tau) \]

by expanding the wavefunction \(\phi(\tau) \) in 71 free-rotor basis functions which have the form

\[\phi_m(\tau) = e^{im\tau} \]

with \(m = 0, \pm 1, \pm 2, \ldots \)

The eigenvalues are computed by numerically diagonalizing the Hamiltonian. The free-rigid rotor case with \(V(\tau) = 0 \) leads to energy values of \(E = m^2 B \). The parameters \(B, V_2 \) and \(V_4 \) are adjusted to correspond to the best fit of the experimental data.

B. **Inversion Motion of the Dimethylamino Group**

The inversion motion of the dimethylamine group requires a double minimum potential function for its modeling and the form we have chosen consists of a superimposed Gaussian and a harmonic oscillator function. We use here the three parameter double minimum potential developed by Coon, Naugle and McKenzie.

This potential has the form

\[V(q) = \frac{1}{2} k q^2 + A e^{-a^2 q^2} \]

(4)
with \(a^2 = \frac{\epsilon \rho A}{2A} \) \hspace{1cm} (5)

and \(\lambda = (2\pi c \nu_0)^2 \) \hspace{1cm} (6)

The parameters \(\rho \) and \(\nu_0 \) (the harmonic frequency) are adjusted to fit the experimental data. The barrier height \(b \) (in cm\(^{-1}\)) is defined as,

\[
hhc = V(\phi) - V(Q_m) = A(e^\rho - \rho - 1) \frac{e^\rho}{e^\rho - 1}
\]

in which \(Q_m \) is the position of the minima and is given by,

\[
Q_m^2 = \frac{2\rho}{e^{\rho-1}(2\pi c \nu_0)^2} \frac{hb}{(2\pi c \nu_0)^2 c}
\]

C. Franck Condon Analysis

An estimate of the displacement in the dimethylamino twist coordinate \(\phi \) in the excited state can be made by a Franck-Condon intensity profile analysis. The eigenvectors can be written as \(\psi(r) \) and \(\psi(r+Ar) \) for the ground and excited states, respectively. The Franck Condon factors for transitions from the zero point level in the ground state potential well to the torsional levels of the excited state potential surface can be written as:

\[
<\psi_e(r+Ar) \mid \psi_g(r)> = \sum_m \sum_m \xi_m^e \phi_m^e \mid \sum_m \sum_m \xi_m^g \phi_m^g \rangle \]

\[
= \sum_m \sum_m \xi_m^e \phi_m^e \sum_m \sum_m \xi_m^g \phi_m^g \rangle \]

\[
= \sum_m \sum_m \xi_m^e \phi_m^e \cos(\Delta r) \phi_m^g \rangle \]

\[
= \sum_m \sum_m \xi_m^e \phi_m^e \cos(\Delta r)
\]

\(m = \pm 1, \pm 2, \pm 3 \ldots \)
IV. RESULTS

A. TOFMS of Jet Cooled 4-DMABN, DMA, 3-DMABN and 4-CF₃-DMA

Figure 1 shows the 1-color TOFMS obtained within ~250 cm⁻¹ of the spectral origin, the S₁ - S₀ 0₀₀₀ transition, for jet cooled 4-DMABN, DMA, 3-DMABN and 4-CF₃-DMA. The spectra are displayed in Figure 1 with aligned 0₀₀₀ transitions of the different molecules. The actual frequencies of the 0₀₀₀ transition are listed in Table I. DMA has the greatest S₁ - S₀ transition energy and the spectral origin for the substituted dimethylanilines are all red-shifted with respect to the DMA origin. The fluorescence excitation spectrum of jet cooled 4-DMABN published in references 12-14, and reproduced in this laboratory, is identical to the TOFMS depicted in fig. 1.

The similarity in the spectrum of DMA and 4-DMABN (as well as 3-DMABN and 4-CF₃-DMA) indicate that the low frequency peaks in the spectra are due to motions of the dimethylamino group. The intensity of the 0₀₀₀ transitions is relatively weak for all of these dimethylaminobenzenes. In addition, the spectra all exhibit a Franck-Condon intensity envelope for the low frequency mode progression. These spectra clearly demonstrate that the position of the dimethylamino group is being displaced in the excited state relative to that in the ground state. A complete analysis of the spectra is discussed in detail in the next section.

Figure 2 shows the TOFMS of d₆-4-DMABN compared to the spectrum of 4-DMABN. The frequency of the 0₀₀₀ transition for d₆-4-DMABN (listed in Table I) is 85 cm⁻¹ higher in energy than 4-DMABN. The transitions have been aligned in Figure 2 for these two isotopes of 4-DMABN so that the effect of deuteration on these low frequency peaks can be readily seen. A significant shift in frequency of the peaks clearly demonstrates that the spectrum is properly assigned to the
dimethylamino group. This is, of course, consistent with the above observation that the spectra for DMA and 4-DMABN (Figure 1) are quite similar.

B. Summary of Cluster Results: 4-DMABN(X)$_1$, X=H$_2$O, CH$_4$, CH$_3$CN, (CH$_3$)$_2$CO, CH$_2$Cl$_2$

In a recent publication11 we reported the results of 4-DMABN clustered with H$_2$O, CH$_4$, CH$_3$CN, (CH$_3$)$_2$CO, CH$_2$Cl$_2$. Methane and water clusters give "normal" cluster spectra with sharp spectral features and small cluster shifts. The origin for 4-DMABN(CH$_4$)$_1$ is red shifted by 63 cm$^{-1}$ with respect to the origin for the isolated molecule. The DMABN(H$_2$O)$_1$ spectra consist of two cluster origins both blue shifted, by 14 and 199 cm$^{-1}$ with respect to that of the bare molecule.

Of a more interesting nature are the spectra of DMABN clustered with CH$_3$CN, (CH$_3$)$_2$CO and CH$_2$Cl$_2$. The spectra are shown in Figure 3. Acetonitrite and acetone, when clustered with 4-DMABN, exhibit two types of cluster spectra: "normal" cluster spectra, with sharp blue shifted spectral features (closely related to those of the isolated molecule); and cluster spectra that are broad and significantly red shifted with respect to the isolated molecule spectrum. These two different spectra are associated with different cluster solvation configurations.11 Only the red shifted broad spectrum is observed for the 4-DMABN dichloromethane cluster.

V. DISCUSSION

A. ANALYSIS OF THE DIMETHYLAMINO TWIST AND INVERSION FOR ISOLATED 4-DMABN, 3-DMABN, DMA AND 4-CF$_3$-DMA

The methods detailed in Section III are employed to analyze the TOFMS for the series of dimethylaminiline derivatives: DMA, 3-DMABN, 4-DMABN and 4-CF$_3$-DMA. The similarity in the spectra of DMA and 4-DMABN as well as the significant shift of the peaks in the spectrum of d$_6$-4-DMABN leaves little doubt
that the low frequency peaks in the TQFMS are due to motions of the dimethylamino group. The two motions whose features dominate these spectra are the rotation of the dimethylamino group about the $C_{space^2p^2o-N}$ bond and the inversion of the dimethylamino group. The first step in the analysis is determining which peaks can be assigned to the rotational motion.

The spectrum of 4-DMABN contains a progression with an energy level spacing on the order of 65 cm$^{-1}$. The most intense peak in the 4-DMABN spectrum, at 136.4 cm$^{-1}$ from the origin, is the third member in the progression. In the DMA spectrum, the third peak in the progression is also the most intense, whereas for 3-DMABN and 4-CF$_3$-DMA the fourth member of the progression has the greatest intensity. The spacings observed here are very close to those observed in the far-infrared spectrum of ground state fMA^{18} which are assigned to the dimethylamino rotation about the C-N bond. In analogy to the ground state assignment, we assign this progression to the dimethylamino twist.

The calculated values corresponding to the best fit of the data for the torsional motion about the C-N bond, i.e. the twist, are listed in Table II. The potential parameters, V_2, V_4 and B are quite similar for DMA and 4-DMABN.

The doublet in the 4-DMABN spectrum near 115 cm$^{-1}$ (112 and 118 cm$^{-1}$) and the doublet near 195 cm$^{-1}$ (191 and 198 cm$^{-1}$) are not members of the above progression and are assigned to the inversion motion. In the DMA spectrum, both sets of features for the inversion motion are also present, near 105 and 197 cm$^{-1}$. The doublet nature of these peaks is what would be expected from the splitting which occurs for energy levels which are below the barrier of a double well potential. The features associated with the inversion motion of the dimethylamino group for 3-DMABN and 4-CF$_3$-DMA are not as obvious but can be determined by comparison with the DMA and 4-DMABN spectra. The peak at 122.0
and 123.0 cm\(^{-1}\) for 3-DMABN and 4-CF\(_3\)-DMA, respectively, are assigned to the first transition for this inversion motion. These features are no longer doublets, however, indicating the barrier to inversion and perhaps the shape of the potential well are somewhat different in these latter systems.

The calculated energy levels for the inversion motion are given in Table III along with the experimentally measured values. The calculated and observed energy levels for this motion agree quite well for 3-DMABN and DMA. The agreement between theory and experiment is not nearly as good for 4-DMABN and 4-CF\(_3\)-DMA; however, the anharmonicity of this inversion motion is much greater for these para-substituted aromatics. The inclusion of an \(x^4\) term in the potential would be necessary to describe the anharmonicity of this motion for 4-DMABN and 4-CF\(_3\)-DMA.

B. FRANCK-CONDON CALCULATIONS

The displacement in the dimethylamino twist is calculated to be the same in 4-DMABN and DMA. A value of ca. 30\(^\circ\) is derived from the Franck-Condon analysis of these two spectra for which the maximum intensity occurs at the third peak in the progression. The value of the twist angle upon excitation is slightly larger for 3-DMABN and 4-CF\(_3\)-DMA and is calculated to be ca. 40\(^\circ\). The maximum intensity occurs at the fourth peak position for these latter two molecules. The ground state of 4-DMABN is pseudo-planar with the nitrogen lone pair orbital nearly perpendicular to the plane of the aromatic \(\pi\)-system.

C. ANALYSIS OF THE CLUSTER SPECTRA: 4-DMABN(X)\(_{1}\), X = CH\(_3\)CN, (CH\(_3\))\(_2\)CO, CH\(_2\)C\(_2\), CH\(_4\) AND H\(_2\)O

The monosolvate clusters of 4-DMABN with acetonitrile, acetone and dichloromethane exhibit two distinct regions in the TOFMS. Spectral features which are blue shifted with respect to those of the isolated 4-DMABN are sharp and exhibit structure which resembles the bare molecule. Table IV lists the
most prominent features in the cluster spectra for this region, as well as those observed for methane and water. The assignment of these features in the cluster spectra can be readily made by direct comparison of the frequency and intensity of these peaks to those of the bare molecule. The Franck-Condon intensity profile for both cluster and bare molecule spectra is similar indicating a twist of \(-30^\circ\) for the dimethylamino group: the peaks in the cluster spectra can be assigned to the dimethylamino group rotation about the C-N bond. The potential parameters for this motion in the cluster spectra are nearly identical to those of the bare molecule, suggesting that the solvent molecule in the cluster is not in close proximity to the dimethylamino group. In addition, Lennard-Jones potential energy calculations show that one of the coordination sites for solvent molecules is at the cyano group.

Consider now the more interesting region in the spectra of 4-DMABN clustered with CH\(_3\)CN, (CH\(_3\))\(_2\)CO and CH\(_2\)Cl\(_2\): the one containing the broad red shifted feature. The red shift for these clusters is proportional to the static dipole moment of the solvent. These spectra do not evidence the rotation and inversion motion of the previously discussed clusters. The solvent may now be coordinated to the other bonding sites (as suggested by the calculations) afforded by these molecules: the ring and the dimethylamino group. The ring binding site would probably tend to stabilize the CT state most effectively. The red shifted CT-like cluster spectra can be associated with clusters for which polar aprotic solvent molecules bind to the 4-DMABN at the aromatic ring position rather than at the cyano group.

D. RELATIONSHIP BETWEEN TICT AND S\(_1\) TWIST

Since the equilibrium angle is displaced \(30^\circ\) in \(S_1\) for 4-DMABN, the bare molecule itself would appear to be moving toward a TICT conformation, i.e.,
a full 90° twist, upon excitation. The same is true, however, for the other three molecules studied: DMA, 3-DMABN, 4-CF₃-DMA. While solution phase emission studies for 4-CF₃-DMA have yet to be done, DMA and 3-DMABN in solution do not exhibit TICT behavior, i.e., dual fluorescence in polar solvents. Since these molecules which do not exhibit TICT behavior are also twisted in S₁ at least as much as 4-DMABN, one must strongly question the relationship between the twist in S₁ and the TICT state mechanism: recall that the viscosity data upon which the original TICT mechanistic suggestion was based has been shown to be invalid.

VI. CONCLUSIONS

Molecular jet-spectroscopy has been used to determine potential parameters for the dimethylamino group motions in 4-DMABN and some of its chemical analogs. The rotation and inversion motion of the dimethylamino group dominate the spectrum of these molecules in the origin region. The potential parameters for the twist coordinate using a one-dimensional rotor analysis are calculated to be B = 0.546, V₂ = 175, V₄ = 525 cm⁻¹. A Franck-Condon analysis yields a displacement angle of 30° for the twist coordinate in S₁ for 4-DMABN. Potential parameters for the inversion motion are given in Table III.

ACKNOWLEDGEMENT

This work was supported in part by a grant from ONR. We wish to thank A. C. Lilly, B. LaRoy, J. I. Seeman, and R. Ferguson for their help and encouragement during this work.
REFERENCES

TABLE I

The energy of the 0^0 transitions for the molecular species studied in this work.

<table>
<thead>
<tr>
<th>MOLECULE</th>
<th>0^0 Transition (cm$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Dimethylaminobenzonitrile (4-DMABN)</td>
<td>32255.5</td>
</tr>
<tr>
<td>d_6-4-Dimethylaminobenzonitrile (d_6-4-DMABN)</td>
<td>32340.4</td>
</tr>
<tr>
<td>Dimethylaniline (DMA)</td>
<td>32895.8</td>
</tr>
<tr>
<td>3-Dimethylaminobenzonitrile (3-DMABN)</td>
<td>30076.1</td>
</tr>
<tr>
<td>4-Trifluoromethyldimethylaniline (4-CF$_3$-DMA)</td>
<td>32829.2</td>
</tr>
</tbody>
</table>
TABLE II

Calculated and Observed Energy Levels for the Dimethylamino Rotation in S_1 for 4-DNABN, DMA, 3-DNABN and 4-CF$_3$-DNA (in cm$^{-1}$)

<table>
<thead>
<tr>
<th></th>
<th>4-DNABN1</th>
<th>DMA2</th>
<th>3-DNABN3</th>
<th>4-CF$_3$-DNA4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>obs.</td>
<td>calc.</td>
<td>obs.</td>
<td>calc.</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>75.3</td>
<td>75.5</td>
<td>70.8</td>
<td>70.1</td>
<td>75.4</td>
</tr>
<tr>
<td>136.3</td>
<td>136.4</td>
<td>143.2</td>
<td>141.6</td>
<td>146.4</td>
</tr>
<tr>
<td>176.6</td>
<td>172.0</td>
<td>171.9</td>
<td>184.9</td>
<td>184.7</td>
</tr>
<tr>
<td>227</td>
<td>212.0</td>
<td>217.2</td>
<td>214.2</td>
<td>220.9</td>
</tr>
</tbody>
</table>

Potential Parameters:

1. 4-DNABN: $V_2 = 175$, $V_4 = 525$ and $B = 0.564$ cm$^{-1}$
2. DMA: $V_2 = 175$, $V_4 = 515$ and $B = 0.564$ cm$^{-1}$
3. 3-DNABN: $V_2 = 188$, $V_4 = 525$ and $B = 0.564$ cm$^{-1}$
4. 4-CF$_3$-DNA: $V_2 = 215$, $V_4 = 580$ and $B = 0.564$ cm$^{-1}$
TABLE III
Calculated and Observed Energy Levels for the Dimethylamino Inversion in S_1 for 4-DMABN, DMA, 3-DMABN and 4-CF$_3$-DMA (in cm$^{-1}$)

<table>
<thead>
<tr>
<th></th>
<th>4-DMABN1</th>
<th>DMA2</th>
<th>3-DMABN3</th>
<th>4-CF$_3$-DMA4</th>
</tr>
</thead>
<tbody>
<tr>
<td>obs.</td>
<td>calc.</td>
<td>obs.</td>
<td>calc.</td>
<td>obs.</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>113.3</td>
<td>107.2</td>
<td>104.9</td>
<td>104.3</td>
<td>127.0</td>
</tr>
<tr>
<td>118</td>
<td>109.3</td>
<td>111.5</td>
<td>105.6</td>
<td>127.0</td>
</tr>
<tr>
<td>190</td>
<td>187.4</td>
<td>189.0</td>
<td>185.0</td>
<td>233.0</td>
</tr>
<tr>
<td>194</td>
<td>210.0</td>
<td>198.7</td>
<td>202.2</td>
<td>248.2</td>
</tr>
</tbody>
</table>

Inversion Parameters: Barrier Height, b, Harmonic Oscillator Frequency, ν_0, and ρ.

1. 4-DMABN: $\rho = 0.65$, $\nu_0 = 105$ cm$^{-1}$ and $b = 250$ cm$^{-1}$
2. DMA: $\rho = 0.55$, $\nu_0 = 110$ cm$^{-1}$ and $b = 255$ cm$^{-1}$
3. 3-DMABN: $\rho = 0.95$, $\nu_0 = 100$ cm$^{-1}$ and $b = 350$ cm$^{-1}$
4. 4-CF$_3$-DMA: $\rho = 0.41$, $\nu_0 = 130$ cm$^{-1}$ and $b = 280$ cm$^{-1}$
TABLE IV

The rotational dimethylamino group progression for the various clusters of 4-DMABN with the indicated solvents and the $\Delta \nu_0$ transition shift for the clusters with respect to the 4-DMABN bare molecule (in cm$^{-1}$)

<table>
<thead>
<tr>
<th>Cluster</th>
<th>4-DMABN</th>
<th>$\cdot \text{CH}_4^+$</th>
<th>$\cdot \text{H}_2\text{O}^1$</th>
<th>$\cdot \text{H}_2\text{O}$</th>
<th>$\cdot \text{CH}_3\text{CN}$</th>
<th>$\cdot (\text{CH}_3)_2\text{CO}$</th>
<th>Calculated2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta \nu_0$ shift</td>
<td>0</td>
<td>-63</td>
<td>-14</td>
<td>+199</td>
<td>+252</td>
<td>+260</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>75.3</td>
<td>74</td>
<td>74</td>
<td>78</td>
<td>71</td>
<td>76</td>
<td>70.8</td>
</tr>
<tr>
<td></td>
<td>136.3</td>
<td>133</td>
<td>140</td>
<td>136</td>
<td>138</td>
<td>139</td>
<td>143.2</td>
</tr>
<tr>
<td></td>
<td>176.6</td>
<td>173</td>
<td>180</td>
<td>175</td>
<td>179</td>
<td>178</td>
<td>172.0</td>
</tr>
</tbody>
</table>

1. Coordination of the water solvent to the aromatic ring. In all other clusters, coordination of the solvent is calculated to be to the cyano group.

2. $B = 0.564$, $V_2 = 175$, and $V_4 = 525$ cm$^{-1}$
d$_6$-4-DMABN

4-DMABN

DELIBATIVE ENERG (cm$^{-1}$)
FIGURE 1
The 1-color TOFMS of 4-DMABN, DMA, 2-DMABN and 4-CF₃-DMABN at the origin region. The spectroscopic origins have been aligned in this figure so as to compare the low frequency modes. The actual frequencies of 0₀ transition are listed in Table I.

FIGURE 2
The 1-color TOFMS of d₆-4-DMABN in the origin region. The spectrum for 4-DMABN is also shown for comparison. See Table I for the 0₀ absolute energies.

FIGURE 3
2-color TOFMS cluster spectra of 4-DMABN with CH₃CN, (CH₃)₂CO and CH₂Cl₂. The spectra for CH₃CN and (CH₃)₂CO exhibit two distinct regions: a lower energy broad peak and sharp features ~1000 cm⁻¹ higher in energy.
4-[(D{methyl-d_3}Amino) benzonitrile.20 A solution of 4-aminobenzonitrile (2.0 g, 16.9 mmol) in acetonitrile (100 mL) was treated with a 30% solution of formaldehyde-d_2 (10 mL, 0.1 mol) in D\textsubscript{2}O. The solution was stirred at 0\textdegree C and treated with NaCNBD\textsubscript{3} (2.0 g, 30.4 mmol) and stirring continued for 15 min. at 0\textdegree followed by 45 min. at room temperature. A trace of bromocresol green was then added, followed by the slow addition of 20% HCl in D\textsubscript{2}O, to maintain the yellow color. The reaction mixture was then stirred overnight. The resulting blue reaction mixture was then treated with an excess of acetic acid-d and D\textsubscript{2}SO\textsubscript{4} (had run out of DCl) in an unsuccessful attempt to restore the yellow color. After stirring for an additional 24 h, the blue reaction mixture was neutralized with NaHCO\textsubscript{3} and concentrated to 0.5 volume on a rotary evaporator. The reaction was further basified with 50% KOH and extracted with Et\textsubscript{2}O and CH\textsubscript{2}Cl\textsubscript{2}. The combined extracts were dried (Na\textsubscript{2}SO\textsubscript{4}), concentrated and distilled bulb-to-bulb: a forerun (60\textdegree/0.05mm Hg) was discarded; 1.5 g (60-120\textdegree/0.01mm Hg) of crude material was collected which crystallized. Final purification was carried out using a Harrison Chromatotron R and 5% EtOAc in hexane to give 450 mg (17.5%) of d\textsubscript{6}-4-DMABN: mp 72-4\textdegree; 13C NMR (CDCl\textsubscript{3}) δ 38.96 (septet, J = 19.8 Hz), 96.95, 111.14, 120.60, 133.15, 152.28; 1H NMR (CDCl\textsubscript{3}) δ 6.63 (d, 2H, J = 9.1 Hz), 7.46 (d, 2H, J = 9.1 Hz).20
N,N-Dimethyl-4-(trifluoromethyl) benzamidine. A stirred solution of 4-aminobenzotrifluoride (3.0 g, 18.6 mmol) in acetonitrile (100 mL) at 0° was treated with 37% aqueous formaldehyde (7.5 mL, 92.5 mmol), NaCNBH₃ (1.87 g, 29.8 mmol). After being allowed to warm to room temperature, the mixture was stirred for 1 h, a trace of bromocresol green indicator was added, and HCl was slowly added as required to maintain a yellow color. The yellow color persisted overnight, the reaction mixture was concentrated on a rotary evaporator. A volatile solid which crystallized on the dry ice condenser was solubilized with acetone, precipitated by the addition of water, collected and air dried to give 885 mg of 4-CF₃-MA: mp 68-90°.

The ¹H NMR spectrum is identical to that reported previously.
TECHNICAL REPORT DISTRIBUTION LIST

<table>
<thead>
<tr>
<th>Office of Naval Research</th>
<th>2</th>
<th>Dr. David Young</th>
</tr>
</thead>
<tbody>
<tr>
<td>800 North Quincy Street</td>
<td></td>
<td>Code 334</td>
</tr>
<tr>
<td>Arlington, VA 22217</td>
<td></td>
<td>NORAD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NSSL, MS 38529</td>
</tr>
<tr>
<td>Dr. Bernard Doula</td>
<td>1</td>
<td>Naval Weapons Center</td>
</tr>
<tr>
<td>Naval Weapons Support Center</td>
<td></td>
<td>ATTN: Dr. A. B. Amster</td>
</tr>
<tr>
<td>Code 5042</td>
<td></td>
<td>Chemistry Division</td>
</tr>
<tr>
<td>Crane, IN 47322</td>
<td></td>
<td>China Lake, CA 93555</td>
</tr>
<tr>
<td>Commander, Naval Air Systems Command</td>
<td>1</td>
<td>Scientific Advisor</td>
</tr>
<tr>
<td>ATTN: Code 310C (R. Rosenwasser)</td>
<td></td>
<td>Commandant of the Marine Corps</td>
</tr>
<tr>
<td>Washington, DC 20360</td>
<td></td>
<td>Code RD-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Washington, DC 20380</td>
</tr>
<tr>
<td>Naval Civil Engineering Laboratory</td>
<td>1</td>
<td>U.S. Army Research Office</td>
</tr>
<tr>
<td>ATTN: Dr. R. W. Drisko</td>
<td></td>
<td>ATTN: CRD-4A-IP</td>
</tr>
<tr>
<td>Port Hueneme, CA 93401</td>
<td></td>
<td>P.O. Box 12211</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Research Triangle Park, NC 27709</td>
</tr>
<tr>
<td>Defense Technical Information Center</td>
<td>2</td>
<td>Mr. John Boyle</td>
</tr>
<tr>
<td>Building 5, Cameron Station</td>
<td></td>
<td>Materials Branch</td>
</tr>
<tr>
<td>Alexandria, VA 22314</td>
<td></td>
<td>Naval Ship Engineering Center</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Philadelphia, PA 19112</td>
</tr>
<tr>
<td>DTNSRDC</td>
<td>1</td>
<td>Naval Ocean Systems Center</td>
</tr>
<tr>
<td>ATTN: Dr. G. Busmajian</td>
<td></td>
<td>ATTN: Dr. S. Yamamoto</td>
</tr>
<tr>
<td>Applied Chemistry Division</td>
<td></td>
<td>Marine Sciences Division</td>
</tr>
<tr>
<td>Annapolis, MD 21401</td>
<td></td>
<td>San Diego, CA 91232</td>
</tr>
<tr>
<td>Dr. William Tolles</td>
<td>1</td>
<td>Superintendent</td>
</tr>
<tr>
<td>Superintendent, Chemistry Division, Code 6100</td>
<td></td>
<td>Naval Research Laboratory</td>
</tr>
<tr>
<td>Naval Research Laboratory</td>
<td></td>
<td>Washington, DC 20375</td>
</tr>
<tr>
<td>Name</td>
<td>Address 1</td>
<td>Address 2</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--</td>
<td>-------------------------</td>
</tr>
<tr>
<td>Dr. M. A. El-Sayed</td>
<td>Department of Chemistry</td>
<td>University of California</td>
</tr>
<tr>
<td></td>
<td>University of California</td>
<td>Los Angeles, CA 90024</td>
</tr>
<tr>
<td>Dr. E. R. Bernstein</td>
<td>Department of Chemistry</td>
<td>Colorado State University</td>
</tr>
<tr>
<td></td>
<td>Department of Chemistry</td>
<td>Fort Collins, CO 80523</td>
</tr>
<tr>
<td>Dr. J. R. McDonald</td>
<td>Chemistry Division</td>
<td>Naval Research Laboratory</td>
</tr>
<tr>
<td></td>
<td>Naval Research Laboratory</td>
<td>Code 6110</td>
</tr>
<tr>
<td>Dr. G. B. Schuster</td>
<td>Chemistry Department</td>
<td>University of Illinois</td>
</tr>
<tr>
<td></td>
<td>Chemistry Department</td>
<td>Urbana, IL 61801</td>
</tr>
<tr>
<td>Dr. J. B. Halpern</td>
<td>Department of Chemistry</td>
<td>Howard University</td>
</tr>
<tr>
<td></td>
<td>Department of Chemistry</td>
<td>Washington, DC 20059</td>
</tr>
<tr>
<td>Dr. M. S. Wrighton</td>
<td>Department of Chemistry</td>
<td>Massachusetts Institute of Technology</td>
</tr>
<tr>
<td></td>
<td>Department of Chemistry</td>
<td>Cambridge, MA 02139</td>
</tr>
<tr>
<td>Dr. A. Paul Schaap</td>
<td>Department of Chemistry</td>
<td>Wayne State University</td>
</tr>
<tr>
<td></td>
<td>Department of Chemistry</td>
<td>Detroit, MI 49207</td>
</tr>
<tr>
<td>Dr. W. E. Moerner</td>
<td>I.B.M. Corporation</td>
<td>Almaden Research Center</td>
</tr>
<tr>
<td></td>
<td>Almaden Research Center</td>
<td>650 Harry Road</td>
</tr>
<tr>
<td>Dr. A. B. P. Lever</td>
<td>Department of Chemistry</td>
<td>York University</td>
</tr>
<tr>
<td></td>
<td>Department of Chemistry</td>
<td>Downsview, Ontario</td>
</tr>
<tr>
<td>Dr. John Cooper</td>
<td>Code 6173</td>
<td>Naval Research Laboratory</td>
</tr>
<tr>
<td></td>
<td>Naval Research Laboratory</td>
<td>Washington, DC 20375-5000</td>
</tr>
<tr>
<td>Dr. George E. Walrafen</td>
<td>Department of Chemistry</td>
<td>Howard University</td>
</tr>
<tr>
<td></td>
<td>Department of Chemistry</td>
<td>Washington, DC 20059</td>
</tr>
<tr>
<td>Dr. Joe Brandelik</td>
<td>AFWAL/AADO-1</td>
<td>Wright Patterson AFB</td>
</tr>
<tr>
<td></td>
<td>AFWAL/AADO-1</td>
<td>Fairborn, OH 45433</td>
</tr>
<tr>
<td>Dr. Carmen Ortiz</td>
<td>Consejo Superior de Investigaciones Cientificas</td>
<td>Serrano 121</td>
</tr>
<tr>
<td></td>
<td>Consejo Superior de Investigaciones Cientificas</td>
<td>Madrid 6</td>
</tr>
<tr>
<td>Dr. John J. Wright</td>
<td>Physics Department</td>
<td>University of New Hampshire</td>
</tr>
<tr>
<td></td>
<td>Physics Department</td>
<td>University of New Hampshire</td>
</tr>
<tr>
<td>Dr. Kent R. Wilson</td>
<td>Chemistry Department</td>
<td>University of California</td>
</tr>
<tr>
<td></td>
<td>Chemistry Department</td>
<td>La Jolla, CA 92093</td>
</tr>
<tr>
<td>Dr. G. A. Crosby</td>
<td>Chemistry Department</td>
<td>Washington State University</td>
</tr>
<tr>
<td></td>
<td>Chemistry Department</td>
<td>Pullman, WA 99164</td>
</tr>
<tr>
<td>Dr. Theodore Pavlopoulos</td>
<td>NOSC</td>
<td>Code 521</td>
</tr>
<tr>
<td></td>
<td>NOSC</td>
<td>San Diego, CA 91232</td>
</tr>
</tbody>
</table>