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PREFACE

The work described in this report was part of an ILIR project (work unit
4A161101A91DO01) conducted in the Center for Artificial Intelligence of the Research
Institute, USAETL. Its purpose was to study the general properties of fractals and to
determine some of their potential applications to mapping and the topographic
sciences. Particular goals included the development of rudimentary computer
programs for generating synthetic terrain and the elucidation of ‘‘fractal dimension’
in terms of surface roughness and natural textures.

During the period of the investigation, COL Alan L. Laubscher, EN, was the
Commander and Director, Mr. Walter E. Boge was the Technical Director and Dr.
Robert D. Leighty was the Director of the Research Institute.

The work was performed in the Center for Artificial Intelligence and the report
was prepared under the supervision of Lawrence A. Gambino, Director, Research
Institute.
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COMPUTER GENERATION OF FRACTAL TERRAINS
INTRODUCTION

The concept and the word “FRACTAL" were introduced by Benoit B.
Mandelbrot around 1975. He made the important observation that many objects in
the natural world are not continuous, smooth or measurable by the traditional
standards of the applied mathematician but require the use of more general methods
and constructs of pure mathematics. Furthermore, they are characterized by a
quantity which, for any particular object, remains invariant regardless of the scale of
observation. In the case of natural objects, this quantity, the ‘fractal dimension’,
may retain its invariance over many orders of magnitude. The importance of the
concept can be surmised by the fact that most physical theories, aside from
fundamental laws, break down or lose their validity over a much smaller range due to
inapplicability of the underlying assumptions.

Since their introduction, there has been a nearly explosive interest in fractals in
physics, in the natural sciences, in computer graphics, and many other areas; as well
as for their existence as objects that are beautiful and interesting in their own right.
Several of the most well-known ‘fractals’ have a long existence in classical
mathematics and have been historically important in the development of the theory
of point sets, dimension theory, measure theory and topology. Continued
developments in applications of fractals will probably result in the relocation of the
superficial borderline between applied and pure mathematics deep into the territory of
the latter.

It was recognized by Mandelbrot that such terrestrial features as coastlines and
terrain were fractal. As such, one of the parameters used to describe a given instance
is a ‘dimension’ that need not be (usually is not) a whole number. In the work
described here, a computer algorithm (due to Fournier, Fussell and Carpenter) was
used to generate fictitious computer representations of terrains. The display of the
resulting data was in the form of profiles of the synthetic terrain surfaces. The
terrain figures to be presented were made by directly photographing the video display
of the computer terminal. No consideration was given to the generation of
perspective views or to the problems of representing (‘‘colored’) surface reflectances
under conditions simulating natural lighting. A Gaussian distribution was used to
generate a series of surfaces for which the fractal dimension varied from 1.05 to 1.80.
It was of interest to determine the parameters that would lead to realistic simulations
of real terrains.

Another important application of fractals to the topographic sciences is the
determination of the fractal dimension for given real natural objects and the use of
the dimension as a descriptor or identifier. This problem is called the inverse problem
and is not treated in the present report.




BASIC FRACTAL CONCEPTS

Fractals have been defined formally in the following way.

Definition. A fractal is a set for which the Hausdorff Besicovitch
dimension strictly exceeds the topological dimension.

It is apparent that this definition contains two types of dimension.

The topological dimensien Dy for a set will always be a whole number and
corresponds with our intuitive concept of dimension. It is defined by assigning the
dimension -1 to the empty set and using the definition below.

Definition. A space X has dimension < Dr if every point p can be
separated by a closed set of dimension < Dy — 1 from any closed set not
containing P.

In this way, a set of isolated or disconnected points has Dy = 0 since the points are
already disconnected by the null set. Similarly, ordinary (non-fractal) curves are
found to have Dr =1 since any point can be separated from the rest of the curve by
removing points. And, for surfaces, Dr =2, the segmentation is accomplished by
removal of the points on a curve Dy = 1. When dealing with fractal sets, the same
principle holds but much greater care must be taken because of the complexity of
fractal sets and sometimes ingenious constructions may be required.

On the other hand, the Hausdorff Besicovitch dimension D is a measure theoreti~
concept and. depending upon the set, its determination can be extremely difficult.
The set of points, I, to be measured is covered with (closed) balls, B; , of maximum
radius ¢ such that
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The measure of a k-dimensional ball of radius R is given by

My(R) = a(k) R*




and where o is given in terms of the I’ function.
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The Hausdorff measure, of dimension &, of the set P is then given by

k R . . nL(‘) vk
HY(P) = lim inf da(k) Y n(e)

0" [E.]

and where the lim inf is to be taken over all possible coverings. For ordinary (non-
fractal) sets. & is taken as the dimension Dy and the Hausdorff measure for any
reasonable case turns out to be the ccrresponding count, length, area, or volume. For
fractal sets, & need not be an integer and there will be one particular value, k=D, for
which the Hausdorff measure is positive and finite.

0. HP « x

This dimension, D. is called the Hausdorfi Besicoviteh dimension and is the most
fundamental parameter defining the fractal. The measure itself is usually of little
importance since it is difficult to give it a physical meaning for non-integral . For
k>D we will have H*(P)=0 aud for k¥ < D the corresponding measure is infinite
I*{ry=oc. It is well known [Hurewicz & Wallman] that the Hausdorff Besicovitch
dimension is never less than the topological dimension. However, there are fractals
with dimension given by an integer.

Because of the complexity of the above concepts, a more appropriate working
definition has been adopted for the present study.

Definition. Fractals are mathematical constructs that give realistic
representations of natural patterns and textures and that exhibit
invariant properties under scale change (magnification).

['or geometrically regular {ractals, enlargement by a certain factor will hring a subset
of the fractal set back into coincidence and this accounts for the striking appearance
of many fractals. For the surfaces to be generated here, the fractal should exhibit the
same statistical properties under enlargement. This is insured by the generating
algorithm.




Equally important in this study is the question of whether the fractal has an
appearance similar to that of a natural terrain. Specifically, what dimensions and
h other generating parameters lead to realistic results.




THE FRACTAL GENERATION ALGORITHM

The method to be described for generation of fractal surfaces was originated by

Fournier, Fussell and Carpenter! and is usually known as the FFC algorithm,
although this designation may confuse it with a different algorithm also given by
them. This algorithm was chosen because of the simplicity of the computation, its
flexibility and adaptability to potential applications in the topographic community,
its realism, and its general compatibility with ‘‘standard” methods of computer
graphics. These criteria are discussed in the next paragraph.

The FFC algorithm to be described allows for local computation of terrain
elevations by densification of points from a set of elevations given over a square grid.
The computation requires only the averaging of elevations at the corners of a square
and the addition of a scaled random number (according to a fractal generating rule).
This permits filling of fictitious terrain textures in cases where actual topographic
data may be given on a sparse (coarse) grid. It also permits the filling of more detail
in regions of higher magnification, such as in the foreground. or in cases of
“zooming-in." The meth)d also allows for variation of fractal dimension, vertical
dilation, or the distribution function from one local area to another. Over square
regions where the grid size does not vary, only elevations need be stored since
horizontal coordinates are easily generated from grid indices and from the grid
spacing and origin.

Consider the situation shown in figure 1a. The grid lies in a horizontal plane
and elevations are known for the points given by the intersections of the grid lines
(including those on the bounding sides). Elevations are to be generated over the
center point of each square as depicted here by the dots.
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FIGURE 1. FRACTAL FILLING OF THE TERRAIN GRID.

! Alain Fournier, Don Fussell, and Loren Carpenter. "Computer Rendering of Stochastic Models." Communication of
the ACM, vol 25, no. 6, June 1982, pp. 371-384




For each small square cell, the average elevation E,, of the corner (vertex) points
is taken. A pseudo-random number chosen from a Gaussian distribution R is used to
generate the new elevation, E,,,, the center point by

Eywe =E, +R #-0

where é is the distance from the center point to the vertex. Here D is the fractal -
dimension and 3 is the dimensionality of the embedding space.

After this has been repeated for each cell, the elevations will be known over a
finer diagonal grid containing both the original elevations and the newly generated
ones as shown in figure 1b. The procedure is repeated again for elevations of the
center points of this grid with the exception that for outer bounding edges, the - =
average cell elevation is determined from only three points.

At this stage a new (horizontal-vertical) grid has been established as shown in
figure 1c. It will contain four times as many points as the initial grid in figure la.
The complete procedure can then be repeated ag~in and again until a sufficiently T
dense set of elevations has been computed.

After the elevations have been computed, a vertical dilation is applied to adjust
the amount of vertical exaggeration. It was found that surfaces of larger fractal
dimension required much less ‘shrinkage in the vertical direction than those with
fractal dimension near 2.




EXAMPLES OF FRACTAL TERRAINS

Examples of computer synthesized terrain are given in appendix A. They
include results for various dimension and vertical exaggeraticn and should serve to
demonstrate the effects of varying these parameters. The distribution that was used
in all cases was an approximated cumulative distribution function for a Gaussian.
The views of the surface displayed on the screen are not in perspective, but are drawn
in the same orthographic way that three-dimensional mathematical objects are drawn
(e.g. on a blackboard). The three-dimensional appearance is partly an illusion since
only profiles of the surface are plotted. Nevertheless, since most people are
accustomed to such plots, they can give an excellent feel for the roughness, texture,
and other qualities of the surfaces involved.

The effect of varying the amount of vertical exaggeration is shown in terrains
1,2, and 3. These three examples all have fractal dimension D= 205 and were
produced by the same set of random numbers. They were produced using vertical
dilation factors of 0.05, 0.1, and 0.2, respectively.

The computer renderings in terrains 4, 5, 6, 7 and 8 show the effect of varying
the fractal dimension. The dilation factor was also different for each example. For
these surfaces, the fractal dimension D took the values 2.05, 2.1, 2.2, 2.4 and 2.8,
respectively, while the amount of vertical exaggeration for each case, in turn, was
0.05. 0.1, 0.2, 0.4 and 0.8. The difference in these two parameters is clearly seen by
comparing terrains 4 and 8. The former is much smoother than the latter, which
shows roughness much greater than any imaginable real world terrain, while the total
vertical exaggeration is not drastically different. Terrains 5 and 6 are more rugged
than 4 and show greater vertical differences than either 4 or 8, while remaining much
smoother than terrain 8.

An example of an undesirable result is shown in terrain 9. The unnatural spikes
on the back edge are believed to result from the chance occurrence of chcosing
numbers far out on the tails of the generating Gaussian. This can be eliminated by
using a different distribution that does not possess such long tails: for example, a
chopped off Gaussian. The rarity of such occurrences may be surmised by their
absence from the other renderings since each one represents 263,169 generated
elevations on a 513 x 513 grid with cach 8th profile plotted.




THE LISP COMPUTER PROGRAMS

A listing of the computer programs is given in Appendix B. They were written
in the LISP language for compatibility with other work in the Center for Artificial
Intelligence, ETL, and because of the available hardware. A brief description of the
principal functions will be given here.

Before running a program to generate a fractal surface, the function foooz must
be executed to initialize the program and to define some of the arrays needed. The
array nordis contains a numerical table representing the cumulative distribution
function for a Gaussian. The function u-to-g converts a random number from a
uniform distribution to a random number chosen from a Gaussian distribution.

The fractal generated is three dimensional. but the indices of a two- dimensional
array are used for horizontal coordinates while the stored numbers give the vertical
coordinate. The functions ssu and ssv generate screen coordinates from given three-
dimensional coordinates. They do not give perspective views but only a convenient
readily visualized representation. They are used by dsl to draw a straight line given
its three- dimensional endpoints.

The function elev generates a fractal elevation in the center of a cell in the
fractal grid. Its arguments are: the average elevation of the corner points, the fractal
dimension, and the distance from the center of the cell to a corner.

The function surfract generates the fractal surface by using the previously
described filling algorithm. Its sole argument is the fractal dimension. Some
intermediate views are displaved on the screen to monitor the filling operation.

The function dilate is used to adjust the amount of vertical exaggeration by
applving a dilatation factor. The arguments of this function are the scaling factor
and another number specifying how many profiles should be skipped before plotting
the next one. It is interesting to note that a negative scaling factor has the effect of
inverting the surface, i.e. exchanging mountain peaks and valleys.

The function stratum is used to put a base on the surface and to give it the
appearance of a solid slab. Its first two arguments specify the thickness of the siab
and the distance between protfiles, respectively.

Typical running times for a 513 x 513 surface generation and display have been
a little less than 10 minutes.




CONCLUSION

Computer programs were written in LISP that make use of a Fournier, Fussell,
Carpenter algorithm to generate synthetic fractal terrains having various dimensions.
It was found that the degree of realism was best for fractal surfaces with dimension
closer to 2 and that those with dimension closer to 3 were much too rough for any
imaginable real world terrains.

It is believed that this algorithm can be used for filling scenes where actual
elevations are given on a sparse grid in order to achieve realistic rendering of the
terrain. To accomplish this will require the generation of perspective views where
color or gray levels are used to depict surface reflectances under simulated real world
illumination conditions. Such renderings would involve considerably more research
and programming.
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Figure A8. Terrain 8, Fractal Dimension 2.8.




A9. Terrain 9, Fractal Dimension 2.05.
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(defun foooz ()

| . (et “hase 10.)
. Csot “ibrse 10,)
3 (set “surf! (mike-array °“(51) S13) °“ttyne “art-3 “inttial-valye 0.0))

(set “saurt (agks-array °“(351) %13) “ttyr+ “art-q “iinitial-value 0.0))
(set “,rating (sahes-arrpy °“(40 40) °“:type “ert-a “linfitial-value 0.0)))

(set °nordis (sake-array °(61 2) “:typs» "art-c))

(ftillarray nordls “(0.00 0.500 0.05 0.52) 0,10 0.5%0 0.15 0,560 0.20 0.579
0.25 0.5397 .30 €.610 0.35 0.4637 9.40 0.65¢ 0.45 0.474 0.50 0.63) 0.55
0.799 0.50 0.726 0.65 0.742 0.70 0.75% 0.7%5 0.773 0.88 0.788 0.85 0.002
0.90 7.491¢ 0.95 0.829 1,00 0,841 1.75 0.852 1.10 0.064 1.1% 6.075 1.20
0.¥8% 1.25 0,394 1.282 9.909 1.30 0.903 1.35 0.311 1.40 0.919 1.45
0.926 1.50 0.733 1.95 9.939 1,60 0.)45 1.4945 0.9950 31.63% 0,951 1.70
0.95% 1.75 0.960 1.00 0.964 1,05 0.7%03 1.70 0,271 1.93% 0.974 1.760
0.975 2.00 0.977 2.035 0.9%0 2.10 0.700 2.1% 0.934 2.20 0.906 2.29% 0.998
2.30 0,987 2.326 0.990 2.35 0.99%01 2.40 0.962 2.45 0.993 2.50 0.)79¢

576 0.97% 2.65 0.996 2.75 0.997 2.90 0.979d 3.00 0.999 3.00 1.100))

(detun u-to~-3(x)
(cond ((lessp = 0.9%)
(set s -1,0)
(set “n (- 1.0 =»)))
(Y (3ot °s ¢1.0)))
Cloag far {1 free 0 until
(> Ctaref nordis § 1) x)
1o
(s<at “} L))
(cond ((C § 57)
Ceond C(>= (- Caref nordis (* § 1) 1) x)
(~ n (oref nordis J§ 1)))
(¢ 3 (aref nordars j 0)))
Ct (& & Caref nordis (¢ § 1) 0)))))
(Lt (s s Caref nordis j 0)))))

(gefun ssu (x y 2)
e $2. (¢ (¢ 1.5 &) (0 .25 ¥))))

(doetun s:v (v y 2 t11t)
(- 600. (v tilt Co (8 .25 y) (¢ 1.5 2)))))

(defun Jsl (24 ya 72 xh yb 2h)
(send terminal-io “:dras-line (fix (>su xa y¢ 7)) (fix (ssv 20 ya za 1.5))
(tan C3.yu ub yb b)) (ffin Cssv n" vh 2D 1.5))))

(defun elev (ive dam rr)
(¢ ave (¢ (u-ta-g (/7 (tloat (randam 1CN1)) 1700N0.))
(" rr (- 3.0 dam)))))
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(defun surfrpct (dim)
(set °surt? (make-array “(3513 $13) “type “sri-3 “tinitisl-velye 0.0))
(oot ‘edge 512)
(oot “dist (77 edge 2))
Cleop fer n ftrom ) unti} (C dist })
de
C(set “rr (77 (fleat edge) (sart 2.0)))
Cloop for L from dist by edge until (> § S12)

do
(loop for § frew dist by edge until (> j S1°2)
de
(aset (oley (77 (¢ (oref surf? (- 1 dist) (- § dist))
Cavef surf (¢ 1 dist) (- § dist))
Coret surt (- { dist) (¢ § diat))
Coref surf (¢ § dist) (¢ § diat))) 4,.0)
dim rr)
surf 1 §)))
Cloop for &t from O by dist untt) (> § 512)
do

(170p for § frem (1f Ceddp (77 i dist)) O dist) by edge
until ¢ § %12)
de
(cond ((egqual § 0)
Casot Celev (77 (* (aret surt (» L diet) )
(ore? surf 4 (¢ § dist))
Caret surt § (- § dist))) 3.0)
dim (floast dAfa®)) surf? { J))
(C(equal L S12)
Caset (elov (/77 (¢ (rref surft (- { dist) 3)
Caref surf 4 (¢ § dist))
Coret surf § (~ J dist))) 3.0)
die (float A13%)) surt & §))
(Coqual j 0)
Casot (eley (77 (¢ (prefl surt (o | dist) §)
(aref surt (- & dist) )
Coret qurf § (s § dist))) 3.0)
dim Cfloat dist)) sur? § §))
(Cequal J %12)
Casot (alev (/77 (¢ (oref surf (o | dist) §)
(pref surf (- § dist) §)
Ceref surt § (- § dist))) 3.0)
die (float dist)) surt & J§))
e
Caset Celev (/77 (* Caraf surf (s { dist) §)
Caref surf (-~ 1 dlat) J)
Carst surf | (¢ J dist))
Cyw~? ayrt | (- J dist))) 4.0
dim (tlost dist)) surt § 3)))))
(set “edge dist)
(set “dist (/77 dist 2))
Cturt a4 syrt))
(eond terminal-i> “iclear-vindow)
Cterf 64 surf))

Cdefun tur? (grete saurt)
(leep fer L °*ror O to 512 by grate

23
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de
Clocp for § from 1 te 312
deo
(ds] (fleat £) (- C(fleot J) 1.0) Caref saurf { (- § 1))
Cfleat 1) Cfloat J) (oref smyrt { $)2))
(leep for §J from 0 to 512 by grate
de
(loop for {4 from | te 3512
‘o
(dsl (- (fleat 1) 1.Q) (float §) (ar=f shurf (- § 1) §)
(float 1) (ftleat J) Car+f smur? { §)))))

(dofun dilate (scale del)
C(leop for & frac O uniil 3> 1 %512)
de
Cloop for § frem @ wnti]l (> § 3%12)
o
Coaset (0 scole Caref surf ( J)) smurt Lt §)))
Ctur? del 3mur?))

(defun sift (scale del)
(dildate scal del)
(leop for {1 from 0 until (> 1 39)
de
Cloop for j frew 8 until (> J 39)
Jo
(agset Caref smurt (* 6 (& 12 1)) (o 9 C(* 12 §))) groting 1 §))))

(dofun stratus (thickness grate (Ceptienal (seurf? seurf?)))
Cdel 0.8 0.0 (- 0.0 thickmness) %512.0 0.0 (- 0.0 thickness))
(del 512.0 ¢.C (~ 0.0 thickness) $12.0 S12.0 (- 0.0 thickness))
Cleop for 1 from 0 te 512 Oy grate
deo
Cdsl (flnat 1) 0.0 (- 0.0 thickness) (flrat §) 0.0 Caref saurt & 0))
Cdsl 512.0 (float 1) (- 0.0 thickness) $12.0 (tloat 1) (aref smurf 512 1))))
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