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PREFACE

The work described in this report was part of an ILIR project (work unit
4AI61101AI1D01) conducted in the Center for Artificial Intelligence of the Research
Institute, USAETL. Its purpose was to study the general properties of fractals and to
determine some of their potential applications to mapping and the topographic
sciences. Particular goals included the development of rudimentary computer
programs for generating synthetic terrain and the elucidation of "fractal dimension"
in terms of surface roughness and natural textures.

During the period of the investigation, COL Alan L. Laubscher, EN, was the
Commander and Director, Mr. Walter E. Boge was the Technical Director and Dr.
Robert D. Leighty was the Director of the Research Institute.

The work was performed in the Center for Artificial Intelligence and the report
was prepared under the supervision of Lawrence A. Gambino, Director, Research
Institute.
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COMPUTER GENERATION OF FRACTAL TERRAINS

INTRODUCTION

The concept and the word "FRACTAL" were introduced by Benoit B.
Mandelbrot around 1975. He made the important observation that many objects in
the natural world are not continuous, smooth or measurable by the traditional
standards of the applied mathematician but require the use of more general methods
and constructs of pure mathematics. Furthermore, they are characterized by a
quantity which, for any particular object, remains invariant regardless of the scale of
observation. In the case of natural objects, this quantity, the 'fractal dimension',
may retain its invariance over many orders of magnitude. The importance of the
concept can be surmised by the fact that most physical theories, aside from
fundamental laws, break down or lose their validity over a much smaller range due to
inapplicability of the underlying assumptions.

Since their introduction, there has been a nearly explosive interest in fractals in
physics, in the natural sciences, in computer graphics, and many other areas; as well
as for their existence as objects that are beautiful and interesting in their own right.
Several of the most well-known 'fractals' have a long existence in classical
mathematics and have been historically important in the development of the theory
of point sets, dimension theory, measure theory and topology. Continued
developments in applications of fractals will probably result in the relocation of the
superficial borderline between applied and pure mathematics deep into the territory of
the latter.

It was recognized by Mandelbrot that such terrestrial features as coastlines and
terrain were fractal. As such, one of the parameters used to describe a given instance
is a 'dimension' that need not be (usually is not) a whole number. In the work
described here, a computer algorithm (due to Fournier, Fussell and Carpenter) was
used to generate fictitious computer representations of terrains. The display of the
resulting data was in the form of profiles of the synthetic terrain surfaces. The
terrain figures to be presented were made by directly photographing the video display
of the computer terminal. No consideration was given to the generation of
perspective views or to the problems of representing ("colored") surface refiectances
under conditions simulating natural lighting. A Gaussian distribution was used to
generate a series of surfaces for which the fractal dimension varied from 1.05 to 1.80.
It was of interest to determine the parameters that would lead to realistic simulations
of real terrains.

Another important application of fractals to the topographic sciences is the
determination of the fractal dimension for given real natural objects and the use of
the dimension as a descriptor or identifier. This problem is called the inverse problem
and is not treated in the present report.
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BASIC FRACTAL CONCEPTS

Fractals have been defined formally in the following way.

Definition. A fractal is a set for which the Hausdorff Besicovitch
dimension strictly exceeds the topological dimension.

It is apparent that this definition contains two types of dimension.

The topological dimension D7 for a set will always be a whole number and
corresponds with our intuitive concept of dimension. It is defined by assigning the
dimension -1 to the empty set and using the definition below.

Definition. A space X has dimension < Dr if every point p can be
separated by a closed set of dimension < Dr - I from any closed set not
containing P.

In this way, a set of isolated or disconnected points has Dr f 0 since the points are
already disconnected by the null set. Similarly, ordinary (non-fractal) curves are
found to have DT = I since any point can be separated from the rest of the curve by
removing points. And, for surfaces, Dr = 2, the segmentation is accomplished by
removal of the points on a curve Dr = . When dealing with fractal sets, the same
principle holds but much greater care must be taken because of the complexity of
fractal sets and sometimes ingenious constructions may be required.

On the other hand, the Hausdorff Besicovitch dimension D is a measure theoretio
concept and, depending upon the set, its determination can be extremely difficult.
The set. of points, 1, to be measured is covered with (closed) balls, B; , of maximum
radius ( such that

1' C UP, W
i-l

The measure of a k-dimensional hall of radius R is given by

Al/?R) = a(k) !k
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and where a is given in terms of the I' function.

Thle Hausdorff measure, of dimension k. of the set [I i ei givenl hy

H k(p) jihut inf {o(k) >b )Ik}

and where the lrn if is to be takeni over all possible coverigs. For ordinlary (n1on-
fractal) sets. k is taken as the dimension OT arid the Hausdorff measure for all*y
reasonable case turns out to be the correspondig count, length, area, or volume. Forl
fractal sets, k need not be an integer and there will he one particiflar value. k=V, for
which the Hausdorff measure is p~ositiv'e and finite.

0 -HI) -cc

This dimnenision, D. is called thle Hlausdortf Besicovitch dimension and is thle most
fundamental parameter defining the fractal. The measure itself is usually of lit tle
imp~ortance since it is difficult to give it a physical meaning for non-integral D. For
k >D we will have Hk(P) = 0 arnd for k < D the corresponding measure is infinite-
I1*(P) =-o3- It is well known [Hurewicz k, Wallman] that thle I-aulsdorff Besicovitch
dimension is never less than the topological (dimension. However, there are fractals
with dimenision given by an integer.

Becaulse of thle complexity of' thle above coneplts, a more ap~prop~riate' workinig -

dlefinit ion has b)een adloptedl for the present. stud'..

Definition. Fract als are mat hleratical constructs that give realistic
representations of natural pat t ems and texturies and that, exhibit
invariant propertie-s under scale change (mnagnification).

[or geomnetrically regular fractals, enlargemient, by a certain factor will i rhig a sth,'c
of t he fractal set b~ack into coicidence andl this accounts for thle ,t ri kinrg appearid(
of imay fract als. For the surfaces to be genieratedl here, the fr'acr al shouild exhlib it thle
satme statistical proTpertie, uinder enlargement. T1his is irism-u hYC (y h le gener i rig
alIgorit hll.
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Equally important in this study is the question of whether the fractal has an
appearance similar to that of a natural terrain. Specifically, what dimensions and
other generating parameters lead to realistic results.
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THE FRACTAL GENERATION ALGORITHM

The method to be described for generation of fractal surfaces was originated by
Fournier, Fussell and Carpenter' and is usually known as the FFC algorithm,
although this designation may confuse it with a different algorithm also given by
them. This algorithm was chosen because of the simplicity of the computation, its
flexibility and adaptability to potential applications in the topographic community,
its realism, and its general compatibility with "standard" methods of computer
graphics. These criteria are discussed in the next paragraph.

The FFC algorithm to be described allows for local computation of terrain
elevations by densification of points from a set of elevations given over a square grid.
The computation requires only the averaging of elevations at the corners of a square
and the addition of a scaled random number (according to a fractal generating rule).
This permits filling of fictitious terrain textures in cases where actual topographic
data may be given on a sparse (coarse) grid. It also permits the filling of more detail
in regions of higher magnification, such as in the foreground, or in .cases of
"zooming-in." The meth.cd also allows for variation of fractal dimension, vertical
dilation, or the distribution function from one local area to another. Over square
regions where the grid size does not vary, only elevations need be stored since
horizontal coordinates are easily generated from grid indices and from the grid
spacing and origin.

Consider the situation shown in figure la. The grid lies in a horizontal plane
and elevations are known for the points given by the intersections of the grid lines
(including those on the bounding sides). Elevations are to be generated over the
center point of each square as depicted here by the dots.

a 4 0 0 0

* . a ... 0_*-

-0 0 0
R . .. T GR .

-Ali Forir Do Fusel an Loe Caletr "C m ue Rcdrn of Stcasi \1 . or

* a I ...

FIGURE 1. FRACTAL F[LLING OF THtE TERRAIN CR11)."

| Aain Fournier. Don Fuavell. and Loren Car;.entrr. "C'omputer Renderin~g of Stochastic Mo~iis." ('ommunlcatlo,, ot

the ACM, vol 25, no. 6, June 1982, pp. 371-384
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For each small square cell, the average elevation E., of the corner (vertex) points
is taken. A pseudo-random number chosen from a Gaussian distribution R is used to
generate the new elevation, E.,.,, the center point by

E.,. = E,. + R 63-D

where 6 is the distance from the center point to the vertex. Here D is the fractal
dimension and 3 is the dimensionality of the embedding space.

After this has been repeated for each cell, the elevations will be known over a
finer diagonal grid containing both the original elevations and the newly generated
ones as shown in figure lb. The procedure is repeated again for elevations of the
center points of this grid with the exception that for outer bounding edges, the
average cell elevation is determined from only three points.

At this stage a new (horizontal-vertical) grid has been established as shown in
figure lc. It will contain four times as many points as the initial grid in figure la.
The complete procedure can then be repeated ag-in and again until a sufficiently
dense set of elevations has been computed.

After the elevations have been computed, a vertical dilation is applied to adjust
the amount of vertical exaggeration. It was found that surfaces of larger fractal
dimension required much less *shrinkage in the vertical direction than those with
fractal dimension near 2.

6



EXAMPLES OF FRACTAL TERRAINS

Examples of computer synthesized terrain are given in appendix A. They
include results for various dimension and vertical exaggeration and should serve to
demonstrate the effects of varying these parameters. The distribution that was used
in all cases was an approximated cumulative distribution function for a Gaussian.
The views of the surface displayed on the screen are not in perspective, but are drawn
in the same orthographic way that three-dimensional mathematical objects are drawn
(e.g. on a blackboard). The three-dimensional appearance is partly an illusion since
only profiles of the surface are plotted. Nevertheless, since most people are
accustomed to such plots, they can give an excellent feel for the roughness, texture,
and other qualities of the surfaces involved.

The effect of varying the amount of vertical exaggeration is shown in terrains
1,2, and 3. These three examples all have fractal dimension D= 2.05 and were
produced by the same set of random numbers. They were produced using vertical
dilation factors of 0.05, 0.1, and 0.2, respectively.

The computer renderings in terrains 4, 5, 6, 7 and 8 show the effect of varying
the fractal dimension. The dilation factor was also different for each example. For
these surfaces, the fractal dimension D took the values 2.05, 2.1, 2.2, 2.4 and 2.8,
respectively, while the amount of vertical exaggeration for each case, in turn, was
0.05. 0.1, 0.2, 0.4 and 0.8. The difference in these two parameters is clearly seen by
comparing terrains 4 and 8. The former is much smoother than the latter, which
shows roughness much greater than any imaginable real world terrain, while the total - -

vertical exaggeration is not drastically different. Terrains 5 and 6 are more rugged
than 4 and show greater vertical differences than either 4 or 8, while remaining much
smoother than terrain 8.

An example of an undesirable result is shown in terrain 9. The unnatural spikes
on the back edge are believed to result from the chance occurrence of choosing
numbers far out on the tails of the generating Gaussian. This can be eliminated by
using a different distribution that dos not. possess such long tails, for example, a
chopped off Gaussian. The rarity of such occurrences may he surmised by their
absence from the other renderings since each one represents 263,169 generated
elevations on a 51:3 x 513 grid with each 8th profile plotted.

7



THE LISP COMPUTER PROGRAMS

A listing of the computer programs is given in Appendix B. They were written
in the LISP language for compatibility with other work in the Center for Artificial
Intelligence, ETL, and because of the available hardware. A brief description of the
principal functions will be given here.

Before running a program to generate a fractal surface, the function foooz must
be executed to initialize the program and to define some of the arrays needed. The
array nordis contains a numerical table representing the cumulative distribution
function for a Gaussian. The function u-to-g converts a random number from a
uniform distribution to a random number chosen from a Gaussian distribution.

The fractal generated is three dimensional, but the indices of a two- dimensional
array are used for horizontal coordinates while the stored numbers give the vertical
coordinate. The functions ssu and ssv generate screen coordinates from given three-
dimensional coordinates. They do not give perspective views but only a convenient
readily visualized representation. They are used by dsl to draw a straight line given
its three- dimensional endpoints.

The function elev generates a fractal elevation in the center of a cell in the
fractal grid. Its arguments are: the average elevation of the corner points, the fractal

" dimension, and the distance from the center of the cell to a corner.

The function surfract generates the fractal surface by using the previously
described tilling algorithm. Its sole argument is the fractal dimension. Some
intermediate views are displayed on the screen to monitor the filling operation.

The function dilate is used to adjust the amount of vertical exaggeration by
applying a dilatation factor. The arguments of this function are the scaling factor
and another number specifying how many profiles should be skipped before plotting
the next one. It is interesting to note that a negative scaling factor has the effect of
inverting the surface, i.e. exchanging mountain peaks and valleys.

The function stratum is used to put a base on the surface and to give it the
appearance of a solid slab. Its firs't two arguments specify the thickness of the slab
and the distance between profiles, respectively.

Ty pical running times for a 513 x 513 surface generation and display have been
a Iittle less than Il0 iinutes.
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CONCLUSION

Computer programs were written in LISP that make use of a Fournier, Fussell,
Carpenter algorithm to generate synthetic fractal terrains having various dimensions.
It was found that the degree of realism was best for fractal surfaces with dimension
closer to 2 and that those with dimension closer to 3 were much too rough for any
imaginable real world terrains.

It is believed that this algorithm can be used for filling scenes where actual
elevations are given on a sparse grid in order to achieve realistic rendering of the
terrain. To accomplish this will require the generation of perspective views where
color or gray levels are used to depict surface refiectances under simulated real world
illumination conditions. Such renderings would involve considerably more research
and programming.

9
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.1
I
I
.1~

12



K":.

U,
0

.1
I
I
.1

13



,0

C..'

I
I
I
.1~z4

14



N

.1
I

.1rz
4

'5



'.4

I
I
I
I'

16



N

N

I
I
tO

*1
I

17



I
.1~Lj

IS



19



I
I
I
I

20



APPENDIX B

THE LISP COMPUTER PROGRAMS

21



See 6 61: 41 1914 tec.Isp Pago I

(40,11M #goal C)
(ioe bas* Is.)
(&at *ibxse 10.)
Coot *suarf Casks-array '(St3 513) 'tvo)@ .rt-I initial-vala. 0.0))
(s01 'sour# (sake-orray * (513 513) * ?'yr * *art-q ':lnjtieI-Walue 0.0))
(set *jreMinq (make-array '(40 40) 1i':Ie 'ert-o ':InitiaI-w~luo 0.0)))

toot *nordis (sa&ke-array *(43 2) *:tynp *Prt-c))

Cfillarray nirdis *(0.@6 0.500 0.05 0. 2.) 0.10 0.5'.*D 0.35 O.560 3.20 0.579
0.25 O.i~l 3.30 0.616 6.35 0.431 '1.40 0 0.41 0.414 0.56 O.613 0.55
4.149 0.60 6.726 6.65 0.74Z 0.10 0.75v 0.15 0.773 0.0 0.768 1.15 0.86
6.90 ').Ile 0.9s 6.629 1.66 0.6441 1.25 0.VS3 1.30 0.364 1.1s $.M7 3.20
6.065 1.2S 0.394 3.12 3.900 t.30 0.903 1.3; 43.411 1.46 0.919 1.45
O.9U4 1.50 0.233 3.5560.939 1.60 0.04S l.'.4i d.950 3.65 6.95I13.10
0.955 3.1i 0.960 1.60 0.964 l.ss 0.21 1.10 0.911 1.95 0.914 3.,160
6.975 Z.00 0.911 2.05 6.996 2.10 0.792 2.1 0.964 2.26 0.966 2.2s 0.9q6
2.30 0.181 2.326 0.990 2.35 0.991 2.40 0.352 2.45 0.993 2.56 6.194
2.9,16 0.97$ Z.65 0.996 2.75 6.997 2.90 0.19i 1.00 0.999 3.66 1.100))

(detun a.)R

(tend M(essp a 6.5)
(sot *s -3.0)
(set on C- 1.0 NM)

(t (-.*t *S 41.0)))
C(toot, 14rl i fro% 0 uantll

C> (nsof nerdis A 3) x)
.10
(-sit *JA)

(cend C(< J 5')
(cand M~ - (arob needis (o .1 ) 1) a)

Ca Caret nordis J M)
CO s (arof nordis J 0))

(t (* % (arof nerdis (0 j 1) 0))
(I C s (*r.C nerdis J 0))

(defun saw (x z )
(* 53. C0 CS 3.5 X) (0 .2s y)

(defun SSW (a Y a tilt)
C600. 0~ tilt C* CO .25 Y) (a 1.5 IM~))

(delia. del (up va Pa ab yb zb)
(send terainal-Ja :dram-lint (f ix C .%u xa v4 .- )) (fill (sow no Ya la 1.5))

(fix siu b Via cb)) (fin Cssv on v1, zb 1.5)

(defun *Low (4ve clam rr)
(4awe C: Ci.-to-g (// (float (r~ndsn4 11C-11)) I-loon.))

CrrC-.0dm))
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Soe 6 09:49 I8t trc.lsp Pao 2

(defimn ourfroct (or)
(set 'surf (meke-frray *(531 S13) Ityvge rt-u ":lptjal-vflue 9.O))
(got 0edge S12)
Coot 'diet (i/ edge 2))
(lep for n free I until (( diet 3)

do
(set rr (/I (fleet edge) (Sort 2.6)))
(loop for i from diet by edge uwntl| () 1 512)

do
(loop for J free diet by edge until ) J 512)

do

(&set (*ev (11 ( (oref surf C- I diet) t- J diet))
(aref surf (o I dist) (- j diet))
(Cret surf (- i dist) to j diet))
(Cret surf (o I dist) (4 j diet))) 4.0)

die rr)
surf I J)))

(leon for I free 0 by diet until ) 1 512)
do
(liop for J fre (if (eddp (d/ i diet)) 0 dist) by edge

euntil () J 512)
do
(cend ((eli 1 U)

(oset (rey (// ( taref surf ( i diet) J)
(Cret surf i ( J diet))
(*ee surf I (- J diet))) 3.0)

dim (fleet diet)) surf j J))
((equal i S12)
(meet (elew (/ ( (Prof surf C- i diet) J)

(aref turf i ( J diet))
(*rot surf I (- J diet))) 3.0)

die (float 41st)) surf I J))
((equal J 0)
(asot (*le (WI C (erof surf (* i diet) J)

(pref surf t- i diet) J)
(acef surf I to J diet))) 3.0)

die (float dist)) surf I J))
((equal J Sit)
(aset (oleo (/ 0# (ret surf (o i diet) J)

(prof surf (- i diet) J)
(*ret surf i (- J diet))) 3.0)

die (float dist)) surf I J))
(t

(meet (sow (/ to (oref surf to I diet) J)
(arqf surf (- I diet) J)
(sr-f surf i C* J diet))
(Cr-f -%-rf i C- J diet))) 4.0)

dim (floM t diet)) turf I J)))))
(sot "edje diet)
(eot *dlst (1 diet ))
(turf 44 surf))

(end torminl-li ":clear-eindea)
(turf 44 surf))

(define turf (irate surf)
(loop for I 'ror 0 to S12 by grate
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Sop 6 *f169 114 frc.lsp Pee* 3

do
(loo. for J from I to 512

lie
(dii (float 1) (- (float J 1.0) (aref sVurf I - J 1))

(float i) (flot ) Caret smuvf I J
(loop for J frem O to SIZ by grote

do
(loop for I from I to 512

Jgo
(dil C- (float 1) 1.1) (float J) Car-f Oupf C- 1 I) J)

(fleet ) (float J) (aril swurt I J1))))

(dofun dilate (scale del)
(loos foer I fe 0 Oon,' *| 1 912)

do
(loo, for J from 6 until C) J 512)

to
(aset ( ceal Careol surf I J)) quwrf i J)))

(turf del ,ourf))

(defun sift (scale de)
(dilate SceI P.*)
(loop for I from 0 until () L 39)

do
(loop for J from 0 until C) J 31)

do
(asot Caref %surf (# 6 (0 12 1)) (0 S (# 1 J))) grating I J)))

(defu stratum (thickness grate (leotional (saurf iwurf)))
(del 0.6 0.0 (- 0.6 thickness) 512.6 0.g C- 0.0 thickness))
(de1 512.0 (.0 (- 6.6 thickness) 512.0 S12.6 (- 0.0 thickness))
(loop for I from 0 te SI2 by grate

do
Cd$I (fleet i) 0.6 C- 6.0 thickness) (fI~at 1) 0.0 (aref smurf 1 0))
(dil 512.0 (float 1) -. 0 thicknetO 512.6 (float 1) Carol *eurf 512 I))))
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