Nonlinear Theory of Phase Locking Gyrotron Oscillators
Driven by an External Signal

A. W. Fliflet and W. M. Manheimer

Plasma Physics Division

July 15, 1988

Approved for public release; distribution unlimited.
Nonlinear Theory of Phase Locking Gyrotron Oscillators Driven by an External Signal

Fliflet, A.W. and Manheimer, W.M.

Interim

FROM 1/87 TO 12/87

1988 July 15

54

A time-dependent slow-time-scale theory is developed for gyrotron oscillators driven by an external signal. The signal is introduced either directly into the cavity output or via a beam prebunching cavity. The theory is applied to a high voltage gyrotron configuration and the numerical, nonlinear calculations are compared with simple analytical estimates of the frequency bandwidth for phase-locked operation. For the case of direct injection, the non-linear slow-time-scale calculations are in good agreement with Adler’s relation. Two approaches are investigated for the case of phase-locking with a prebunching cavity. In the first the induced ac current density due to the prebunching cavity is treated as a small perturbation on the ac current density in the oscillator.

(Continues)
this approach the equations for the time-dependent wave amplitude and phase are similar in structure to the equations for gyrotrons driven by direct injection and lead to a simple analytical estimate of the locking bandwidth. The accuracy of the perturbation approach is investigated by comparing it with the results of an alternate approach used in the analysis of gyro-klystrons. The maximum phase-locking bandwidth obtainable with the prebunching cavity approach is discussed.
CONTENTS

I. INTRODUCTION ... 1
II. THEORY .. 4
III. CALCULATIONS AND RESULTS 22
IV. DISCUSSION AND CONCLUSIONS 27
V. ACKNOWLEDGEMENTS 32
I. INTRODUCTION

There is currently considerable interest in the development of high power phase-locked gyrotron oscillators. These devices have the potential to combine the high efficiency and power associated with oscillators with the coherence and phase control properties associated with amplifiers. Although previous theoretical work on steady-state gyrotron operation[1-8] has been successfully applied to the development of cw devices for heating of tokamak plasmas, the investigation of the phase locking of gyrotron oscillators driven by external signals has received much less attention. A consideration of the properties of driven oscillators necessarily involves the study of non-stationary operation. Time dependent effects can be studied using a particle-in-cell simulation code of the type developed by Lin and co-workers [9]. In this work an alternative nonlinear, slow-time-scale approach is used to study time-dependent effects in driven oscillators. Under certain approximations analytical estimates of such quantities as the locking bandwidth are obtained. For example, Adler’s relation [10] is recovered for the case of phase locking by direct injection of radiation at the cavity output.

The time-dependent theory of gyrotrons has been considered by Nuzinovich and co-workers [11,12], mainly in the context of multimode operation and mode stability. A time dependent multimode theory of quasi-optical gyrotrons has been developed by Bondeson et al.[13]. Early work on mode selection and phase-
locking of vacuum tube oscillators was carried out by Van der Pol [14] and Adler [10]. An analytical theory of the conditions for phase-locking gyrotrons has been presented by Manheimer [15,16]. The present work extends the theoretical approach developed by Manheimer to the nonlinear regime and incorporates slow-time-scale (STS) gyrotron dynamics.

The time dependent theory of driven gyrotron oscillators derived in this work is based on slow-time-scale equations for the electron motion similar to those used in steady-state models [7,17,18]. Slow-time-scale equations for the cavity rf field amplitude are obtained by expressing the time-dependent behavior relative to a reference frequency ω_0 which is close to the operating frequency ω. The fact that the electron transit time through the cavity is short compared to the radiation field risetime is also exploited. The external signal is introduced either directly into the cavity output or via a beam prebunching cavity. Two approaches are investigated for the case of phase-locking with a prebunching cavity. In the first the induced ac current density due to the prebunching cavity is treated as a small perturbation on the ac current density in the oscillator. In this approach, which follows the work of Manheimer [16], the equations for the time-dependent wave amplitude and phase are similar in structure to the equations for gyrotrons driven by direct injection and lead to a simple analytical estimate of the locking bandwidth. The accuracy of the perturbation approach is investigated by comparing it with the results of the second approach in which the beam prebunching is introduced in the
initial conditions for integrating the equations-of-motion. This approach is well-known in the analysis of gyro-klystons [19]. The theory is applied to a high voltage gyrotron configuration similar to the NRL high voltage gyrotron experiment [17].

The next section of this paper describes the theoretical approach. The following section contains the results of calculations. Section IV presents conclusions drawn from this research and discusses the maximum bandwidth obtainable using a prebunching cavity. The last section contains our acknowledgements.
II. THEORY

Consider a gyrotron with a cylindrical resonator and a thin annular beam. The electrons follow helical trajectories in the applied axial magnetic field about guiding centers located at a radius R_0 from the symmetry axis. The electron beam interacts with a TE resonator mode which is assumed to be near cutoff. It is convenient to look at time dependent effects which remain after a reference frequency ω_0 has been factored out. These effects are characterized by time scales which are much longer than the wave period and are incorporated in a time dependent mode profile function $f(z,t)$. Using complex notation, the transverse electric field is expressed in the form:

$$E_t = f(z,t)e_n(r,\theta;z)\exp(-i\omega_0 t) \quad (1)$$

where $e_n = z \times \nabla_v \psi$ is the waveguide transverse-mode vector function and ψ is the corresponding scalar mode function which satisfies a Helmholtz equation with respect to the transverse coordinates [18]. The transverse electric field satisfies the wave equation:

$$\nabla^2 E_t - \frac{1}{c^2} \frac{\partial^2 E_t}{\partial t^2} = \mu_0 \frac{\partial J_t}{\partial t} \quad (2)$$

where J_t is the transverse ac current density, c is the speed of light and μ_0 is the permeability of free space. MKS units are used throughout except as noted.

There are two methods of phase-locking gyrotron oscillators: direct injection of a locking signal or by means of a modulated
electron beam produced by a prebunching cavity. In the case of direct injection of radiation the wave amplitude function at the cavity output can be expressed in the form:

\[f(z,t) = A(t)e^{i[k_z z - \psi(t)]} + \beta e^{-i k_{z_0} z} \] \hspace{1cm} (3)

where the first term on the right hand side of Eq.(3) represents the time-dependent oscillator output (an outgoing wave with amplitude A and wavenumber \(k_z \); \(\psi \) is a slowly varying phase) and the second term represents a constant amplitude incoming wave with frequency \(\omega_0 \) due to the external signal. In the case of beam premodulation via a bunching cavity, the ac current density can be viewed as having two parts:

\[J_t = J + \delta J \] \hspace{1cm} (4)

where \(J \) is generated by the electric field in the oscillator cavity and \(\delta J \) is the current density generated in the prebunching cavity. It is convenient to express the rf current density in the approximate form [7]:

\[J_t = (J_\omega + \delta J_\omega) \exp(-i \omega_0 t) \] \hspace{1cm} (5)

where

\[J_\omega = \int_0^{2\pi} d(\omega_0 t) \ J \ e^{i \omega_0 t} \] \hspace{1cm} (6)
and similarly for \(\delta J_\omega \). Substituting Eqs. (1) and (5) into Eq. (2), noting that \(\partial f/\partial t \ll \omega_0 f \), multiplying by \(e_n^* \), and integrating over the resonator cross section one obtains:

\[
\left[\frac{\partial^2}{\partial z^2} + \frac{\omega_0^2 - \omega_c^2}{c^2} + 2i \frac{\omega_0}{c^2} \frac{\partial}{\partial t} \right] f(z, t) = -i \mu_0 \omega_0 \int da \ e_n^* \cdot (J_\omega + \delta J_\omega) \tag{7}
\]

where \(\omega_c \) is the cut-off frequency of the resonant mode in the cavity.

To obtain slow-time-scale equations for a gyrotron oscillator driven by an external signal, multiply Eq. (7) by \(f^* \) and multiply the complex conjugate of Eq. (7) by \(f \). Then first add and then subtract the resulting equations, and integrate the sum or difference over the axial extent of the cavity. The sum leads to:

\[
\int_0^L dz \left[f^* \frac{\partial^2 f}{\partial z^2} + f \frac{\partial^2 f^*}{\partial z^2} + \frac{\omega_0^2 - \omega_c^2}{c^2} f f^* + 2i \frac{\omega_0}{c^2} \left(f \frac{\partial f}{\partial t} + f^* \frac{\partial f^*}{\partial t} \right) \right] =
\]

\[
-i \mu_0 \omega_0 \int_v \left[f^* e^* \cdot (J_\omega + \delta J_\omega) - f e \cdot (J_\omega^* + \delta J_\omega^*) \right] \tag{8a}
\]

where \(V \) denotes integration over the cavity volume. The difference leads to:
As will be shown, Eq.(8a) leads to an equation for the wave phase and Eq.(8b) leads to an equation for the wave amplitude. Integrating the first two terms on the right hand side of these equations by parts leads to:

\[
\frac{\partial |f|^2}{\partial z} + \int_0^L dz \left[-2 \frac{\partial f}{\partial z} + 2 \frac{\omega_0}{c^2} |f|^2 + \frac{\omega_0}{c^2} \frac{\partial f^*}{\partial t} + 2i \frac{\partial f}{\partial t} \right] = -i \mu_0 \omega_0 \int_V \text{d}^3x \left[f^* e^* (\omega_0 + \delta \omega) + fe^* (\omega_0' + \delta \omega') \right] \tag{8b}
\]

and:

\[
\left[f^* \frac{\partial f}{\partial z} - f \frac{\partial f^*}{\partial z} \right]_0^L + \frac{\omega_0}{c^2} \int_0^L dz \frac{\partial |f|^2}{\partial t} = -i \mu_0 \omega_0 \int_V \text{d}^3x \left[f^* e^* (\omega_0 + \delta \omega) + fe^* (\omega_0' + \delta \omega') \right] \tag{9b}
\]

respectively. The first term on the left hand side of Eq.(9a) is a boundary term which vanishes for a free running oscillator.
because $f=0$ at the cavity input ($z=0$) and $|f|$=constant at the cavity output ($z=L$) when there is only an outgoing wave. The boundary term does not vanish when there is an external signal incident at the cavity output, thus this term corresponds to phase-locking by direct injection of radiation. The boundary term in Eq.(9b) corresponds to the net power flow from the cavity.

In the case of direct injection of radiation (the case of phase-locking via beam prebunching is treated below), the boundary term in Eq.(9a) can be written in the form:

$$
\left. \frac{\partial |f|^2}{\partial z} \right|_0 = -4k_0 A(t) \beta \sin[2k_0 L - \psi(t)]
$$

(10a)

and the boundary term in Eq.(9b) can be written in the form:

$$
\left[f' \frac{\partial f'}{\partial z} - f \frac{\partial f}{\partial z} \right]_0 = 2ik_0 (A(t)^2 - \beta^2)
$$

(10b)

where Eq.(3) has been used and the difference between k_z and k_{z0} has been neglected. Following common practice, the wave amplitude function inside the cavity is written in the separable form:

$$
f(z,t) = a(t)e^{-i\psi(t)} h(z)
$$

(11)
where \(h(z) \) is the axial profile function. In what follows, \(h(z) \) will be assumed to have a gaussian form:
\[
h(z) = \exp[-(\kappa_z z)^2],
\]
centered at the cavity midpoint, where \(\kappa_z \) is the effective axial wavenumber inside the cavity. Using Eq. (11) in Eq. (9a) and (9b) and substituting Eq. (10a) or (10b) for the boundary terms leads to:

\[
-4k_z A(t) \beta \sin[2k_z L - \psi(t)] + 2N \left[\frac{\omega_0^2 - \omega_{ro}^2}{c^2} a(t)^2 + 2 \frac{\omega_0}{c^2} a(t) \psi \right] =
\]

\[
-i \mu_o a(t) \int \frac{d \text{ad}h(z)}{v} \left[e^{i \omega_0 \psi} - e^{i \omega_0 \psi} \right]
\]

(12a)

from Eq. (9a); and

\[
2k_z [A(t)^2 - \beta^2] + \frac{\omega_0}{c^2} a(t) \dot{a}(t) N =
\]

\[
- \mu_o \omega_0 a(t) \int \frac{d \text{ad}h(z)}{v} \left[e^{i \omega_0 \psi} + e^{i \omega_0 \psi} \right]
\]

(12b)

from Eq. (9b);

where:

\[
N = \int_0^L |h(z)|^2 = \frac{\pi L}{\sqrt{2} \sqrt{2}}
\]

(13)

for a gaussian profile, and \(\omega_{ro} \) is the cold cavity eigenfrequency of the interacting mode.
To calculate the ac current density, the interaction with the electron beam is treated in the single particle approximation. A considerable simplification of the general time dependent problem results if one uses the fact that the characteristic rise time of fields in the resonator is much longer than the electron transit time in the cavity. In this case one can use a quasi-steady-state approximation in which the electron trajectories are calculated for rf fields with fixed amplitude, $f(\tau_o)$, and linearized phase, $\psi=\psi'(\tau_o)(\tau-\tau_o)$. The slow-time-scale nonlinear electron equations of motion for an electron in a thin annular beam interacting at a particular harmonic with a single circularly polarized TE mode are readily deduced from previous steady-state analyses [7,18] and are given by:

\[
\frac{du_t}{dz} = -\frac{\gamma}{u_z} f J'_s(k_t r_L) \Re \left((h + i \frac{u_x}{\gamma \omega_o} \frac{dh}{dz}) e^{-i(\Lambda + \psi)} \right) \tag{14a}
\]

\[
\frac{d\Lambda}{dz} = -\frac{s \gamma}{u_z u_t} f \frac{sJ_s(k_t r_L)}{k_n r_L} \Re \left(h + i \frac{u_x}{\gamma \omega_o} \frac{dh}{dz} - \frac{\omega_o^2 u_z^2}{s \Re \omega_o \gamma} h \right) e^{-i(\Lambda + \psi)} + \bar{\omega}_o \left(1 - \frac{s \Omega}{\omega_o \gamma} \right) \tag{14b}
\]

\[
\frac{du_z}{dz} = \frac{u_t}{u_z \omega_o} f J'_s(k_t r_L) \Re \left[i \frac{dh}{dz} e^{-i(\Lambda + \psi)} \right] \tag{14c}
\]

where $u_t=\gamma v_t/c$ is the normalized transverse momentum amplitude, $u_z=\gamma v_z/c$ is the normalized axial momentum, Λ gives the slow
variation in the transverse momentum azimuthal phase relative to
the reference wave phase, s is the harmonic number, γ is the
relativistic mass ratio, \(k_t \) is the mode transverse wavenumber, \(r_L \)
is the Larmor radius of the orbit, \(J_s (J'_s) \) is (the derivative of)
a regular Bessel function, \(\Omega \) is the nonrelativistic cyclotron
frequency, and \(f \) is the normalized rf field amplitude:

\[
f = \frac{|e|}{m_0 c^2} x'_{m n} C_{m n} J_{m-s}(k_t R_o) \quad \text{a} \tag{15}
\]

Quantities with a "-" have been normalized according to:
\(\bar{z} = z/r_{w o}, \bar{r}_L = r_L/r_{w o}, \bar{\Omega} = \Omega r_{w o}/c, \bar{\omega}_o = \omega_o r_{w o}/c, \) and \(\bar{k}_n = k_n r_{w o}. \)
\(R_o \) denotes the orbit guiding center radius, \(e \) is the electron
charge, \(m_0 \) is the electron mass, \(m \) is the mode azimuthal index,
\(x_{m n}' \) is a zero of \(J'_m \), and \(r_{w o} \) is an arbitrary normalization
factor. The transverse TE mode normalization coefficient

\[
C_{m n} = \left[\frac{1}{\sqrt{\pi (x'_{m n}^2 - m^2)}} J_m(x'_{m n}) \right]^{-1} \tag{16}
\]

The ac current density is obtained by integrating Eqs.(14)
for an appropriate set of initial conditions at the cavity input
at \(z_o \). For a cold, phase-mixed electron beam: \(u_t(z_o) = u_{t o}, \)
\(u_z(z_o) = u_{z o}, \) and \(\Lambda(z_o) = \Lambda_o \) is uniformly distributed in the interval
\([0,2\pi]\). For a thin annular beam the transverse ac current
density is given by

\[
J_t = -\frac{I_o}{v_t} v_t \tag{17}
\]
Substitution of Eqs.(17) and (6) into Eqs.(12) and using the prescription developed in previous work [7] leads to the following equations for the time-dependent wave and phase:

\[-4k_{z_0}A(t)\beta \sin[2k_{z_0}L-\psi(t)] + 2N \left[\frac{\omega_0^2 - \omega_L^2}{c^2} a(t)^2 + \frac{2}{c^2} a(t)^2 \right] = \]

\[-4\mu_0 I_0 \omega_0 C_{\mu\nu} J_{\mu-\delta} (k_z R_0) a(t) \int_0^L dz h(z) \left\langle \frac{\partial J_s(k_z r_L)}{\partial r_L} \frac{u_t}{u_z} \sin(\Lambda+\psi) \right\rangle \Lambda_o \]

from Eq.(12a); and, from Eq.(12b),

\[2k_{z_0}(A(t)^2 - \beta^2) + \frac{\omega_0}{c^2} a(t) A'(t) \] \[4\mu_0 I_0 \omega_0 C_{\mu\nu} J_{\mu-\delta} (k_z R_0) a(t) \int_0^L \left\langle \frac{\partial J_s(k_z r_L)}{\partial r_L} \frac{u_t}{u_z} \cos(\Lambda+\psi) \right\rangle \Lambda_o \]

where \(\langle \rangle_a \) denotes an average with respect to the variable \(a \).

The cavity field amplitude can be related to the external field amplitude via the output diffraction \(Q \) factor according to:

\[A(t) = \sqrt{\frac{N}{k_{z_0} Q c}} \frac{\omega_0}{a(t)} \]

Substituting Eq.(19) into Eqs.(18), the equations for the time-dependent phase and amplitude can be written in the form:
\[
\frac{d\psi}{d\tau} = -\frac{\Delta \omega}{\omega_o} - \frac{1}{f} \int_0^\tau d\bar{z}(\bar{z}) \left\langle J'_s(k_t \bar{r}_o) \frac{u_t}{u_z} \sin(A+\psi) \right\rangle_{\Lambda_o} \\
+ \frac{1}{Q} \frac{f_L}{f} \sin[\psi-\Phi_o]
\] (20a)

\[
\frac{df}{d\tau} = -\frac{1}{2Q} \frac{f^2-f_{L_{s}}^2}{f} + \int_0^\tau d\bar{z}(\bar{z}) \left\langle J'_s(k_t \bar{r}_o) \frac{u_t}{u_z} \cos(A+\psi) \right\rangle_{\Lambda_o}
\] (20b)

where \(\Delta \omega_o = \omega_o - \omega_{\tau_o} \), \(\Phi_o = k_{\tau_o} \), \(f_L \) is an effective field amplitude due to the locking signal given by:

\[
f_L = \frac{|e|}{m_o c} x'_m n C_m n J_{m-8}(k_t R_o) \left[\frac{2\mu_o Q P_L}{N \omega_o} \right]
\] (21)

where \(P_L \) is the locking signal power, and \(I \) is the normalized current parameter:

\[
I = \frac{|e| \mu_o}{m_o c \omega_o} \frac{J_{m-8}^2(k_t R_o)}{n(1-m^2/x'_m n^2) J_m^2(x'_m n) N} I_o
\] (22)

To treat the case of phase-locking via beam prebunching, the current density perturbation is assumed to be due to phase bunching. The ac current density perturbation can then be expressed in the form:

\[
\delta J = \delta J_x + i \delta J_y = -I_o \frac{V_{t_o}}{V_{z_o}} e^{-i(\omega_o t - \delta A)} \delta(r - R_o)
\] (23)
\[\delta \Lambda = \frac{\omega_0 - \omega}{v_z} z + \theta_0 - q \sin \theta_0 - \phi_0 \]

(24)

where \(q \) is the bunching parameter and \(\phi_0 \) is a phase factor determined by the locking signal. Evaluating the terms in Eqs.(9) involving \(\delta J \) in the same manner as the terms involving \(J \) and using Eq.(23) leads to:

\[
\frac{c^2 \mu_0}{4N \omega_0 a(t)^2} \int f \, dz \left[f^* e^{i \delta \omega} \delta J \omega^- + f e^{-i \delta \omega} \right] = \frac{-1}{i} \frac{V_t}{r_\omega f v_z} \int_{-L}^{L} dzh(z) J_1(q) \frac{\sin}{\cos} \left(\frac{\omega_0 - \omega}{v_z} z + \psi - \phi_0 \right) \]

(25)

where the "+" ("-") sign on the left hand side of Eq.(25) is associated with the upper (lower) quantities in the brackets on the right hand side. Substituting Eq.(24) into (25), and performing the phase average yields:

\[
\frac{c^2 \mu_0}{4N \omega_0 a(t)^2} \int f \, dz \left[f^* e^{i \delta \omega} \delta J \omega^- + f e^{-i \delta \omega} \right] = \frac{-1}{i} \frac{V_t}{r_\omega f v_z} \int_{-L}^{L} dzh(z) J_1(q) \frac{\sin}{\cos} \left(\frac{\omega_0 - \omega}{v_z} z + \psi - \phi_0 \right) \]

(26)
Under the assumption of phase bunching only, the bunching parameter has no z-dependence in the cavity region and assuming a gaussian form for the profile function \(h(z) \), the axial integration can be carried out to obtain:

\[
\frac{c^2 \mu_o}{4N \omega_o a(t)^2} \int \! dz \left[f^* e^{-i \omega_o z} + f e^{i \omega_o z} \right] = \frac{-1}{\pi} \int \! dv \frac{v_{t_o} J'_s(k_t r_{L_o}) e^{-\frac{[\omega_o - \Omega]^2}{2v_{z_o} k}} J_1(q) \left(\sin \right)}{v_{z_o}^2 e^{L^2 v_{z_o}^2 \cos(\psi - \Phi_o)}}
\]

where the cavity axial wavenumber defines an effective interaction length according to \(\kappa = 2/L \). Substituting Eq.\((27)\) into Eqs.\((9)\) leads to the counterparts of Eqs.\((20)\) for the case of phase-locking via a prebunched beam:

\[
\frac{d\psi}{d\tau} = - \frac{\Delta \omega_o}{\omega_o} - \frac{f}{\pi} \int \! dz \left(\bar{z} \right) \left(J'_s(k_t r_{L_o}) \frac{u_t}{u_z} \sin(\Lambda + \psi) \right)_{\Lambda_o}
\]

\[
+ \frac{\pi^3 L}{\lambda} \frac{v_{t_o}}{v_{z_o}} J'_s(k_t r_{L_o}) e^{-\frac{[\omega_o - \Omega]^2}{2v_{z_o} k}} J_1(q) \cos(\psi - \Phi_o)
\]

\[
\frac{df}{d\tau} = - \frac{f}{2Q} + \frac{\pi^3 L}{\lambda} \frac{v_{t_o}}{v_{z_o}} J'_s(k_t r_{L_o}) e^{-\frac{[\omega_o - \Omega]^2}{2v_{z_o} k}} J_1(q) \sin(\psi - \Phi_o)
\]

\[
\frac{\psi}{\pi} \frac{L}{\lambda} \frac{v_{t_o}}{v_{z_o}} J'_s(k_t r_{L_o}) e^{-\frac{[\omega_o - \Omega]^2}{2v_{z_o} k}} J_1(q) \cos(\psi - \Phi_o)
\]
Eqs. (28) have been derived in part to show the similar structure of the phase and amplitude equations for a gyrotron driven by a directly injected rf signal or by a premodulated beam. As discussed by Manheimer [16], these equations also lead to analytical estimates of the maximum frequency bandwidth for phase-locking, i.e., Adler's relation [Eq. (30) below], and of the exponent of the time in the approach to phase-lock. To carry out nonlinear numerical calculations of the temporal evolution of an oscillator driven by a premodulated beam it is more accurate to incorporate the beam premodulation directly into the wave equation source term via the initial conditions on the electron equations of motion. In this approach a nonuniform initial phase distribution is used of the form:

\[\Lambda_0 = \theta_0 - q \sin \theta_0 - \phi_0 \]

(29)

where \(\theta_0 \) is uniformly distributed in the interval \([0, 2\pi]\).

Eqs. (20) and (28) can be used to obtain estimates of the maximum frequency bandwidth for obtaining phase-locked operation for given system parameters. The wave amplitude and frequency shift due to beam loading for the free-running oscillator during steady-state operation are given by:

\[f_0 = \left[2QI \int_0^L d\hat{z} h(\hat{z}) \left< J'_z(k_z r_L) \frac{u_t}{u_z} \cos(\Lambda + \psi) \right>_{\Lambda_0} \right]_{ss} \]

(30a)
\[
\frac{\Delta \omega_{\text{FR}}}{\omega_o} = - \frac{1}{f_o} \left[\int_0^\tau d\tilde{z} \langle J'(F_t \tilde{r}_L) \frac{u_t}{u_s} \sin(\Lambda + \psi) \rangle \right] \Lambda_o \int_s s \quad (30b)
\]

where \(\Delta \omega_{\text{FR}} = \omega_{r1} - \omega_o \) and \(\omega_{r1} \) is the beam loaded resonant frequency of the free-running oscillator.

For an oscillator operating near steady-state conditions and driven by a weak external signal with frequency \(\omega_o \), Eqs.(30) can be used to rewrite Eq.(20a) as:

\[
\frac{\partial \Psi}{\partial \tau} = - \frac{\Delta \omega}{\omega_o} - \frac{1}{Q f_o} \sin(\Psi) \quad (31)
\]

where \(\Delta \omega = \omega_o - \omega_{r1} \) and \(\Psi = \psi - \Theta_o + \pi \). The condition for phase-locked operation, \(\partial \Psi / \partial \tau = 0 \), implies:

\[
\frac{\Delta \omega}{\omega_o} = - \frac{1}{Q f_o} \sin(\Psi_o) \quad (32)
\]

where \(\Psi_o \) denotes the phase during phase-locked operation. Since \(f_o \) and \(f_L \) are proportional to the square root of the oscillator output power and locking power, respectively, Eq.(32) leads to Adler's relation for the frequency pulling bandwidth of a phase-locked oscillator driving a matched load:

\[
\left| \frac{\Delta \omega}{\omega_o} \right| \leq \frac{1}{Q} \sqrt{\frac{P_L}{P_s}} \quad (33)
\]
As discussed by Manheimer [16], for frequencies satisfying Eq.(33), Eq.(32) has a stable solution of the form: \(Y = \Psi_0 + \delta e^{-\tau/T} \), where \(\delta \) is a small perturbation, indicating that the approach to phase-locked operation is exponential. The time constant is given by:

\[
T = Q \sqrt{\frac{P_{osc}}{P_L}} \left[1 - \left(\frac{\Delta \omega Q}{\omega_0} \right)^2 \right]^{-1/2}
\]

(34)

Eq.(34) shows that \(T \) becomes large, and thus the time to achieve phase-lock becomes long, for frequencies near the bandwidth limit.

Similarly, in the case of phase-locking by beam pre-modulation, a similar analysis based on Eqs.(28) leads to the following equations describing the time-dependent amplitude and phase for operation near the oscillator steady-state:

\[
\frac{d\Psi}{d\tau} = -\frac{\Delta \omega}{\omega_0} - \frac{\sqrt{\pi} \mu I_0}{2QF} J_1(q) e^{-\left(\frac{\Delta \nu}{4}\right)^2} \left\{ \frac{2^s s!}{s^s \beta_{t_o}^{-1}} J'_s(s\beta_{t_o}) \right\} \sin \Psi
\]

(35a)

\[
\frac{dF}{d\tau} = \frac{(F_o - F)}{2Q} + \frac{\sqrt{\pi} \mu I_0}{2Q} J_1(q) e^{-\left(\frac{\Delta \nu}{4}\right)^2} \left\{ \frac{2^s s!}{s^s \beta_{t_o}^{-1}} J'_s(s\beta_{t_o}) \right\} \cos \Psi
\]

(35b)
In deriving Eqs. (35) the following scaled "universal" gyrotron field amplitude, current, interaction length, and cyclotron resonance detuning parameters defined by Danly and Temkin [8] have been introduced:

\[F = \frac{\beta_{\lambda}^{-4}}{\gamma_o \left[2^{s-1} s! \right] x_{mn}^s} \]

(36a)

\[I_g = \left[\frac{2}{\pi} \right]^\frac{3}{2} \frac{Q \omega_o}{\gamma_o \beta_{\lambda}^2 (3-s)} \frac{N}{r_{\nu o}} \frac{\lambda}{2^{s} s!} I \]

(36b)

\[\mu = \pi \frac{\beta_{\lambda} L}{\beta_{\nu o} \lambda} \]

(36c)

\[\Delta = \frac{2}{\beta_{\lambda} o} \left(1 - \frac{s \Omega}{\omega_o} \right) \]

(36d)

The factor in Eqs. (35) involving the Bessel function \(J_1'(s\beta_{\nu o}) \) reduces to unity when the small argument expansion of the Bessel function is valid. This is a good approximation for weakly relativistic beams and low-order harmonic interactions but can lead to inaccuracies in the relativistic gyrotron regime of interest here. The condition for phase-locked operation, \(\partial \Psi / \partial \tau = 0 \), implies:

\[\frac{\Delta \omega}{\omega_o} = -\frac{\sqrt{\pi} \mu I_o}{2 QF_{do}} J_1(q) e^{-\left(\frac{\Delta \mu}{4} \right)^2} \left\{ \frac{2^{s} s!}{s \beta_{\nu o}^{s-1}} J_1'(s \beta_{\nu o}) \right\} \sin \Psi_o \]

(37)
where the amplitude of the driven oscillator F_{d0} is given by:

$$F_{d0} = F_0 + \sqrt{\pi} \mu I_d J_1(q) e^{-\left[\frac{\Delta \mu}{4}\right]} \left\{ \frac{2s^s!}{s^s \beta_{c0}^{-s}} J'_s(s \beta_{c0}) \right\} \cos \psi_0$$ (38)

Eqs. (37) and (38) show that, unlike the case of direct injection, the amplitude of the driven oscillator has a dependence on the locking frequency. From the ratio of these equations one obtains: $(F_{d0} - F_0)/F_{d0} = 2Q \cot \psi_0 \Delta \omega/\omega_0$ which shows that the change in wave amplitude can be of order Q times larger than the fractional frequency shift. Eq. (37) leads to the counterpart of Adler's relation for phase locking via a prebunched beam:

$$\frac{|\Delta \omega|}{\omega_0} \leq \frac{\sqrt{\pi} \mu I_d}{2QF_{d0}} J_1(q) e^{-\left[\frac{\Delta \mu}{4}\right]} \left\{ \frac{2s^s!}{s^s \beta_{c0}^{-s}} J'_s(s \beta_{c0}) \right\}$$ (39)

A corresponding result was obtained by Manheimer[16] (using different notation) for the case of a gyrotron in a linearly polarized TE_{1n} mode. The time constant for the approach to phase-locked operation is given by:

$$\tau = \left[\frac{|\Delta \omega|_{\text{max}}}{\omega_0} - \frac{\Delta \omega^2}{\omega_0^2} \right]^{-1/2}$$ (40)

where $|\Delta \omega|_{\text{max}}/\omega_0$ is given by Eq. (39) with the equality sign.
Tran et al. [19] have used single-particle theory in the small signal approximation to calculate the bunching parameter q. Their result for the case of a single prebunching cavity with a gaussian axial field profile and circular mode polarization is:

$$q = \sqrt{\pi} F_1 \mu_1 e^{-\left(\frac{\Delta \mu_1}{4}\right)^2} \left[\frac{\sqrt{3}}{2} \mu_1 + \mu_d\right]$$ \hspace{1cm} (41)

where parameters with a "1" subscript denote bunching cavity parameters and μ_d is the normalized distance from the end of the bunching cavity to the beginning of the oscillator cavity.
III. CALCULATIONS AND RESULTS

Calculations have been carried out for a driven gyrotron oscillator using the theory developed in Section II. Phase locking by both direct injection and using a prebunching cavity has been simulated and the accuracy of simple theoretical estimates of locking bandwidth has been investigated. The dependence of the bandwidth for phase-locking on gyrotron operating parameters is shown.

The configuration analyzed is a high voltage 35 GHz gyrotron similar to the NRL experiment recently reported by Gold et al. [17]. The peak voltage and current of the annular beam are taken to be 650 kV and 1.5 kA, respectively, which are typical operating parameters. The beam guiding center radius is \(R_0 = 1.16 \) cm, the cavity radius is 1.6 cm, and the longitudinal profile of the cavity fields is assumed to be gaussian with effective length \(L = 4 \) cm. The operating mode is the \(\text{TE}_{621} \) circular mode with polarization counter-rotating to the beam rotation. The beam pitch ratio \(\alpha = v_t/v_e = 1 \). The cavity Q factor \(Q = 250 \). Spreads in beam guiding center and pitch ratio are neglected as are space-charge effects. The cold cavity eigenfrequency \(f_c \) of the \(\text{TE}_{621} \) mode is 35.08 GHz.

The calculated efficiency, output power and frequency shift due to beam loading of the free-running oscillator (FRO) are shown as a function of magnetic field in Figure 1. The corresponding transverse efficiency and normalized cavity wave amplitude are shown as a function of the detuning parameter \(\Delta \) in
Figure 2. The electronic efficiency η is obtained from the transverse efficiency η_t according to:
$$
\eta = \eta_t \left[\beta^2_{t_o} / 2(1 - \gamma_o^{-1}) \right]
$$
where in the present case $\gamma_o = 2.27$ and $\beta_{t_o} = 0.63$. The transverse efficiency and normalized wave amplitude are related according to: $F^2 = \eta_t I_o$. The normalized operating current is $I_o = 0.238$. The normalized oscillation threshold current is also shown in Figure 2.

The case of direct injection of radiation is treated by integrating Eqs.(20). The injected locking power is taken to be $0.5\, \text{MW}$. The magnetic field is $2.5\, \text{Tesla}$ [$\Delta = 0.60$] and the cavity is seeded with a low amplitude field ($E = 1\, \text{kV/cm}$) at the beginning of the simulation. The time evolution of the driven oscillator output power is shown in Figure 3. This Figure shows that the steady state output power ($140\, \text{MW}$) is achieved after about 5 nsec. The time evolutions of the driven oscillator frequency and phase are shown for three different locking frequencies in Figure 4. The oscillator frequency is expressed as the shift

$$
\frac{\Delta \omega}{\omega_o} = (\omega - \omega_o) / \omega_o = \frac{d\psi}{dt}
$$

which vanishes when phase-locked operation is achieved. The initial locking frequency detuning

$$
\frac{\Delta \omega_o}{\omega_o} = (\omega_{F_R} - \omega_o) / \omega_o
$$

is 1×10^{-4}, 2×10^{-4}, and 3×10^{-4} in Figures 4(a), 4(b), and 4(c), respectively. According to Adler's relation [Eq.(33)], the maximum locking frequency shift for this magnetic field is $|\Delta \omega_o|_{\max} / \omega_o = 2.4 \times 10^{-4}$. As expected, the oscillator evolves toward phase-locked operation in Figures 4(a) and 4(b), whereas phase-locked operation is not obtained in Figure 4(c). Comparison of Figures 3 and 4 shows that the time to achieve the equilibrium phase during phase-locked operation is
much longer than the output power risetime. This confirms the validity of the assumptions made in obtaining Eq.(31) which in turn leads to Adler’s relation.

The dependence of the phase angle for phase-locked operation on the locking frequency shift is shown in Figure 5 for the same oscillator parameters and locking power as above. The solid curve shows the analytical theory result [Eq.(32)] and the open circles indicate the results of slow-time-scale (STS) simulations. The angles plotted in Figure 5 correspond to the difference between the code result at each frequency shift and the code result for driving the oscillator at the free-running oscillator frequency. The dashed vertical lines indicate the minimum locking frequency shift for which phase-locked operation could not be obtained. This shift is found to be in good agreement with the maximum frequency shift predicted by Eq.(33), i.e., Adler’s relation. Similar agreement was obtained between time-dependent calculations and Eq.(32) for a magnetic field of 2.4 Tesla. Since the oscillator is in the hard excitation regime for this magnetic field ($I < I_{th}$), the cavity was seeded with the steady-state field amplitude in the time-dependent calculations. The phase-locking bandwidth for direct injection as a function of detuning parameter calculated using Eq.(32) is shown in Figure 6. This Figure shows that the bandwidth is insensitive to the interaction detuning.

Phase-angle vs. locking frequency shift results for a gyrotron oscillator driven via a prebunching cavity are shown in Figure 7. The solid curve is based on Eq.(37) and the open
squares are the results of integrating Eqs.(28) which are based on the perturbation theory (PT) approach. The open circles show results based on the klystron (K) approach in which the last terms on the right-hand-side (RHS) of Eqs.(28) are omitted and the beam phase bunching is introduced as initial conditions for the beam equations-of-motion. This avoids the approximation of separating the ac current density into two terms [cf. Eq.(4)]. The effect of the prebunching cavity, assuming phase bunching only, is represented by the bunching parameter $q=0.16$. This choice for q was used so the locking bandwidth prediction based on Eq.(39) for a magnetic field of 2.5 Tesla is the same as the direct injection result using 0.5 MW locking power. The time-dependent calculations based on perturbation theory are in good agreement with the results based on Eq.(37) except for negative frequency shifts near the bandwidth limit. The locking bandwidth obtained from the simulations is about 8% less than the result obtained using Eq.(39) which is considered to be good agreement concerning the complexity of the time-dependent calculations. On the other hand the locking bandwidth obtained from simulations using the klystron approach is about 80% wider than the result obtained from Eq.(39) for this magnetic field. This difference is attributed to the approximation inherent in the perturbation theory approach.

The effect on the locking bandwidth of varying the magnetic field detuning parameter is shown in Figure 8 for phase-locking using a prebunched beam. According to Eq.(39) the locking bandwidth based on perturbation theory decreases rapidly as the
detuning is increased. This behavior is shown in Figure 8 and implies a constraint on efficiency optimization. The decrease in bandwidth with increase in Δ obtained from simulations based on the klystron method is less pronounced than the perturbation theory results. The results of the two approaches converge and finally cross as the detuning is decreased. Comparison of Figures 6 and 8 shows a much stronger dependence on detuning parameter for phase locking with a prebunching cavity than by direct injection which is essentially independent of the detuning parameter. Figure 8 also shows the dependence of the exponentiation time constant, given in dimensionless form by Eq.(40), for the approach to phase-locked operation on the detuning parameter. The time constant plotted in Figure 8 corresponds to a locking frequency shift of one half the maximum frequency shift for obtaining phase-locked operation. To obtain the time constant in seconds, the result given by Eq.(40) should be divided by the operating frequency. Figure 8 shows that for the present configuration operating at 35 GHz and $\Delta=0.6$ the e-folding time is 21 nsec for a bunching parameter of 0.16. This time can be decreased to a few nanoseconds by increasing the bunching parameter and decreasing the detuning parameter.
IV. DISCUSSION AND CONCLUSIONS

The extension of slow-time-scale steady-state gyrotron theory to time-dependent analysis of gyrotron oscillators driven by an external signal is demonstrated in this work. Calculations based on this theory yield the time evolution of the driven oscillator output frequency and phase for either the approach to phase-locked operation or for unphase-locked operation. These results should facilitate the investigation of driven intense-beam gyrotrons which are characterized by short pulselengths.

In the case of phase locking by direct injection, the maximum locking frequency shift which allows phase-locked operation obtained by integrating the STS time-dependent equations for the radiation amplitude and phase is in good agreement with Adler's relation. The simulations demonstrate the validity of the conceptual model which treats the phase-locking process as a perturbation of the free-running oscillator operation. Such calculations for frequencies near the maximum allowed frequency shift are costly since the time constant for the exponential approach to the phase-locked equilibrium phase becomes large in this limit. An important objective in carrying out the calculations shown, for example, in Figure 5 was to establish the time and space increments and number of phases needed to obtain accurate results from the time-dependent simulations.

In the case of phase locking using a prebunching cavity, the time-dependent calculations show that the perturbation theory approach underestimates the frequency shift bandwidth for phase
locking except at small detuning parameters. The analytical bandwidth estimates based on the perturbation theory approach are nevertheless extremely useful for design purposes. The generality of the results has been increased by expressing the results in terms of well-known dimensionless gyrotron parameters. The present results for a circularly polarized mode also extend the results obtained previously by Manheimer for a TE$_{1n}$ linearly polarized mode.

A few comments can be made regarding the maximum obtainable bandwidth using a prebunching cavity. According to the perturbation theory approach, the maximum bandwidth is obtained when the bunching parameter $q=1.83$ since this maximizes the Bessel function $J_1(1.83)=0.58$. Based on the results of this paper, nonlinear, nonperturbation theory calculations should yield somewhat larger bandwidth for a given bunching parameter. A bunching parameter $q>1.83$ should also lead to larger bandwidth when nonlinear effects are taken into account. However, in practice, as discussed below, $q>2$ is difficult to obtain so that the maximum bandwidth based on perturbation theory represents a reasonable estimate of achievable bandwidth.

To increase the generality of the results it is convenient to neglect the term in curly brackets on the right hand side of Eq.(39). This leads to an error of 15% for the high voltage, fundamental interaction configuration analyzed in this paper. The error is much less for lower voltage (~100 kV) configurations except for high harmonic interactions. In this approximation the maximum bandwidth depends only on the resonator Q factor, the
normalized steady-state resonator RF field amplitude F_0, the interaction length μ, the beam current parameter I_σ, and the resonance detuning parameter Δ. Thus, in principle, the phase-locking bandwidth associated with beam premodulation method does not depend on the power of the locking signal because by suitable bunching cavity and drift tube design a large bunching parameter can be obtained with a small input signal. In practice, of course, this is a difficult problem, especially for overmoded systems.

The normalized gyrotron parameters corresponding to efficient operation are highly constrained. Since, for steady-state operation $I_\sigma=F_0^2/\eta_t$, the estimate for Q times the maximum bandwidth depends only on F_0, μ, and Δ; and is given by:

$$Q \frac{|\Delta\omega|}{\omega_o} \leq 0.5 \frac{\mu F_0}{\eta_t(F_0, \mu, \Delta)} e^{-\left[\frac{\Delta\mu}{4}\right]^2}$$

(42)

The transverse efficiency for given F_0, μ, and optimized Δ can be obtained from an $F-\mu$ plot [8] when the electron dynamics are treated according to the "generalized pendulum" equations of motion. The parameters yielding the optimum transverse efficiency of $\eta_t=0.7$ are approximately $\mu=15$, $F_0=0.15$, and $\Delta=0.5$. These parameters are typical of thermionic cathode gyrotrons developed for average power applications [20] and, for $Q=250$, Eq.(42) leads to a maximum bandwidth for phase locking with a prebunching cavity of $|\omega|/\omega_o=0.02\%$. According to Adler's
Relation, to obtain this bandwidth using direct injection, a locking power to oscillator power ratio of $P_L/P_{out}=-26.4$ dB is required, i.e. 2.2 kW would be required to obtain this phase-locking bandwidth for a state-of-the-art megawatt gyrotron using direct injection. Presumably much less locking power would be required for the beam permodulation method with a well designed bunching cavity system. On the other hand if more locking power is available, then wider bandwidth can be obtained using direct injection. Thus, from this point of view, which does take into account many important practical considerations, phase locking using a prebunching cavity appears more effective for systems which are locking power limited whereas systems with ample locking power can achieve wider bandwidth by employing direct injection.

Representative normalized parameters for the high peak power configuration analyzed in this work are $F_o=0.33$, $\mu=9.2$, $\Delta=0.7$, and $n_c=0.45$. These parameters lead to a maximum phase-locking bandwidth of $|\omega|/\omega_0=0.1\%$ for $Q=250$ and a corresponding phase-locking power ratio of $P_L/P_{out}=-11.9$ dB. Thus, the use of the beam prebunching method appears to be particularly advantageous for high peak power gyrotrons which are characterized by high cavity RF fields and short interaction lengths. This is because of the wider bandwidth achievable in this regime, and because these devices are likely to be locking power limited.

Aside from the bandwidth potential of the beam premodulation method it also has the advantage of isolating the oscillator output from the locking source. However, multiple bunching
cavities will generally be required to realize the maximum bandwidth potential with low power. To prevent self-oscillation the bunching cavities are usually short with $\mu_b \approx 2$ being a typical value. The Q factor should low for the same reason, i.e. $Q_b \approx 200$. For a low drive power this leads to a RF field amplitude in the first bunching cavity which is at least an order of magnitude less than the output cavity field, i.e. $F_{b1} \approx F_o/10 \approx 0.03$. Finally, the drift section should be short to prevent degradation of the phase bunching due to beam velocity spread with $\mu_d \approx 3$ being a typical value. In the absence of significant magnetic field tapering, the bunching cavity detuning parameter is the same as in the output cavity. Substituting these parameters into Eq.(41) leads to a rough estimate of the bunching parameter obtainable from a single bunching cavity, that is, $q \approx 0.4$, which is much less the value assumed in the estimate of the maximum bandwidth. This estimate has been confirmed by more detailed calculations [21]. To increase the bunching additional passive bunching cavities can be used. The design of a multicavity phase-locked gyrotron is discussed in Ref. 21.
V. ACKNOWLEDGEMENTS

Helpful discussions with Drs. Steven Gold, Ed Ott, and John Burke are gratefully acknowledged as is the computational assistance of Robert Lee. This work was sponsored by the Office of Innovative Science and Technology of the Strategic Defense Initiative Organization and was managed by the Harry Diamond Laboratory. The computer time for the numerical calculations was funded by the Naval Research Laboratory 6.1 Cray Production Run Program.
REFERENCES

Figure 1: Efficiency, output power, and frequency shift due to beam loading for the free-running oscillator as a function of magnetic field.
Figure 2: Normalized operating parameters for the free-running oscillator.
Figure 3: Time evolution of the output power of the oscillator driven by 0.5 MW directly injected signal. The locking frequency detuning is 7 MHz and the magnetic field is 25 kG.
Figure 4: Time evolution of the frequency and phase of the driven oscillator for three locking frequency detunings, (a): 3.5 MHz, (b): 7 MHz, (c): 10.5 MHz. Operating parameters are the same as for Figure 3.
Figure 5: Equilibrium phase angle versus frequency shift for the oscillator driven by 0.5 MW directly injected signal. Solid curve: analytical theory, circles: time-dependent simulation results. Shaded regions: Locking frequencies excluded by Adler's relation, dashed lines: upper and lower bounds for locking bandwidth from time-dependent simulations.
Figure 6: Phase-locking bandwidth as a function of detuning parameter for the oscillator driven by 0.5 MW directly injected signal.
Figure 7: Equilibrium phase angle versus frequency shift for the oscillator driven by prebunched beam with \(q = 0.16 \). Solid curve: analytical theory, squares: time-dependent simulation results based on perturbation theory, circles: time-dependent simulation results based on klystron theory. Dashed line: upper and lower bounds for locking bandwidth based on klystron approach, solid vertical lines: maximum bandwidth based on analytical perturbation theory, dash-dot-dash line: lower bound for locking bandwidth from time-dependent simulations based on perturbation theory.
Figure 8: Phase-locking bandwidth as a function of detuning parameter for the oscillator driven by a prebunched beam with $q=0.16$. Solid curve associated with left hand axis: perturbation theory result, dashed curve: klystron approach result, solid curve associated with right hand axis: exponentiation time constant based on perturbation theory.
4740 DISTRIBUTION LIST

Air Force Avionics Laboratory
AFWAL/AADM-1
Wright/Patterson AFB, Ohio 45433
Attn: Walter Friez 1 copy

Air Force Office of Scientific Research
Bolling AFB
Washington, D.C. 20332
Attn: H. Schlossberg 1 copy

Air Force Weapons Lab
Kirkland AFB
Albuquerque, New Mexico 87117
Attn: Dr. William Baker 2 copy

Case Western Reserve University
Electrical Engineering & Applied Physics Department
Cleveland, OH 44106
ATTN: Altan M. Ferendeci 1 copy

Columbia University
520 West 120th Street
Department of Electrical Engineering
New York, N.Y. 10027
Attn: Dr. S.P. Schlesinger 1 copy
Attn: A. Sen

Columbia University
520 West 120th Street
Department of Applied Physics and Nuclear Engineering
New York, New York 10027
Attn: T.C. Marshall 1 copy
Attn: R. Gross

Cornell University
School of Applied and Engineering Physics
Ithica, New York 14853
Attn: Prof. Hans H. Fleischmann 1 copy
Attn: John Nation 1 copy
Attn: R. N. Sudan 1 copy

Dartmouth College
18 Wilder, Box 6127
Hanover, New Hampshire 03755
Attn: Dr. John E. Walsh 1 copy

Department of Energy
Washington, D.C. 20545
Attn: C. Finfgeld/ER-542, GTN 1 copy
Attn: T.V. George/ER-531, GTN 1 copy
Attn: D. Crandall/ER-55, GTN 1 copy
Attn: D. Beard/ER-531, GTN 1 copy
<table>
<thead>
<tr>
<th>Code</th>
<th>Name</th>
<th>Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>4740</td>
<td>A. Fliflet</td>
<td>1</td>
</tr>
<tr>
<td>4740</td>
<td>S. Gold</td>
<td>1</td>
</tr>
<tr>
<td>4740</td>
<td>A. Kinkead</td>
<td>1</td>
</tr>
<tr>
<td>4740</td>
<td>W.M. Manheimer</td>
<td>1</td>
</tr>
<tr>
<td>4740</td>
<td>M. Rhinewine</td>
<td>1</td>
</tr>
<tr>
<td>4770</td>
<td>G. Cooperstein</td>
<td>1</td>
</tr>
<tr>
<td>4790</td>
<td>B. Hui</td>
<td>1</td>
</tr>
<tr>
<td>4790</td>
<td>C.M. Hui</td>
<td>1</td>
</tr>
<tr>
<td>4790</td>
<td>Y.Y. Lau</td>
<td>1</td>
</tr>
<tr>
<td>4790</td>
<td>P. Sprangle</td>
<td>1</td>
</tr>
<tr>
<td>5700</td>
<td>J. Montgomery</td>
<td>1</td>
</tr>
<tr>
<td>6840</td>
<td>S.Y. Ahn</td>
<td>1</td>
</tr>
<tr>
<td>6840</td>
<td>A. Ganguly</td>
<td>1</td>
</tr>
<tr>
<td>6840</td>
<td>R.K. Parker</td>
<td>1</td>
</tr>
<tr>
<td>6840</td>
<td>N.R. Vanderplaats</td>
<td>1</td>
</tr>
<tr>
<td>6850</td>
<td>L.R. Whicker</td>
<td>1</td>
</tr>
<tr>
<td>6875</td>
<td>R. Wagner</td>
<td>1</td>
</tr>
</tbody>
</table>

Northrop Corporation
Defense Systems Division
600 Hicks Rd.
Rolling Meadows, Illinois 60008
Attn: Dr. Gunter Dohler

Oak Ridge National Laboratory
P.O. Box Y
Mail Stop 3
Building 9201-2
Oak Ridge, Tennessee 37830
Attn: Dr. A. England

Office of Naval Research
800 N. Quincy Street
Arlington, Va. 22217
Attn: Dr. C. Roberson
Dr. W. Condell
Dr. T. Berlincourt

Office of Naval Research
1030 E. Green Street
Pasadena, CA 91106
Attn: Dr. R. Behringer

Optical Sciences Center
University of Arizona
Tucson, Arizona 85721
Attn: Dr. Willis E. Lamb, Jr.

OSD/SDIO
Attn: IST (Dr. H. Brandt)
Washington, D.C. 20301-7100

Pacific Missile Test Center
Code 0141-5
Point Muga, California 93042
Attn: Will E. Chandler
<table>
<thead>
<tr>
<th>Organization</th>
<th>Address</th>
<th>Atttn:</th>
<th>Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical Dynamics, Inc.</td>
<td>P.O. Box 10367, Oakland, CA 94610</td>
<td>A. Thomson</td>
<td>1</td>
</tr>
<tr>
<td>Physics International</td>
<td>2700 Merced Street, San Leandro, CA 94577</td>
<td>Dr. J. Benford</td>
<td>1</td>
</tr>
<tr>
<td>Physical Science Inc.</td>
<td>603 King Street, Alexandria, VA 22314</td>
<td>M. Read</td>
<td>1</td>
</tr>
<tr>
<td>Princeton Plasma</td>
<td>P.O. Box 451, Princeton, NJ 08544</td>
<td>Dr. H. Hsuan, Dr. J. Doane, Dr. D. Ignat, Dr. H. Furth, Dr. P. Efthimion, Dr. F. Perkins</td>
<td>2</td>
</tr>
<tr>
<td>Quantum Institute</td>
<td>University of California, Santa Barbara, CA 93106</td>
<td>Dr. L. Elias</td>
<td>1</td>
</tr>
<tr>
<td>Raytheon Company</td>
<td>Foundry Avenue, Waltham, MA 02154</td>
<td>N. Dionne</td>
<td>1</td>
</tr>
<tr>
<td>Sandia National Laboratories</td>
<td>ORG. 1231, P.O. Box 5800, Albuquerque, NM 87185</td>
<td>Dr. Thomas P. Wright, Mr. J.E. Powell, Dr. J. Hoffman, Dr. W.P. Ballard, Dr. C. Clark</td>
<td>1</td>
</tr>
<tr>
<td>Science Applications, Inc.</td>
<td>1710 Goodridge Dr., McLean, VA 22102</td>
<td>Adam Drobot, P. Vitrello, D. Bacon, C. Menyuk</td>
<td>1</td>
</tr>
</tbody>
</table>
University of Utah
Department of Electrical Engineering
3053 Merrill Engineering Bldg.
Salt Lake City, Utah 84112
Attn: Dr. Larry Barnett
 Dr. J. Mark Baird

U. S. Naval Academy
Annapolis, Maryland 21402-5021

U. S. Army
Harry Diamond Labs
2800 Powder Mill Road
Adelphi, Maryland 20783-1145
Attn: Dr. Edward Brown
 Dr. Michael Chaffey
 Dr. Howard Brandt

Varian Associates
611 Hansen Way
Palo Alto, California 94303
Attn: Dr. H. Jory
 Dr. David Stone
 Dr. Kevin Felch
 Dr. A. Salop

Varian Eimac San Carlos Division
301 Industrial Way
San Carlos, California 94070
Attn: C. Marshall Loring

Yale University
Applied Physics
Madison Lab
P.O. Box 2159
Yale Station
New Haven, Connecticut 06520
Attn: Dr. N. Ebrahim
 Dr. I. Bernstein

NRL Records

1 copy

1 copy

1 copy

1 copy

1 copy

1 copy
END DATE FILMED DTIC
11-88