MOMENT EXERTED ON A CONING PROJECTILE
BY A SPINNING LIQUID IN A CYLINDRICAL
CAVITY CONTAINING A POROUS MEDIUM

GENE R. COOPER

JUNE 1988

U.S. ARMY LABORATORY COMMAND
BALLISTIC RESEARCH LABORATORY
ABERDEEN PROVING GROUND, MARYLAND
Moment Exerted on a Coning Projectile by a Spinning Liquid in a Cylindrical Cavity Containing a Porous Medium (U)

Cooper, Gene R.

Memorandum Report

Aberdeen Proving Ground, MD 21005-5066

Aberdeen Proving Ground, MD 21005-5066

Cylindrical Cavity, Porous Media, Inviscid, Rotating Liquid

White phosphorous (WP) impregnated felt wedges are used as a payload in the M825 improved smoke projectile. An assumption made in this work is that the WP is in a liquid state (i.e., temperature > 44 degrees C) where such payloads have been seen to cause flight instabilities. The analytical results given here formulate an initial effort to gain an understanding of the dynamics of a projectile interacting with a WP/felt payload. The analytical methods used here are a simple extension of previous methods used to describe bulk-filled liquid payloads. Moments are predicted due to an inviscid liquid moving through a ridged porous medium which is confined to a spinning cylindrical cavity undergoing coning motion. A drag term is added to the classical Stewartson theory which is used to describe the flow in the porous media. The cylindrical cavity is assumed to consist of several chambers of circular cross section and uniform height, each separated by solid endcaps. This porous media theory is used to calculate the total liquid side moments exerted by all the chambers in the cylinder. Results are presented for a range of coning frequencies, fineness ratios, and porous drag coefficients.
ACKNOWLEDGMENTS

The author is deeply indebted to Dr. William P. D'Amico for suggesting this study. Dr. D'Amico spent many hours discussing the topics of this report with the author, as well as, editing the manuscript. The author also wishes to acknowledge the many helpful comments and suggestions received from Dr. Charles H. Murphy.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgments</td>
<td>iii</td>
</tr>
<tr>
<td>List of Figures</td>
<td>vii</td>
</tr>
<tr>
<td>I. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>II. Liquid Moment</td>
<td>2</td>
</tr>
<tr>
<td>III. Equations of Liquid Motion in Porous Media</td>
<td>2</td>
</tr>
<tr>
<td>IV. Liquid Moment Equations</td>
<td>6</td>
</tr>
<tr>
<td>V. Numerical Method</td>
<td>8</td>
</tr>
<tr>
<td>VI. Discussion</td>
<td>8</td>
</tr>
<tr>
<td>VII. Conclusions</td>
<td>10</td>
</tr>
<tr>
<td>References</td>
<td>21</td>
</tr>
<tr>
<td>List of Symbols</td>
<td>23</td>
</tr>
<tr>
<td>Distribution List</td>
<td>25</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>1</td>
<td>Diagram showing a typical cylindrical segment with impenetrable endcaps.</td>
</tr>
<tr>
<td>2</td>
<td>C_{LSM} versus τ for $f = 1.5$, $C_r = 3$, $\varepsilon = 0.0, 0.02$.</td>
</tr>
<tr>
<td>3</td>
<td>C_{LIM} versus τ for $f = 1.5$, $C_r = 3$, $\varepsilon = 0.0, 0.02$.</td>
</tr>
<tr>
<td>4</td>
<td>Comparison of C_{LSM} versus τ for $f = 2$, $N = 1$, $\varepsilon = 0$, $C_r = 3, 1, 0.5$.</td>
</tr>
<tr>
<td>5</td>
<td>Comparison of C_{LIM} versus τ for $f = 2$, $N = 1$, $\varepsilon = 0$, $C_r = 3, 1, 0.5$.</td>
</tr>
<tr>
<td>6</td>
<td>Comparison of C_{LSM} versus τ for $f = 3$, $C_r = 3$, $\varepsilon = 0$, $N = 1, 5, 10$ and C_{LSM} frozen.</td>
</tr>
<tr>
<td>7</td>
<td>Comparison of C_{LIM} versus τ for $f = 3$, $C_r = 3$, $\varepsilon = 0$, $N = 1, 5, 10$ and C_{LIM} frozen.</td>
</tr>
<tr>
<td>8</td>
<td>Comparison of C_{LSM} versus τ for $f = 10$, $C_r = 3$, $\varepsilon = 0, 0$, $N = 1, 5, 10$.</td>
</tr>
<tr>
<td>9</td>
<td>M825 improved smoke projectile.</td>
</tr>
</tbody>
</table>
I. INTRODUCTION

Predicting the moment exerted by a liquid payload in a spinning and coning projectile is a problem of considerable interest to the Army. Stewartson\(^1\) considered the linear problem of calculating the payload moment through the use of separation of variables and eigenvalue expansions for an inviscid liquid in a cylindrical cavity. First order viscous boundary layer corrections to the Stewartson theory were carried out by Wedemeyer\(^2\) and Murphy.\(^3\) A method for calculating the linear liquid moment using the full viscous equations with boundary layer corrections confined only to the endcaps was also presented by Gerber and Sedney.\(^4\) They have recently extended this theory to eliminate the boundary layer correction at the endcaps.\(^5\)

Liquid payloads contained in a highly permeable material have also been of interest to the Army for some time. Laboratory tests and flight tests have shown that a highly permeable medium can significantly reduce the spin-up time of a liquid payload.\(^6\) Flight stability for liquid saturated permeable payloads has also been examined by D'Amico.\(^7\)

This report extends the Stewartson problem by considering a cylindrical cavity filled with a permeable medium that is impregnated with an inviscid liquid. A further modification is introduced by segmenting the cavity, along the symmetry axis, into a sequence of equal length cylinders. Each of these cylinders is separated by impermeable endcaps. The porous media is modeled by a drag term, which is proportional to the velocity field, added to the linearized Euler equations. This analysis examines the induced liquid moment as a function of parameters found by Stewartson plus parameters describing the porous media and the number of segments in the cylindrical cavity.

The nomenclature in this report is the same as that used by Murphy.\(^3\) In particular, this means that the liquid moment can be represented as the complex quantity:

\[
\text{Transverse Moment} = m_L a^2 \dot{\phi}^2 \tau [C_{LSM} + i C_{LIM}] K_c e^{i\phi_c} \tag{1.1}
\]

where

- \(m_L\) is the mass of liquid in a fully-filled cavity,
- \(a\) is the maximum radius of the container,
- \(\dot{\phi}\) is the inertial spin rate of the container along the symmetry axes,
- \(\tau\) is the ratio of coning rate to spin \(\dot{\phi}_c/\dot{\phi}\),
- \(C_{LSM}\) is the liquid side moment coefficient,
- \(C_{LIM}\) is the liquid in-plane moment coefficient,
- \(K_c\) is \(\sin \alpha_c\) is the precession angle.
II. LIQUID MOMENT

Two coordinate systems, each with X-axis along the projectile symmetry axis, are used: the missile-fixed (X, Y, Z) system and the non-rolling \(\tilde{X}\tilde{Y}\tilde{Z} \) system with the \(\tilde{Z} \)-axis initially pointing downward. Introduce an earth-fixed axes (\(X_e, Y_e, Z_e \)) with \(X_e \)-axis in the direction of the velocity vector and \(Z_e \) downward. Let a unit vector in the direction of the X-axis have earth-fixed components \((n_{XE}, n_{YE}, n_{ZE}) \). The angle of attack \(\tilde{\alpha} \) in the \((X, \tilde{Y}, \tilde{Z}) \) system is the projection on the \(X\tilde{Z} \)-plane of the angle between the X-axis and the velocity vector. The angle of sideslip \(\tilde{\beta} \) is the projection of the same angle onto the \(X\tilde{Y} \)-plane.

The kinematic behavior of the spinning projectile is the sum of two coning motions:

\[
\ddot{\xi} = \dot{\theta} + i \dot{\phi} = K_1 e^{i\phi_1} + K_2 e^{i\phi_2}
\]

(2.1)

where

\[
\ln \left(\frac{K_j}{K_{j0}} \right) = \epsilon_j \tau_j \phi
\]

\[
\phi_j = \phi_{j0} + \tau_j \phi
\]

\[
\phi = \dot{\phi}t
\]

(\(\dot{\phi} > 0 \)) is the spin rate and \(K_{j0}, \phi_{j0} \) are constants.

III. EQUATIONS OF LIQUID MOTION IN POROUS MEDIA

The following analysis models the steady state response of a liquid flowing in a porous medium confined to a cylindrical cavity contained in a spinning and coning projectile. The objective of this theory is to predict the liquid moment resulting from coning or spiral motion which is specified by:

\[
\ddot{\xi} = \hat{K} e^{s\phi}
\]

(3.1)

where

\[
\hat{K} = K_{j0} e^{i\phi_{j0}}, \quad j = 1 \text{ or } 2
\]

\[
s = (\epsilon_j + i)\tau_j
\]
The conservation equations governing the motion of the confined liquid are the continuity equation and a modified Euler-momentum equation. The modification is one that is commonly used to describe the flow of liquid through a porous medium. This consists of an additional term given by:

\[D_r = -\frac{\mu}{k} (V_R) = -\rho_L a \phi^2 C_r \left(\frac{V_R}{a \phi} \right) \]

(3.2)

where

- \(\mu \) is the dynamic viscosity
- \(k \) is the porosity (dimensions of length^2)
- \(V_R \) is the velocity of liquid relative to the porous medium
- \(\rho_L \) is liquid density
- \(D_r \) is a pressure gradient induced by resistance of the porous media to fluid flow.

\(C_r = \frac{\mu}{\rho_L k^2} \) is a dimensionless coefficient which is a measure of this pressure gradient.

Physical reasons for using such equations can be found from the arguments used in establishing Darcy's Law.6

Let \((r,\theta,x)\) be cylindrical polar coordinates fixed to the earth frame and \((V,W,U)\) be the corresponding components of velocity. For small angles, the position vector of any point in the projectile has components:

\[r = \tilde{r} - K_j \tilde{x} \cos (\phi_j - \tilde{\theta}) \]

(3.3)

\[x = \tilde{x} + K_j \tilde{r} \cos (\phi_j - \tilde{\theta}) \]

(3.4)

\[\theta = \tilde{\theta} + O (K_j^2) \]

(3.5)

where tilde (~) quantities are measured in the non-rolling system. Equations (3.3 - 3.5) lead to the velocity components:

\[V_x = R \hat{\phi} (s - i) \hat{r} \hat{e}^{s \phi - i \theta} \]

(3.6)

\[V_r = -R \hat{\phi} (s - i) \hat{x} \hat{e}^{s \phi - i \theta} \]

(3.7)
\[V_\theta = \dot{\phi} r + R(\dot{\phi}(s - i)x \hat{e} e^{i\phi} - i\theta) \]

(3.8)

where

\[R() = [\{ \} + \{ \}]/2 = \text{Real part of } \{ \} . \]

Let the velocity, \(V \), and pressure, \(p \), fields have the form:

\[V = q + \dot{\phi} \hat{e}_x x r \]

\[p = p + \rho \frac{\frac{1}{2} r^2}{2} \]

(3.9)

where \(\hat{e}_r, \hat{e}_\theta, \hat{e}_x \) are the unit vectors in the \((r,\theta,x)\) directions. The variables \(q = (v,w,u) \), and \(p \) are small perturbations of \(O(K_j) \).

Non-dimensionalizing all lengths by the cylinder radius \(a \) and velocities by \(a \phi \), plus assuming periodic disturbances of the form

\[(v,w,u,p) = (v(r,x), w(r,x), p(r,x)) e^{i\phi - i\theta} \]

(3.10)

allows the continuity and momentum equations to be written as

\[\frac{\partial v}{\partial r} + \frac{v}{r} - \frac{i w}{r} + \frac{\partial u}{\partial x} = 0 \]

(3.11)

\[(s - i) \hat{q} + 2 \hat{e}_x x \hat{q} = -\nabla p - C_r[\hat{q} + (s - i)(x_i x, -r)]. \]

(3.12)

The components of Eq. (3.12) take the form

\[\gamma v - 2w + \frac{3p}{\partial r} = -(s-i) x C_r \]

(3.13)

\[\gamma w + 2v - \frac{i p}{r} = i (s-i) x C_r \]

(3.14)

\[\gamma u + \frac{3p}{\partial x} = (s-i) r C_r \]

(3.15)
where \(0 \leq r \leq 1, \ h + f \leq x \leq h - f \)

\[f = \text{fineness ratio} \]

\[\gamma = s-i + C_r \]

and \(h \) is the center of mass location along the symmetry axis. The non-

homogeneous terms of Equations (3.13 - 3.15) suggest using the transformations

\[v = v_H - \frac{(s-i) \times C_r}{(\gamma + 2i)} \quad (3.16) \]

\[w = w_H + \frac{i (s-i) \times C_r}{(\gamma + 2i)} \quad (3.17) \]

\[u = u_H + \frac{(s-i) r C_r}{\gamma} \quad (3.18) \]

in the equations of motion which reduces them to a single equation for the

pressure \(p \)

\[\frac{\partial^2 p}{\partial r^2} + \frac{1}{r} \frac{\partial p}{\partial r} - \frac{p}{r^2} = -\frac{(\gamma^2 + 4)}{\gamma^2} \frac{\partial^2 p}{\partial x^2}. \quad (3.19) \]

Similarly, the solution \(p \) is related to the following physical quantities of

interest:

\[v_H = \frac{1}{\gamma^2 + 4} \left[\frac{2ip}{r} + \gamma \frac{\partial p}{\partial r} \right] \quad (3.20) \]

\[w_H = \frac{1}{\gamma^2 + 4} \left[\frac{iyp}{r} + 2 \frac{\partial p}{\partial r} \right] \quad (3.21) \]

\[u_H = -\frac{1}{\gamma} \frac{\partial p}{\partial x} \quad (3.22) \]

The cylindrical cavity is assumed to consist of \(N \) chambers with circular

cross section and height \(\Delta = 2f/N \), each separated by impenetrable endcaps as

depicted in Figure 1.
The boundary conditions for Eq. (3.19) are the normal velocity of the fluid at the boundary must equal the normal velocity of the wall and all flow variables remain finite. This means:

\[
\frac{\partial \hat{P}}{\partial x} = 0 \quad \text{at } x = h - f + n \left(\frac{2f}{N}\right) \\
\frac{\partial \hat{P}}{\partial r} = 0 \quad \text{at } r = 1 \\
\hat{P} = 0 \quad \text{at } r = 0
\]

(3.23) (3.24) (3.25)

where \[\hat{P} = p + xr (s-i)^2.\] (3.26)

This boundary value problem is similar to the problem considered by Stewartson and can be shown to have the solution

\[
p = -xr (s-i)^2 + xs (s-i) \left[2(h-f) + (2n+1) \Delta \right] r + \\
16fs (s-i)(\gamma-2i) \sum_{k=\text{odd}}^{\infty} \frac{J_1(\lambda_k r) \cos \frac{\pi}{2} (x-h+f-n) (x-h+f-n\Delta)}{k^2 \left[(2i+\gamma) J_1(\lambda_k) - \gamma \lambda_k J_0(\lambda_k)\right]}
\]

(3.27)

where \[\lambda_k^2 = -\frac{(\gamma^2+4) N^2 k^2 \pi^2}{\gamma^2 f^2} ; \quad N = 1,2,3,... \]
\[n = 0,1,...,N\]

and the \(J_n\) are the Bessel functions of the first kind. If \(\gamma\) is pure imaginary, the transcendental denominator in Eq. (3.27) will have zeroes. This resonant condition occurs whenever \(\tau \epsilon + C_r = 0\) and \(\tau\) is one of the inviscid Stewartson eigenfrequencies.

IV. LIQUID MOMENT EQUATIONS

The moment induced by the liquid contained in the segmented cavity is calculated from the time derivative of the angular momentum field. Non-dimensionalizing this moment with \(2na^3 f \rho_L\) allows the moment in the YX plane to be expressed as a single complex quantity.
\[M_y + i M_z = \tau C_{LM} k e^{i\theta} \quad (4.1) \]

where

\[C_{LM} = C_{LSM}(\tau, \epsilon, C_r, f) + i C_{LM}(\tau, \epsilon, C_r, f). \]

The unit vectors for the earth-fixed cylindrical coordinates, \((e_r, e_\theta, e_x) \), can be written in the same complex notations in terms of \((\hat{e}_y, \hat{e}_z, \hat{e}_x) \)

\[e_r = \hat{e}_y \cos \theta + \hat{e}_z \sin \theta \iff e^{i\theta} \quad (4.2) \]

\[e_\theta = -\hat{e}_y \sin \theta + \hat{e}_z \cos \theta \iff ie^{i\theta}. \quad (4.3) \]

Substituting these into the moment integral and using the Reynolds Transport Theorem\(^3\) gives the following expression for the liquid moment coefficient:

\[
\tau C_{LM} = \frac{1}{2f} \sum_{n=0}^{N} \int_{h-f+n\Delta}^{h-f+(n+1)\Delta} \left[\left(\hat{e}_x \hat{e}_x + \hat{e}_r \hat{e}_r \right) \times \left((s-i)\hat{q} + 2\hat{e}_x \times \hat{q} \right) - i[\hat{r}^2 - 2\hat{x}^2] \right] \hat{r} \, dr \, dx. \quad (4.4)
\]

Using Eqs. (3.16-3.18 and 3.20-3.22) with the aid of Eq. (3.27) permits writing the last equation as

\[
\tau C_{LM} = \frac{1}{12} \left[4[1-C_r(s-i)] \frac{(s^2+1) (3h^2+f^2)]C_r}{(\gamma+2i)} + \frac{3[1+C_r(s-i)](s-i)^2C_r}{\gamma} \right. \\
12h^2 - 4f^2 + \left. 3 \right] \frac{2is}{(\gamma+2i)} \left[\frac{(s^2+1) (3h^2+f^2)}{3} - \frac{2s(s-i)f^2}{N^2} \right] - \\
\frac{128 i (s-i) (\gamma-2i) s^2 f^2}{(\gamma+2i) N^4 \pi^4} \sum_{k=odd}^{\infty} \frac{J_1(\lambda_k)}{k^4[\gamma+2i] J_1(\lambda_k) - \gamma \lambda_k J_0(\lambda_k)}; \quad (4.5)
\]

\(N = 1, 2, 3, ... \)

Murphy\(^3\) derived the frozen liquid values of \(C_{LSM} \) and \(C_{LM} \) and these are given by
\[C_{\text{LSM}} = \frac{\epsilon}{2} \left[1 - \tau \left[1 + \frac{4(3h^2 + f^2)}{3} \right] \right] \tag{4.6} \]

\[C_{\text{LIM}} = \frac{1}{2} + \frac{\tau(\epsilon^2 - 1)}{12} [3 + 12h^2 + 4f^2]. \tag{4.7} \]

For very slow motion (\(\tau \to 0 \)) the liquid moment should approach these values. Equation (4.5) shows that the limiting value of \(C_{\text{LIM}} \) as \(\tau \to 0 \) equals \((\epsilon + i)/2\). This agrees with the frozen liquid results when \(\tau = 0 \). When \(C_r \to \infty \) the liquid should act like a frozen liquid for all values of \(\tau \). It is easy to see that the liquid moment coefficients given by Equation (4.5) approach (in the limit of \(C_r \to \infty \) for \(\lambda_k \) not a resonance value) the values for a frozen liquid.

The same limits, Equations (4.6 - 4.7), are also found when \(C_r \) and \(\tau \) are arbitrary but \(N \) becomes infinitely large.

V. SOLUTION METHOD

The equations of sections III and IV need to be solved over a wide range of \(\tau \) for specific values of \(D_p \), \(f \), and \(N \). This requires calculating the ratio \(J_0(\lambda_k)/J_1(\lambda_k) \) of the zero and first order Bessel functions. For values of \(k \) such that \(|\lambda_k| \leq 50 \), the above ratio is obtained by simply dividing the values found from power series expansions of each Bessel function. For larger values of \(|\lambda_k| \), an asymptotic expansion of the Bessel function ratio was used. Equation (4.5) is then used to find values of \(C_{\text{LSM}} \) and \(C_{\text{LIM}} \). Experience has shown that \(k \leq 20 \) is sufficient to produce converged solutions. All computations were carried out on a VAX-8600 computer.

VI. DISCUSSION

Figures 2 and 3 present plots of \(C_{\text{LSM}} \) and \(C_{\text{LIM}} \) as functions of frequency for \(f = 1.5 \), \(C_r = 3.0 \), \(N = 1 \), and \(\epsilon = 0 \) and 0.02. For zero damping, the maximum side moment is slightly larger than the maximum side moment for a small amount of undamping given by \(\epsilon = 0.02 \). The in-plane moment remains relatively unchanged due to the presence of the same undamping. This indicates that \(C_{\text{LIM}} \) is insensitive to \(\epsilon \) for \(\epsilon \) near zero.

It was mentioned earlier that \(C_{\text{LSM}} \) and \(C_{\text{LIM}} \) approach the limiting values for a frozen liquid, Eqs. (4.6-4.7), as \(C_r \to 0 \). An example of this for \(f = 2 \), \(N = 1 \) and \(\epsilon = 0 \) is exhibited in Figures 4 and 5. Similar results are shown in Figures 6 and 7 for an increasing number of chambers \(N \) and a fixed \(C_r = 3 \).
Generally, it has been found that the frozen liquid limit is approached quite rapidly with increasing values of \(N \) for typical values of \(C_r \).

If \(\tau_0 \) is a Stewartson eigenfrequency for the particular values \(f_0 \), \(k_0 \), and \(N_0 \), then a resonant condition will occur at \(\tau = \tau_0 \) whenever

\[
\frac{f}{kN} = \frac{f_0}{k_0N_0}, \quad k_0, k = 1, 3, 5, \ldots
\]

\[
N_0, N = 1, 2, 3, \ldots
\]

(6.1)

For an example of this phenomenon, consider the case of \(k_0 = 1, f_0 = 2, N_0 = 1, C_r = 3, \) and \(\varepsilon = 0 \). These parameter values make the ratio of Equation (6.1) equal to 2 and the first eigenfrequency \(\tau_0 = 0.5102 \). Figure 8 shows \(C_{LSM} \) as a function of \(\tau \) for \(k = 1, f = 10, \) and \(N = 1, 5, 10 \). The increase in \(C_{LSM} \) for \(N = 5 \) is due to the eigenfrequency \(\tau_0 = 0.5102 \) since the ratio in Eq. (6.1) is again equal to 2. Hence for a fixed \(\tau \), an increase in \(N \) can cause \(C_{LSM} \) to increase. The eigenvalues for the \(N = 1, 10 \) cases lie outside the range of \(\tau \) given in Figure 8. \(C_{LSM} \) therefore decreases monotonically to the frozen liquid value, which is zero for \(\varepsilon = 0 \), when \(N \) becomes sufficiently large.

The 155mm M825 projectile is shown in Figure 9. This projectile carries a canister that is loaded with white phosphorous (WP) impregnated felt wedges. Four angular ribs produce longitudinal quadrants within which felt wedges (116 per canister) are loaded. Aluminum foil spacers are located between each wedge (as shown in Figure 9) and could produce a compartmentalization or segmentation as modeled in this theory. When the WP is liquid (temperatures above 44 deg C), flight instabilities have been recorded. Recent flight tests have shown that the flight stability of the projectile can be improved by using felt wedges with outer diameters that produce interference fits when loaded into the canister.\(^{1,2} \) The model given in this report is directed at a fundamental understanding of the payloads used in the M825. The inclusion of a drag force on the liquid caused by the permeable media provides a first step in understanding the physics of these payloads.

Scheidegger\(^{13} \) tabulated permeabilities of various substances and stated a range for hair felt as \(8.3 \times 10^{-6} \text{ cm}^2 < k < 1.2 \times 10^{-5} \text{ cm}^2 \). For an M825-type payload, nominal values for spin rate and kinematic viscosity are 100 Hz and 0.015 cm\(^2\)/sec. Hence, a median drag coefficient, \(C_r \), is \(2\pi/15 \) or approximately 1/2. Experiments should be conducted to determine the permeability, \(k \), for the type of felt and packing used in the M825 projectile. Investigations must be conducted to verify if a linear, homogeneous formulation, using Darcy's Law, is appropriate for spinning liquids. The present analysis extends prior theories for liquid payloads and produces a simple model from which a clear physical understanding is obtained. Additions to the present effort could include the effects of fluid interaction with solid boundaries, radial variations in \(C_r \) and the nonisotropic character of \(C_r \).
VII. CONCLUSIONS

The liquid moment coefficients are computed for cylindrical cavities which are fully-filled with a permeable medium and impregnated with an inviscid liquid. These coefficients reflect the results of segmenting a given cavity into \(N \) chambers with uniform height. The coefficients are then calculated as functions of coning frequency, fineness ratio, and the parameter \(C_r \) used to represent the physics of a liquid flowing through the permeable medium.

If the range of coning frequencies does not contain any eigenfrequencies, then the calculations plus theory indicate that the side moment approaches the value for a frozen liquid as \(C_r \to 0 \) and/or \(N \) becomes large. However, a significant increase in the side moment can occur for a particular \(N \) by choosing the fineness ratio such that an eigenfrequency moves into the frequency range of interest.
Figure 1. Diagram showing a typical cylindrical segment with impenetrable endcaps.
Aspect Ratio \((c/a) = 1.5 \)

\[C_r = \frac{1}{3}, N = 1 \]

\[\varepsilon = 0.0, \varepsilon = 0.02 \]

Figure 2. \(C_{LSM} \) versus \(\tau \) for \(f = 2.5 \), \(C_f = 3 \), \(\varepsilon = 0.0, 0.02 \).
Aspect Ratio \((c/a) = 1.5\)

\(C_r = 1/3, N = 1\)

\[
\begin{align*}
\epsilon &= 0.0 \\
\epsilon &= 0.02
\end{align*}
\]

Figure 3. \(C_{L_{\text{IM}}} \) versus \(\tau\) for \(f = 1.5, C_r = 3, \epsilon = 0.0, 0.02\).
Aspect Ratio \((c/a) = 2.00\)
\(N = 1, \epsilon = 0.0\)

\[\begin{align*}
C_r &= 1/3 \\
C_r &= 1 \\
C_r &= 2
\end{align*}\]

Figure 4. Comparison of \(C_{LSM}\) versus \(\tau\) for \(f = 2, N = 1, \epsilon = 0, C_r = 3, 1, 0.5\).
Figure 5. Comparison of C_{LIM} versus τ for $f = 1$, $N = 1$, $\varepsilon = 0$, $C_r = 3, 1, 0.5$.

Aspect Ratio (c/a) = 2.00

- $C_r = 1/3$
- $C_r = 1$
- $C_r = 2$
- $C_r = \infty$
Aspect Ratio \(\left(\frac{c_y}{d} \right) = 3.00 \)

\[c_y = \frac{1}{3}, \; \varepsilon = 0.0 \]

Figure 6: Comparison of \(C_{LSM} \) versus \(\tau \) for \(f = 3, \; C_p = 3, \; \varepsilon = 0, \; N = 1, 5, 10 \) and \(C_{LSM} \) frozen.
Aspect Ratio \((c/a) = 3.00 \)
\(C_r = 1/3, \; \varepsilon = 0.0 \)

\[\begin{align*}
N = 1 \\
N = 5 \\
N = 10 \\
\text{FROZEN LIQUID}
\end{align*} \]

Figure 7. Comparison of \(C_{\text{LIM}} \) versus \(\tau \) for \(f = 3, \; C_r = 3, \; \varepsilon = 0, \; N = 1, 5, 10 \) and \(C_{\text{LIM}} \) frozen.
Aspect Ratio (c/a) = 10.0

\[C_r = \frac{1}{3}, \epsilon = 0.0 \]

Figure 8. Comparison of \(C_{LSM} \) versus \(\tau \) for \(f = 10, C_r = 3, \epsilon = 0.0, N = 1, 5, 10 \).
Figure 9. M825 improved smoke projectile.
REFERENCES

LIST OF SYMBOLS

\(a\) Maximum radial distance of the liquid-filled container (for a cylinder, the radius, for a spheroid, the radial semi-axis)

\(C_{LM_j}\) Imaginary part of \(C_{LM_j}\); coefficient representing the liquid moment that causes rotation in the plane of \(\exp(i\phi_j)\), \(j = 1,2\)

\(C_{LSM_j}\) Real part of \(C_{LM_j}\); coefficient representing the liquid moment that causes rotation out of the plane of \(\exp(i\phi_j)\), \(j = 1,2\)

\(C_r\) Drag coefficient

\(D_r\) Drag term due porous media

\(\hat{e}_x, \hat{e}_r, \hat{e}_\theta\) Unit vectors along the earth-fixed cylindrical axes

\(\hat{e}_x, \hat{e}_y, \hat{e}_z\) Unit vectors along the earth-fixed Cartesian axes

\(f\) Fineness ratio, \(c/a\), for a cylinder

\(h\) Distance of center of gravity along symmetry axis from geometric center

\(k\) Axial wave number

\(\dot{K}\) \(K_{jo}e^{i\phi_j} (j = 1,2)\)

\(K_j\) \(K_{jo}e^{\epsilon j\phi j} (j = 1,2)\)

\(K_{jo}\) Value of \(K_j\) at \(t = 0\)

\(m_L\) Mass of the liquid in the container \(2\pi a^2 cpl\) for a cylinder; \(4\pi a^2 cpl/3\) for a spheroid

\(M_{LY} + M_{LZ}\) Transverse liquid moment in the aeroballistic nonrolling system

\(N\) Number of products in the \(X\) factor, Eq. (3.19)

\(n_{XE}, n_{YE}, n_{ZE}\) Earth-fixed components of a unit vector along the \(x\)-axis

\(p\) Non-dimensional pressure perturbation as a function of \(r\) and \(x\)

\(r\) Radial coordinate in the earth-fixed cylindrical \((x,r,\theta)\) system

\(R()\) Real part of ()
\(s = (\varepsilon_j + i\tau_j) \quad j = 1 \text{ or } 2 \)

\(u, v, w \) Non-dimensional velocity perturbation components in the earth-fixed cylindrical \((x, r, \theta)\) system

\(V \) Non-dimensional liquid velocity perturbation, Eq. (A.3)

\(V_x, V_r, V_\theta \) Components of \(V \) in the earth-fixed cylindrical \((x, r, \theta)\) system

\(x \) Axial coordinate in the earth-fixed cylindrical \((x, r, \theta)\) system

\(XYZ \) Missile-fixed axes, the \(X \)-axis along the projectile's axis of symmetry

\(XYZ \) Aeroballistic non-rolling axes, the \(\tilde{Z} \)-axis initially downward

\(X_e, Y_e, Z_e \) Earth-fixed axes, the \(X_e \)-axis along the velocity vector, \(Z_e \) downward

\(\varepsilon_j \) \((K_j/K_j)/\dot{\phi}_j\), non-dimensionalized damping; \(j = 1, 2 \)

\(\theta \) Azimuthal coordinate in the earth-fixed cylindrical \((x, r, \theta)\) system

\(\nu \) Kinematic viscosity of the liquid

\(\xi \) \(K e^{-\nu} \)

\(\lambda_k \) Defined in Eq. (3.27)

\(\rho_L \) Liquid density

\(\tau_j \) \(\dot{\phi}_j/\dot{\phi} \), non-dimensionalized frequency; \(j = 1, 2 \)

\(\dot{\phi} \) Spin rate with respect to inertial axis, assumed positive
<table>
<thead>
<tr>
<th>No.</th>
<th>Copies</th>
<th>Organization</th>
</tr>
</thead>
</table>
| 12 | Administrator
Defense Technical Information Center
ATTN: DTIC-FDAC
Cameron Station, Bldg. 5
Alexandria, VA 22304-6145 | 1 | OPM Nuclear
ATTN: AMCPM-NUC
COL. W. P. Farmer
Dover, NJ 07801-5001 |
| 1 | HQDA
DAMA-ART-M
Washington, DC 20310 | 3 | AFWL/SUL
Kirtland AFB, NM 87117-6008 |
| 1 | Commander
US Army Materiel Command
ATTN: AMCDRA-ST
5001 Eisenhower Avenue
Alexandria, VA 22333-0001 | 1 | Commander
US Army Armament RD&E Center
US Army AMCCOM
ATTN: SMCAR-AET-A
Mr. R. Kline |
| 1 | Commander
US Army ARDEC
ATTN: SMCAR-TDC
Picatinny Arsenal, NJ 07806-5000 | 1 | Commander
US Army Armament, Munitions and Chemical Command
ATTN: AMSMC-IMP-L
Rock Island, IL 61299-7300 |
| 1 | Commander
U.S. Armament RD&E Center
US Army AMCCOM
ATTN: SMCAR-MSI
Picatinny Arsenal, NJ 07806-5000 | 1 | Commander
U.S. AMCCOM ARDEC CCAC
Benet Weapons Laboratory
ATTN: SMCAR-CCB-TL
Watervliet, NY 12189-4050 |
| 1 | Commander
U.S. Armament RD&E Center
US Army AMCCOM
ATTN: SMCAR-LC
Picatinny Arsenal, NJ 07806-5000 | 1 | Commander
US Army Aviation Systems Command
ATTN: AMSAV-ES
4300 Goodfellow Blvd
St Louis, MO 63120-1789 |
| 1 | Commander
U.S. Army AMCCOM
ATTN: SMCAR-CAWS-AM
Mr. DellaTerga
Picatinny Arsenal, NJ 07806-5000 |
DISTRIBUTION LIST

<table>
<thead>
<tr>
<th>No. Copies</th>
<th>Organization</th>
<th>No. Copies</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Director</td>
<td>1</td>
<td>Director</td>
</tr>
<tr>
<td></td>
<td>US Army Aviation Research and Technology Activity</td>
<td></td>
<td>US Army Missile and Space Intelligence</td>
</tr>
<tr>
<td></td>
<td>Moffett Field, CA 94035-1099</td>
<td></td>
<td>ATTN: AIAMS-YDL</td>
</tr>
<tr>
<td>1</td>
<td>Commander</td>
<td>1</td>
<td>Commander</td>
</tr>
<tr>
<td></td>
<td>US Army Communications Electronics Command</td>
<td></td>
<td>US Army Tank Automotive Command</td>
</tr>
<tr>
<td></td>
<td>ATTN: AMSEL-ED</td>
<td></td>
<td>ATTN: AMSTA-TSL</td>
</tr>
<tr>
<td></td>
<td>Fort Monmouth, NJ 07703-5000</td>
<td></td>
<td>Warren, MI 48397-5000</td>
</tr>
<tr>
<td>1</td>
<td>Commander</td>
<td>1</td>
<td>Director</td>
</tr>
<tr>
<td></td>
<td>CECOM R&D Technical Library</td>
<td></td>
<td>US Army TRADOC Analysis Center</td>
</tr>
<tr>
<td></td>
<td>ATTN: AMSEL-IM-L, (Reports Section) B. 2700</td>
<td></td>
<td>ATTN: ATOR-TSL</td>
</tr>
<tr>
<td></td>
<td>Fort Monmouth, NJ 07703-5000</td>
<td></td>
<td>White Sands Missile Range</td>
</tr>
<tr>
<td>10</td>
<td>C. I. A.</td>
<td>1</td>
<td>Commander</td>
</tr>
<tr>
<td></td>
<td>OIC/DB/Standard</td>
<td></td>
<td>US Army Development & Employment Agency</td>
</tr>
<tr>
<td></td>
<td>GE47 HQ</td>
<td></td>
<td>ATTN: MODE-ORO</td>
</tr>
<tr>
<td></td>
<td>Washington, DC 20505</td>
<td></td>
<td>Fort Lewis, WA 98433-5000</td>
</tr>
<tr>
<td>1</td>
<td>Commandant</td>
<td>1</td>
<td>Commandant</td>
</tr>
<tr>
<td></td>
<td>US Army Infantry School</td>
<td></td>
<td>US Army Field Artillery School</td>
</tr>
<tr>
<td></td>
<td>ATTN: ATSH-CD-CS-OR</td>
<td></td>
<td>ATTN: ATSF-GD</td>
</tr>
<tr>
<td></td>
<td>Fort Benning, GA 31905-5400</td>
<td></td>
<td>Fort Sills, OK 73503</td>
</tr>
<tr>
<td>1</td>
<td>Commander</td>
<td>1</td>
<td>Director</td>
</tr>
<tr>
<td></td>
<td>US Army Missile Command Research Development and Engineering Center</td>
<td></td>
<td>National Aeronautics and Space Administration</td>
</tr>
<tr>
<td></td>
<td>ATTN: AMSMI-RD</td>
<td></td>
<td>Langley Research Center</td>
</tr>
<tr>
<td></td>
<td>Redstone Arsenal, AL 35898-5230</td>
<td></td>
<td>ATTN: Tech Library</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Langley Station</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hampton, VA 23365</td>
</tr>
<tr>
<td>1</td>
<td>Commander</td>
<td>1</td>
<td>Director</td>
</tr>
<tr>
<td></td>
<td>US Army Missile Command</td>
<td></td>
<td>US Army Field Artillery Board</td>
</tr>
<tr>
<td></td>
<td>ATTN: AMSMI-RDK, Mr. Dahlke</td>
<td></td>
<td>ATTN: ATZR-BDW</td>
</tr>
<tr>
<td></td>
<td>Redstone Arsenal, AL 35898-5230</td>
<td></td>
<td>Fort Sills, OK 73503</td>
</tr>
<tr>
<td>No.</td>
<td>Copies</td>
<td>Organization</td>
<td>No.</td>
</tr>
<tr>
<td>-----</td>
<td>--------</td>
<td>--------------</td>
<td>-----</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Commander</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US Army Dugway Proving Ground</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ATTN: STEDP-MT</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mr. G. C. Travers</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dugway, UT 84022</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Commander</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US Army Yuma Proving Ground</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ATTN: STEYP-MTW</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yuma, AZ 85365-9103</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>Director</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sandia National Laboratories</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ATTN: Dr. W. Oberkampf</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dr. W. P. Wolfe</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Division 1636</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Albuquerque, NM 87185</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Air Force Armament Laboratory</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ATTN: AFATL/DLODL</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Tech Info Center)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eglin AFB, FL 32542-5438</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Commander</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Naval Surface Weapons Center</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ATTN: Dr. W. Yanta</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aerodynamics Branch</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>K-24, Building 402-12</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>White Oak Laboratory</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Silver Spring, MD 20910</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Carco Electronics</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>195 Constitution Drive</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Menlo Park, CA 94025</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Aerospace Corporation</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aero-Engineering Subdivision</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ATTN: Walter F. Reddall</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>El Segundo, CA 90245</td>
<td></td>
</tr>
</tbody>
</table>
DISTRIBUTION LIST

<table>
<thead>
<tr>
<th>No. Copies</th>
<th>Organization</th>
<th>No. Copies</th>
<th>Organization</th>
</tr>
</thead>
</table>
| 1 | Massachusetts Institute of Technology
ATTN: H. Greenspan
77 Massachusetts Avenue
Cambridge, MA 02139 | 2 | Director
Lawrence Livermore National Laboratory
ATTN: Mail Code L-35
Mr. T. Morgan
Mr. R. Cornell
P.O. Box 808
Livermore, CA 94550 |
| 1 | North Carolina State University
Mechanical and Aerospace Engineering Department
ATTN: F.F. DeJarnette
Raleigh, NC 27607 | 1 | University of Wisconsin-Madison Center for Mathematical Sciences
ATTN: Dr. John Strikwerda
610 Walnut Street
Madison, WI 53706 |
| 1 | Northwestern University
Department of Engineering Science and Applied Mathematics
ATTN: Dr. S.H. Davis
Evanston, IL 60201 | 1 | Virginia Polytechnic Institute and State University
Department of Aerospace Engineering
ATTN: Tech Library
Blacksburg, VA 24061 |
| 1 | University of Colorado
Department of Astro-Geophysics
ATTN: E.R. Benton
Boulder, CO 80302 | 2 | University of Southern California
Department of Aerospace Engineering
ATTN: T. Maxworthy
P. Weidman
Los Angeles, CA 90007 |
| 2 | University of Maryland
ATTN: W. Melnik
J.D. Anderson
College Park, MD 20740 | 1 | Hughes Aircraft
ATTN: Dr. John McIntyre
Mail Code S41/B323
P.O. Box 92919
Los Angeles, CA 90009 |
| 1 | University of Maryland
Baltimore County
Department of Mathematics
ATTN: Dr. Y.M. Lynn
5401 Wilkens Avenue
Baltimore, MD 21228 | 1 | Rensselaer Polytechnic Institute
Department of Math Sciences
Troy, NY 12181 |
<table>
<thead>
<tr>
<th>No.</th>
<th>Copies</th>
<th>Organization</th>
<th>No.</th>
<th>Copies</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>Ohio State University</td>
<td></td>
<td></td>
<td>Aberdeen Proving Ground</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dept. of Mechanical Engineering</td>
<td>1</td>
<td></td>
<td>Director, USAMSAA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ATTN: Dr. T. Herbert</td>
<td></td>
<td></td>
<td>ATTN: AMXSYS-D</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Columbus, OH 43210</td>
<td></td>
<td></td>
<td>AMXSYS-RA, R. Scungio</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>Mr. Harold Vaughn</td>
<td></td>
<td></td>
<td>Commander, UASTECOM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7709 Gladden N.E.</td>
<td>1</td>
<td></td>
<td>ATTN: AMSTE-SI-F</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Albuquerque, NM 87110</td>
<td></td>
<td></td>
<td>AMSTE-TE-F, W. Vomocil</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ATTN: AMXSYS-RA, R. Scungio</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>Illinois Institute of Technology</td>
<td></td>
<td></td>
<td>Mr. J. Callahan</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ATTN: Mr. Simon Rosenblat</td>
<td></td>
<td></td>
<td>ATTN: AMCPM-SMK-M</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3300 South Federal</td>
<td></td>
<td></td>
<td>Mr. W. Dee</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chicago, Illinois 60616</td>
<td></td>
<td></td>
<td>Mr. C. Hughes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cdr, CRDC, AMCCCOM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ATTN: SMCCR-MU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mr. W. Dee</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mr. C. Hughes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mr. F. Dagostin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mr. D. Bromley</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mr. C. Jeffers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mr. L. Shaft</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ATTN: SMCCR-RSP-A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mr. Miles Miller</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ATTN: SMCCR-SPS-IL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SMCCR-RSP-A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SMCCR-MU</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
USER EVALUATION SHEET/CHANGE OF ADDRESS

This Laboratory undertakes a continuing effort to improve the quality of the reports it publishes. Your comments/answers to the items/questions below will aid us in our efforts.

1. BRL Report Number __________________________ Date of Report __________________________

2. Date Report Received __________________________

3. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which the report will be used.)

4. How specifically, is the report being used? (Information source, design data, procedure, source of ideas, etc.)

5. Has the information in this report led to any quantitative savings as far as man-hours or dollars saved, operating costs avoided or efficiencies achieved, etc? If so, please elaborate.

6. General Comments. What do you think should be changed to improve future reports? (Indicate changes to organization, technical content, format, etc.)

Name __________________________

CURRENT ADDRESS

Organization __________________________

Address __________________________

City, State, Zip __________________________

7. If indicating a Change of Address or Address Correction, please provide the New or Correct Address in Block 6 above and the Old or Incorrect address below.

Name __________________________

OLD ADDRESS

Organization __________________________

Address __________________________

City, State, Zip __________________________

(Remove this sheet, fold as indicated, staple or tape closed, and mail.)
END
DATE
FILMED
8-88
DTIC