ICN GUN GENERATED ELECTROMAGNETIC INTERFERENCE ON THE SCATHA SATELLITE

by

Leonard Earl Weddle

December 1987

Thesis Advisor: R. C. Olsen

Approved for public release; distribution is unlimited.
Spacecraft charging at geosynchronous orbit can cause satellite anomalies and failure. Experiments in charge control were conducted on the joint Air Force/NASA P78-2 (SCATHA) satellite using both electron and positive ion emission systems. These experiments were monitored by a variety of plasma wave and particle detectors. Plasma wave data show that arcing was taking place during non-neutralized ion beam emission. The arcing was seen to cease when either the beam was neutralized or the beam acceleration voltage was turned off. Evidence exists which indicate that the arcing is due to differential charging on the satellite surface. A possible effect of non-neutral, non-accelerated ion beam emission is the shielding of the electric field antenna from ion gun generated plasma waves. The effect of shielding these signals is an increase in the sensitivity of the electric field receiver to natural signals.
Approved for public release; distribution is unlimited.

Ion Gun Generated Electromagnetic Interference on the SCATHA Satellite

by

Leonard Earl Weddle
Lieutenant, United States Navy
B.S., Purdue University, 1979

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN PHYSICS

from the

NAVAL POSTGRADUATE SCHOOL
December 1987

Author:

Leonard Earl Weddle

Approved by:

Richard C. Olsen, Thesis Advisor

K. E. Woehler, Chairman, Department of Physics

Gordon E. Schacher, Dean of Science and Engineering
ABSTRACT

Spacecraft charging at geosynchronous orbit can cause satellite anomalies and failure. Experiments in charge control were conducted on the joint Air Force/NASA P78-2 (SCATHA) satellite using both electron and positive ion emission systems. These experiments were monitored by a variety of plasma wave and particle detectors. Plasma wave data show that arcing was taking place during non-neutralized ion beam emission. The arcing was seen to cease when either the beam was neutralized or the beam acceleration voltage was turned off. Evidence exists which indicate that the arcing is due to differential charging on the satellite surface. A possible effect of non-neutral, non-accelerated ion beam emission is the shielding of the electric field antenna from ion gun generated plasma waves. The effect of shielding these signals is an increase in the sensitivity of the electric field receiver to natural signals.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. INTRODUCTION</td>
<td>7</td>
</tr>
<tr>
<td>A. PROBLEM OF SATELLITE CHARGING</td>
<td>7</td>
</tr>
<tr>
<td>B. HISTORY OF ACTIVE EXPERIMENTS</td>
<td>8</td>
</tr>
<tr>
<td>C. THEORETICAL EXPECTATIONS</td>
<td>9</td>
</tr>
<tr>
<td>II. SCATHA PROGRAM</td>
<td>11</td>
</tr>
<tr>
<td>A. SATELLITE</td>
<td>11</td>
</tr>
<tr>
<td>B. ION GUN</td>
<td>11</td>
</tr>
<tr>
<td>C. DETECTORS</td>
<td>13</td>
</tr>
<tr>
<td>III. OBSERVATIONS</td>
<td>17</td>
</tr>
<tr>
<td>A. 19 JULY 1979 2214:00 - 2314:00 UT</td>
<td>17</td>
</tr>
<tr>
<td>B. 2 APRIL 1979 1513 - 1538 UT</td>
<td>40</td>
</tr>
<tr>
<td>C. SUMMARY OF OBSERVATIONS</td>
<td>52</td>
</tr>
<tr>
<td>IV. CALCULATIONS</td>
<td>54</td>
</tr>
<tr>
<td>V. CONCLUSIONS</td>
<td>58</td>
</tr>
<tr>
<td>APPENDIX - EXPERIMENTS AND GUN COMMANDS</td>
<td>60</td>
</tr>
<tr>
<td>LIST OF REFERENCES</td>
<td>64</td>
</tr>
<tr>
<td>BIBLIOGRAPHY</td>
<td>67</td>
</tr>
<tr>
<td>INITIAL DISTRIBUTION LIST</td>
<td>69</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

1. The P78-2 SCATHA satellite------------------------------- 12
2. SC4-2 ion gun block diagram -------------------------- 14
3. SC4-2 ion gun electrical schematic ------------------- 15
4. Spectrogram of the period 2302:34 - 2303:26 -------- 19
 19 July 1979
5. Frequency spectrum of magnetic field data at ------- 21
 2302:59 19 July 1979 using 3 second averaging
6. Frequency spectrum of electric field data at -------- 22
 2302:05 19 July 1979 using 3 second averaging
7. Spectrogram of the period 2217:55 - 2218:38 -------- 23
 19 July 1979
8. Frequency spectrum of magnetic field data at ------- 25
 2218:00 19 July 1979 using 3 second averaging
9. Frequency spectrum of electric field data at -------- 27
 2218:15 19 July 1979 using 3 second averaging
10. Spectrogram of the period 2226:36 - 2227:18 -------- 28
 19 July 1979
11. Spectrogram of the period 2228:30 - 2229:14 -------- 30
 19 July 1979
12. Frequency spectrum of electric field data at -------- 31
 2228:53 19 July 1979 using 3 second averaging
13. Frequency spectrum of magnetic field data at -------- 32
 2229:45 19 July 1979 using 3 second averaging
14. Plasma waves generated by beam-plasma interactions - 33
15. Spectrogram of the period 2233:56 - 2234:37 -------- 35
 19 July 1979
16. Spectrogram of the period 2301:09 - 2301:55 -------- 37
 19 July 1979
17. Narrowband filter data for 2130-2330 19 July 1979 -- 38
18. Spectrogram of the period 1512:54 - 1513:28 -------- 42
 2 April 1979
19. Spectrogram of the period 1517:22 - 1518:02 -------- 43
 2 April 1979
20. Spectrogram of the period 1518:37 - 1519:16 -------- 44
 2 April 1979
21. Spectrogram of the period 1519:44 - 1520:24 -------- 46
 2 April 1979
22. Spectrogram of the period 1520:58 - 1521:38 -------- 47
 2 April 1979
23. Spectrogram of the period 1522:00 - 1522:40 -------- 48
 2 April 1979
24. Spectrogram of the period 1540:14 - 1540:56 -------- 50
 2 April 1979
25. Narrowband filter data for 1400-1600 2 April 1979 -- 51
26. Hollow cathode density profile ---------------------- 55
I. INTRODUCTION

A. PROBLEM OF SATELLITE CHARGING

A probe immersed in a plasma will reach an equilibrium potential where the sum of the charging currents to the probe is zero. A rocket or satellite in the ionosphere or magnetosphere is just such a probe. The largest currents in the space environment are due to incident ambient electrons and ions, photoemission, and secondary emission. Experimental results show that satellites typically charge to potentials comparable to the thermal energy of the ambient plasma, in eclipse. In sunlight, positive potentials of a few volts are found due to the dominance of photoemission at high altitudes. Satellite charging is generally not a problem at low altitudes because of low plasma temperatures and high densities. Satellites at high altitudes, such as those in geosynchronous orbits, however, can experience charging into the negative kilovolt range. Clearly a satellite carrying experiments designed to study the satellite environment will have problems doing so if the satellite is always changing its potential relative to the surrounding plasma. Of much greater concern to most satellite users though is electrical discharges caused by differential charging. A satellite's surface is made of many different materials, some of which are conductors and
some dielectrics. These different materials can charge to greatly different potentials. When the potential difference between two surfaces is of sufficient magnitude, an electrical discharge will occur. The current thus induced can cause anomalous commands to be sent to satellite systems, minor or major damage to satellite components, and sometimes complete system or satellite failure. (Refs. 1,2,3,4)

B. HISTORY OF ACTIVE EXPERIMENTS

The P78-2 (SCATHA) satellite was created to study satellite charging and provided with active charge control devices, e.g. ion and electron guns. The SCATHA satellite was the first satellite at geosynchronous orbit capable of observing VLF plasma waves during operation of a positive ion emission system. There have been, however, many experiments conducted in the ionosphere with ion beams carried aloft by rockets that also carried plasma wave receivers.

The Porcupine sounding rocket carried a Xe+ ion gun. During ion gun experiments electrostatic emissions were detected at harmonics of H+ and O+ cyclotron frequencies and near the lower hybrid frequency (Refs. 5,6,7,8). The ARCS rockets carried Ar+ ion guns. These experiments observed many low frequency electrostatic emissions with the most abundant being near the lower hybrid frequency and some
also near the upper hybrid frequency (Refs. 9,10).

Two Ar$^+$ ion generators were flown on a sounding rocket launched from Sondre Stromfjord, Greenland to study ion beam dynamics and ion beam effects on the ionosphere. The generators were arranged such that one emitted its beam parallel to the magnetic field and the other one perpendicular. During parallel beam operations emissions were observed near multiples of the H$^+$ cyclotron frequency and the lower hybrid frequency. Perpendicular beam operations produced emissions at He$^+$ and O$^+$ cyclotron harmonics (Ref.11).

C. THEORETICAL EXPECTATIONS

A limited number of theoretical calculations have been done for such ion beam experiments. They predict the hydrogen cyclotron harmonics and the upper and lower hybrid frequencies observed (Refs. 5,7,9,10,12,13). These experiments took place in the ionosphere where H$^+$ is a minor constituent. At geosynchronous orbit the environment is mostly H$^+$ with O$^+$ ranging from 10 to 50 percent and the beam density large compared to the ambient. The magnetic field strength is also different in the two regions. While these differences prevent us from applying the results of these calculations to our situation, they do give us ideas on where to start looking. We believe it is reasonable to assume that plasma waves at some frequency
would be generated by the SCATHA ion gun. At the SCATHA orbital altitudes, the H^+ cyclotron frequency and the lower hybrid frequency are too low to be observed by the SCI experiment, although a second receiver (SCI0) is occasionally available for this lower frequency regime. The electron cyclotron frequency was generally a few kilohertz. The majority of the work which follows deals with this higher frequency range.
II. SCATHA PROGRAM

A. SATELLITE

The P78-2 satellite was launched January 30, 1979 as part of a joint Air Force/NASA program to study Spacecraft Charging AT High Altitude (SCATHA). It was placed into a nearly geosynchronous orbit with a 7.9 degree inclination, 5.3 \(R_E \) perigee, and 7.8 \(R_E \) apogee. The cylindrically shaped satellite measures 1.7 meters in diameter and 1.75 meters high. Its surface is made up of insulating and conducting surfaces. The sides are covered primarily by insulating solar cell glass covers. The forward end of the satellite is a conducting surface while the after end is mostly composed of insulators. The satellite was spin stabilized with a period of about 60 seconds with its spin axis in the plane of the orbit and nearly perpendicular to the earth - sun line. The Appendix has a list of the experiments carried on SCATHA and Figure 1 shows the positions of some of the experiments on the satellite. The P78-2 experiments used for this work are the ion gun and plasma wave experiments. (Refs. 14,15,16)

B. ION GUN EXPERIMENT

The ion gun experiment (SC4 - 2) was designed to emit positive charge, to induce negative voltages, and to test
Figure 1. The P78-2 SCATHA satellite.
the effectiveness of ion beams in controlling charging. The experiment included a positive ion emission system and an electron source which could be used to neutralize the beam of ions or to provide electrons alone. The ion system used a cathode discharge to ionize xenon gas which could then be accelerated by either a 1 kV or 2 kV potential between the cathode and exit aperture. The ion current could be varied in increments from 0.3 mA to 2 mA. Figure 2 is a block diagram of the ion gun and Figure 3 is an electrical schematic. The Appendix lists ion gun commands and functions. (Ref. 17)

C. DETECTORS

The primary diagnostic used in this work is the plasma wave receiver. A portion of the SC1 experiment was a VLF wave experiment. The experiment used the SC10 dipole antenna for electric field measurements and an air-core loop for magnetic field measurements. The dipole antenna measures 100 m tip-to-tip. The two halves extend perpendicular to the spin axis. The inner 30 m of each half is coated with Kapton insulation. The loop antenna is electrostatically shielded and mounted on a 2 m boom. Its effective area is 575 m² at 1.3 kHz. The electric field receiver has sensitivities of 5 x 10⁻⁷ and 10⁻⁷ V/(mHz¹/²) at 1.3 and 10.5 kHz respectively. The magnetic field receiver has a sensitivity of 3 x 10⁻⁶ nT/Hz¹/² at
Figure 2. SC4-2 ion gun block diagram.
Figure 3. SC4-2 ion gun electrical schematic.
1.3 kHz and a 60 dB dynamic range. Outputs consist of eight narrow band filters and a broadband mode. The narrow band filters have bandwidths of ± 7.5% and frequencies of 0.4, 1.3, 2.3, 3.0, 10.5, 30, 100 and 300 kHz. In the broadband mode the receiver can be set to cover either the 0 - 3 kHz or 0 - 5 kHz frequency range. (Refs. 14,15)
III. OBSERVATIONS

Three ion gun modes were studied. First, the primary mode for satellite charge control is with both the ion beam and neutralizer on. The satellite is thus emitting a neutralized ion beam. Next, induced (negative) charging experiments were conducted with the ion beam on and the neutralizer off. Only xenon ions are emitted in this mode. Finally, a third mode exists termed 'trickle mode'. In trickle mode the ion beam discharge is on, but without acceleration by the grids. We will look at data taken in each of these three modes.

A. 19 JULY 1979 22:14:00 - 23:14:00 UT

The first example of plasma wave observation during an ion gun experiment comes from 19 July 1979 (Day 200). This example illustrates typical observations for:

- gun off.
- gun and high voltage on, neutralizer off.
- gun on, high voltage and neutralizer off (trickle mode).

The satellite location is near local dusk (1954-2042 LT), between $L = 7.6$ and 8.0. The electron cyclotron frequency varies from 1.8 kHz to 2.2 kHz. The hydrogen cyclotron frequency is around 1 Hz and the lower hybrid frequency is
about 40 - 50 Hz, and hence these latter two fundamental frequencies are off scale.

The plasma wave data we shall show is primarily in the form of spectrograms. In the spectrograms the horizontal axis is time. The vertical axis is frequency and all of our spectrograms cover a 0 Hz to 4.0 kHz frequency range. Signal strength is indicated using a grey scale. Thus, the spectrogram will be white at frequencies where no signals exist and dark at frequencies where signals are being received. Comparison of signal strength at different frequencies is made by comparing the relative darkness of the spectrogram at those frequencies, with the darker region representing higher signal strength. The plasma wave receiver on the satellite switches antennas every 16 seconds cycling between the electric field antenna and the magnetic field antenna. Hence, the spectrograms cycle between the electric field data and the magnetic field data every 16 seconds. Typical 'gun-off' data are shown in spectrogram form in Figure 4 which covers the period of time 2302:34 to 2303:26. The 19 July 1979 broadband data was taken with the plasma wave receiver in the 0 - 3 kHz mode. The bandwidth in this mode introduces a roll-off at 3 kHz, as seen in the spectrogram. This spectrogram shows the receiver background noise normally present in the magnetic field (B) data. The receiver noise is the resonant response of the receiver to a white noise input, as determined by ground calibration.
Figure 4. Spectrogram of the period 2302:34 - 2303:26 19 July 197...
This noise is not visible in the electric field (E) data at the level used to make these spectrograms. Also visible is monochromatic interference at 700 Hz and 2100 Hz and weak interference at 1400 Hz. These signals are caused by a 700 Hz tuning-fork driver circuit in another experiment and are not seen in the electric field data. The next two figures show the features of Figure 4 more clearly. Figure 5 shows a frequency spectrum of the magnetic field data with the gun off taken at 2302:59. Three second averages were used to create the frequency spectrums we shall show. The 700 Hz and 2100 Hz signals are clearly seen to be well above background. Figure 6 shows a frequency spectrum of the electric field data with the gun off taken at 2303:05. Two peaks are found at 2570 Hz and 3155 Hz. The latter signal is probably the electron cyclotron harmonic, or \(\frac{3}{2} f \). The low frequency peak (about 100 Hz) may be an artifact generated on or near the spacecraft. It is near the low frequency cut-off of the receiver band-pass. (Refs. 18, 19)

The data set presented below (e.g. the broadband data) began while the ion gun was on with an accelerating voltage of 1 kV and a beam current of 2.0 mA. The neutralizer filament power was off. The satellite was in the dusk bulge region, in a relatively quiet plasma sheet environment. It was uncharged (< +10 V) when the gun was off, and charged to approximately -800 V when the gun was on, and unneutralized (Ref. 20). The top panel of Figure 7 is a spectrogram
Figure 6. Frequency spectrum of electric field data at 23:03:05
19 July 1979 using 3 second averaging.
Figure 7. Spectrogram of the period 2217:55 - 2218:38 19 July 1979.
showing about 43 seconds of plasma wave data for this ion gun operating mode. Also shown in Figure 7 are the ion gun mode settings. These include ion gun power (IGP), high voltage (HV), neutralizer power (NP), ion beam voltage (V_b), ion beam current (I_b), neutralizer current (I_n), and neutralizer bias level (NBL). Again, the receiver was switched every 16 seconds and the roll-off at 3 kHz is due to the receiver mode. There is a broad maximum from 1.0 to 1.5 kHz visible in the magnetic field data as shown by the darkening of the spectrogram at those frequencies. This signal is not present in the electric field data. Brief, vertical striations in the data, particularly the magnetic data, show a broad spectrum which we interpret as the signal generated by arcing on or in the satellite. The vertical striations are obviously due to pulses with periods considerably less than a second. The frequency spectrum is analyzed in more detail in the following two figures. Figure 8 is a frequency spectrum of the magnetic field data at 2218. The spiky elements attributed to arcing have largely been averaged out by three second averaging. Figure 8 shows that the most intense average signals are below 500 Hz, followed by a broad peak from 1.1 - 1.4 kHz. This latter peak is the broad maximum visible in the spectrogram and is similar to the receiver noise signal shown in Figure 5. Consideration of calibrated filter data (below) show that this signal is orders of magnitude higher in amplitude than
background noise. This appears to be, therefore, the receiver response to an intense white noise input signal. Figure 9 is a frequency spectrum of the electric field data at 2218:15. A broad signal, from near zero to about 1.5 kHz, monotonically decreasing in amplitude is seen in Figure 9 but was not present in the gun-off data of Figure 6. The smaller peaks near 2.5 kHz and 3.1 kHz are still visible. The low frequency spectrum is similar to that found in the magnetic field data of Figure 8, but, again there is no signal in the 1.0 - 1.4 kHz region of the electric field data as there is in the magnetic field data. The small peak at 3.1 kHz is again thought to be the (3/2)f_{ce} signal (f_{ce} = 2.1 kHz at this time, as calculated from SC11 data).

At 2226:55 the high voltage is turned off resulting in trickle mode. A net current of 10 - 20 microamps is still being emitted (according to gun diagnostics). The result of this ion emission is a satellite potential near zero (< +10 V). The arcing seen in Figure 7 ceases during an electric field measurement as shown by Figure 10. Still visible during trickle mode is the broad maximum from 1.0 - 1.5 kHz in the magnetic field data. Calibrated filter data still show substantial enhancement over receiver background. The intense low frequency (near 100 Hz) signal in the electric field data present with the gun off, and the gun on, remains visible. The signals become clearer over the next few
Figure 9. Frequency spectrum of electric field data at 2218:15
19 July 1979 using 3 second averaging.
Figure 10. Spectrogram of the period 2226:36 - 2227:18 19 July 1979.
minutes. Figure 11 shows that at 2229 both the broadband signal in the magnetic field data and the very low frequency signal in the electric field data have become more intense, but have not substantially changed in character. There is a narrow signal now visible at about 1.2 kHz in the electric field data. This latter signal is not generally visible during this period. We interpret this signal as being natural because of its finite width and variation in frequency. Figure 12 is a frequency spectrum of the electric field data at 2228:53. The intense signal from near zero to about 200 Hz remains, with several additional narrow peaks up to about 500 Hz. Also the line spectrum shows the feature seen in Figure 11 at 1190 Hz, and an additional peak exists at 3.16 kHz (again (3/2)f_{ce}). The apparent weakness of the 3.16 kHz signal is partly due to receiver roll-off in this mode. Figure 13 is a frequency spectrum for the magnetic field data at 2229:45. The broad peak from 1.0 - 1.5 kHz is similar to that found previously; that is, similar to the receiver resonance response to a white noise input. The lower frequency peak (below 500 Hz) seen in Figure 8 is now gone. Hence the low frequency peak must nominally be associated with the accelerated beam in the plasma, while the broad peak (white noise) is most likely induced by interactions between the cold, dense gun plasma and ambient plasma. To illustrate this graphically, Figure 14(a) shows a velocity distribution for an accelerated Xe⁺
Figure 11. Spectrogram of the period 2228:30 - 2229:14 19 July 1979.
Figure 12. Frequency spectrum of electric field data at 22:28:53
19 July 1979 using 3 second averaging.
Figure 13. Frequency spectrum of magnetic field data at 2229:45 on 19 July 1979 using 3 second averaging.
Figure 14. Plasma waves generated by beam-plasma interactions.
beam in a cold H^+ plasma. A possible result of this instability is waves in the ion acoustic mode with a frequency distribution as shown in Figure 14(b) (Refs. 21,22). Similarly, Figure 14(c) shows a velocity distribution for a cold Xe^+ cloud in a cold H^+ plasma. It is likely that this distribution is also unstable. We suggest that the result is a spectrum of nearly constant amplitude over a wide frequency range (white noise) as shown in Figure 14(d). Again, a white noise signal is known to produce a receiver response as shown in Figure 14(e). The magnetic field data have cleaned up substantially and in particular, the 700 Hz and 2100 Hz lines are not visible. It is now clear that this is because more intense signals have driven the AGC down, and these relatively weak markers are now below the noise level. At 2232:03 (not shown) the high voltage is turned back on. The arcing resumes, and the data resume their former character. The signals do appear more intense in the spectrogram (not shown), but this is partly an artifact of AGC and processing variations. The AGC may be driven by a different portion of the frequency spectrum during this latter period. This could reflect different characteristics of differential charging following the trickle mode induced discharge of the dielectric materials (Ref. 23).

There are changes in the data which are independent of gun status change. Figure 15 shows that at 2234:04 there is
Figure 15. Spectrogram of the period 2233:56 - 2234:37 19 July 1979.
a sharp change in intensities which is independent of any changes in the ion gun status. The spectrum is largely unchanged, however. Examination of the narrowband filter data (shown below) reveals that this amplitude change occurs in the 0.4 kHz - 3.0 kHz channels of the electric field data after both trickle mode operations. When high voltage is turned on, the electric field data in the 0.4 - 3.0 kHz range peak briefly approximately 5 to 10 dB above the 'steady state' gun-on levels. The transient period lasts about one to two minutes (one to two spin periods).

Changes in the gun operating mode changed the plasma wave data. At 2258:06 the beam current is decreased to 1.0 mA and at 2300:22 the beam current is decreased to 0.3 mA. Each decrease in beam current caused the arcing signals (vertical striations) to decrease in intensity, and frequency of occurrence. Figure 16 shows data at 0.3 mA beam current. The spikes that indicate arcing are seen to be less intense and fewer in number per each 16 second window than they were at 2.0 mA beam current. All other characteristics of the spectrum remain the same. At 2301:39 all ion gun power is turned off. Figure 16 shows that arcing ceases and the the 700, 1400 and 2100 Hz interference lines are again visible.

The operation is summarized in Figure 17. The narrowband filter data for the period 2130 - 2330 UT is shown for both antennas. Trickle mode operations were
Figure 16. Spectrogram of the period 2301:09 - 2301:55 19 July 1979.
Figure 17. Narrowband filter data for 2130 - 2330 19 July 1979.
conducted from 2159:06 to 2203:35 as well as the 2226:55 to 2232:03 period. Both periods are clearly seen on the 0.4, 1.3, 2.3 and 3.0 kHz channels of both antennas. The electric field data show 20 - 30 dB increases in amplitude in the 400 Hz to 3.0 kHz range with the ion beam on. The amplitudes return to near background values during trickle mode. The magnetic field data shows that at 400 Hz the amplitude increase is greater than 40 dB and the signal peaks off the scale. The 1.3 - 3.0 kHz channels show magnetic field amplitude increases of 35 - 40 dB. During trickle mode the magnetic field amplitudes show a decrease, but remain 15 - 30 dB above background. We interpret this as showing that no interference generated at these frequencies by the gun during trickle mode reaches the electric antenna, but that an electrostatic or electromagnetic signal is caused by the interaction of the 'dense' xenon plasma from the gun with the ambient plasma in the immediate vicinity (a few meters) of the satellite, and this signal is observed by the magnetic loop antenna. The 100 kHz electric field channel shows an increase in signal strength during trickle mode. This frequency is comparable to the upper hybrid resonance or the plasma frequency near the satellite.
B. 2 APRIL 1979 1513 - 1548 UT

The second operation we shall present occurs in eclipse on Day 92 of 1979. Plasma wave response to gun operations appear similar to those observed in the dusk bulge region on day 200. This example illustrates typical observations for:

- gun, high voltage and neutralizer on.
- gun and high voltage on, neutralizer off.
- gun on, high voltage and neutralizer off (trickle mode).
- gun off.

During this period the satellite is between $L = 7.3$ and 7.6 and the time is just after local midnight. The satellite is in eclipse from 1430:00 - 1537:53. The electron cyclotron frequency varies from 3.2 to 3.6 kHz, the hydrogen cyclotron frequency is about 2 Hz, and the lower hybrid frequency varies from 75 to 85 Hz. Only the spectrograms and narrowband data for this period are shown. Attempts to generate amplitude plots for the frequency spectrum were not successful because of the age of the magnetic tape on which the data was stored. The data for this period was taken in the 0 - 5 kHz receiver mode, but only 0 - 4 kHz is shown. Therefore, no receiver roll-off at 3 kHz occurs for this data.

This data set begins with the ion beam on with beam voltage at 1 kV and beam current at 1.0 mA; neutralizer on with neutralizer current at 1.2 mA and the neutralizer bias
level at -10 V. Hence, there is a net positive current to the spacecraft, and it charges positively. The magnetic field data in Figure 18 show a continuous band of signals from just below 1 kHz to the top of the spectrogram at 4 kHz with the 1 kHz - 2 kHz region showing slightly greater signal strength. The 700 Hz and 2100 Hz interference lines are not visible. A faint spectrum exists in the electric field data from 0.4 - 1.5 kHz. This diffuse spectrum is regularly seen during such neutralized beam operations. Examination of filter data (presented below) show that this signal amplitude has increased relative to the gun off data (also presented below).

Figure 19 shows how arcing occurs with the neutralizer off (neutralizer off at 1517:47). This data resembles the data from Day 200 at the same gun settings. The broad frequency spikes and the intense 1.0 - 1.5 kHz band are both present in the magnetic field data. The electric field data appear similar to the arcing data shown for day 200. Figure 20 shows data taken as the high voltage is turned off at 1518:50. The gun enters trickle mode at that point. (Note that \(I_b = 1.0 \text{ mA} \) reflects the beam discharge current setting, and hence ionization rate in the chamber. The emitted current is only 10 - 20 microamps). Visible at this time in the magnetic field data are the 700, 1400 and 2100 Hz interference lines and the diffuse background noise. The electric field data contains a very low frequency (less than
Figure 18. Spectrogram of the period 1512:54 - 1513:28 2 April 1979.
Figure 19. Spectrogram of the period 1517:22 - 1518:02 2 April 1979.
Figure 20. Spectrogram of the period 1518:37 - 1519:16 2 April 1979.
100 Hz) signal and some spotty signals near one kHz. Figure 21 shows further fluctuations in the electric field data which are apparently due to ambient plasma waves. The magnetic field data continue to show the broad, diffuse spectrum. The 700 Hz interference line is barely visible, while the 1400 and 2100 Hz lines can no longer be seen. Since these signals are presumably of constant amplitude, their disappearance could again be caused by changes in the broad background amplitude or by attenuation of the signals in the xenon plasma cloud around the satellite. Figure 21 also shows that arcing resumes when the high voltage is turned on at 1520:05. The characteristics of the electric and magnetic field data are similar to those already presented for arcing. The arcing signature ceases in Figure 22 a few seconds after the 1521:15 turn on of the neutralizer at 1.2 mA and bias level -100 V. (Note time delay may be due to an error in the command log as this delay is not seen in similar data). The characteristics of the field data is now the same as in Figure 18. Neutralizer bias level changes made during neutral beam emission have shown almost no effect on the plasma wave data. Four bias level changes were made during the time period we are presenting here. In all four cases there was no detectable change in the magnetic field data. Plasma wave data during a bias level change from -100 V to 0 V is shown in Figure 23. The electric field data now shows some fine structure.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGP</td>
<td>ON</td>
</tr>
<tr>
<td>HV</td>
<td>ON</td>
</tr>
<tr>
<td>NP</td>
<td>ON</td>
</tr>
<tr>
<td>V_b</td>
<td>2kV</td>
</tr>
<tr>
<td></td>
<td>1kV</td>
</tr>
<tr>
<td></td>
<td>Ø</td>
</tr>
<tr>
<td>I_b</td>
<td>2.0mA</td>
</tr>
<tr>
<td></td>
<td>1.0mA</td>
</tr>
<tr>
<td></td>
<td>0.3mA</td>
</tr>
<tr>
<td></td>
<td>Ø</td>
</tr>
<tr>
<td>I_n</td>
<td>2.0mA</td>
</tr>
<tr>
<td></td>
<td>1.0mA</td>
</tr>
<tr>
<td></td>
<td>0.4mA</td>
</tr>
<tr>
<td></td>
<td>Ø</td>
</tr>
<tr>
<td>NBL</td>
<td>-10V</td>
</tr>
<tr>
<td></td>
<td>-25V</td>
</tr>
<tr>
<td></td>
<td>-100V</td>
</tr>
</tbody>
</table>

Figure 21. Spectrogram of the period 1519:44 - 1520:24 2 April 1979.
Figure 22. Spectrogram of the period 1520:58 - 1521:38 2 April 1979.
Figure 23. Spectrogram of the period 1522:00 - 1522:40 2 April 1979.
The lowest frequency signal is about 300 Hz and the frequency spacing between signals is about 170 Hz. Similar results were seen at other times when the bias level was 0 V. Bias level changes between different negative voltages had no effect on the electric field data.

At 1540:30 the satellite is no longer in eclipse and the ion gun power is turned off. Plasma wave data for this time is shown in Figure 24. The 700, 1400 and 2100 Hz interference lines are again visible in the magnetic field data. No signals are visible in the electric field data after the gun is turned off.

This operation is summarized in Figure 25. The narrowband filter data is shown for the period 1400 - 1600 UT. During this time there were two trickle mode operations. The electric and magnetic field data responded to trickle mode as on day 200. Other mode changes are difficult to analyze because they were done over a short period compared to the time scale of Figure 25. The 10 kHz and higher frequency channels show large amounts of signal activity in these bands. The day 200 data (Figure 17) showed these bands to be much quieter. This signal activity correlates well with the period of time during which the satellite was in eclipse. Assuming that this 'noise' also exists in the frequency channels lower than 10 kHz, these lower channels would be difficult to analyze even with the time scale expanded.
Figure 24. Spectrogram of the period 1540:14 - 1540:56 2 April 1979.
SCATHA AEROSPACE RECEIVERS
2 APRIL 1979
SCI-8A

<table>
<thead>
<tr>
<th>AMPLITUDE (dB)</th>
<th>ELECTRIC ANTENNA</th>
<th>MAGNETIC ANTENNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>300 kHz</td>
<td>enter eclipse</td>
<td>enter eclipse</td>
</tr>
<tr>
<td>100 kHz</td>
<td>exit eclipse</td>
<td>exit eclipse</td>
</tr>
<tr>
<td>30 kHz</td>
<td>trickle mode</td>
<td>trickle mode</td>
</tr>
<tr>
<td>3 kHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3 kHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.4 kHz</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 25. Narrowband filter data for 1400 - 1600 2 April 1979.
C. SUMMARY OF OBSERVATIONS

Broadband and narrowband plasma wave data taken during ion gun operations conducted on several different days were surveyed. Data presented above were chosen to show typical responses observed during neutral and non-neutral accelerated beam emissions and during trickle mode. Plasma wave response to ion gun operations did not show any dependence on satellite location within the magnetosphere.

Emission of a neutralized ion beam produced near zero satellite potentials (slightly positive due to higher electron current than ion current). The plasma wave data at such times show broadband signals recognized as the receiver response to a white noise input and occasional naturally occurring signals.

Non-neutralized beam operations were conducted to study the effects of negative charging on the satellite. Plasma wave data during these emissions show that for beam currents of 1 mA and higher, differential charging induced arcing is occurring.

Operation of the ion gun in trickle mode causes a cold, dense Xe⁺ cloud to form in the vicinity of the satellite. No arcing occurs during this operating mode. The broadband data shows that white noise is being received by the magnetic field antenna and only natural signals appear in the electric field data. Examination of narrowband filter
data for this mode shows that input to the electric field antenna at 30 kHz and below is at gun-off background levels, while the magnetic field antenna is still receiving signals with amplitudes 20 - 30 dB above background. Hence, whatever signals are generated near the satellite do not interfere with plasma wave observations with the long electric field antenna. In addition, there should be shielding of the electric antenna from satellite generated signals due to attenuation in the Xe⁺ cloud as shown next.
IV. CALCULATIONS

Propagation of electromagnetic waves through a plasma is a complex situation to analyze. In general, many simplifying assumptions are needed to allow solutions to be obtained. In order to estimate the attenuation of low frequency waves near the satellite we shall assume the following:

- wave frequency much exceeds the xenon ion cyclotron frequency \(f \gg f_{ci} \).
- no pressure gradient effects (cold plasma).
- no external magnetic field \(B_0 = 0 \).
- zero intrinsic impedance (collisionless plasma).

The density during trickle mode of the xenon plasma cloud around the satellite is not known but can be estimated. Typical hollow cathode density profiles as measured in a laboratory are shown in Figure 26 (Ref. 24). This experimental data shows a typical density a few centimeters from the cathode is between \(10^7 \) cm\(^{-3} \) and \(10^8 \) cm\(^{-3} \). The density is seen to fall-off sharply with the density expected at 1 m to be about \(10^5 \) cm\(^{-3} \) to \(10^6 \) cm\(^{-3} \). These density profiles should be comparable to those for the ion gun operated at geosynchronous orbit.
Figure 26. "Typical" hollow cathode density profiles in laboratory.
The dispersion relation for electromagnetic waves using the assumptions made above is

\[v^2 = \frac{c^2}{1 - \omega_p^2/\omega^2} \]

where \(v \) is the phase velocity in the plasma, \(\omega \) is the wave frequency, \(\omega_p \) is the plasma frequency, and \(c \) is the speed of light in a vacuum (Refs. 25, 26). For our situation the plasma frequency is on the order of 10 kHz to 100 kHz and the wave frequencies we are concerned with are less than 10 kHz. When the wave frequency is less than the plasma frequency the phase velocity is imaginary and the wave is attenuated in the medium. If \(d \) is defined as the distance over which the wave amplitude decreases by a factor of \(1/e \), then

\[d = \frac{c}{\omega_p} \frac{1}{\left(1 - \omega^2/\omega_p^2\right)^{1/2}} \]

(Ref. 26).

Using this expression one obtains the following attenuation distances (for 700 Hz).

<table>
<thead>
<tr>
<th>(n \ (\text{cm}^{-3}))</th>
<th>(d \ (\text{m}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^4</td>
<td>53</td>
</tr>
<tr>
<td>10^5</td>
<td>17</td>
</tr>
<tr>
<td>10^6</td>
<td>5.3</td>
</tr>
<tr>
<td>10^7</td>
<td>1.7</td>
</tr>
<tr>
<td>10^8</td>
<td>0.5</td>
</tr>
</tbody>
</table>

56
Densities of 10^4 cm$^{-3}$ to 10^8 cm$^{-3}$ would be consistent with available laboratory data, observations of signals near 100 kHz in the electric field data (xenon plasma frequency is 100 kHz for $n_{\text{Xe}} = 3 \times 10^7$ 1/cm3), and the attenuation of the interference lines.

The actual xenon density profile around the satellite is not known, and thus it is not possible to verify that attenuation is actually taking place. The disappearance of the tuning-fork interference lines from the magnetic field data during trickle mode could simply be an artifact caused by the AGC. However, it is consistent with theory and observation that low frequency wave attenuation by the dense xenon cloud generated during trickle mode is improving the data.
V. CONCLUSIONS

The positive emission system experiment on board the SCATHA satellite showed that a neutralized ion beam is very effective in discharging a differentially charged satellite. However, the plasma wave experiments on board SCATHA show that arcing can result from the operation of a non-neutralized ion beam. Some major points of interest in the data are:

- The arcing seen during emission of accelerated ions without neutralization depends on the beam current, with more frequent arcing at higher beam current.

- Arcing ceases when the acceleration voltage is turned off, while the gun is still emitting ions.

- Arcing ceases when the neutralizer is turned on.

- A broadband (1 - 2 kHz) signal exists on the magnetic antenna during trickle mode but not on the electric antenna.

- Intense low (<100 Hz) frequency signals seen in the electric field data with the gun off and during non-neutralized beam emissions are not seen during neutralized beam emissions.

If the arcing is due to differential charging it is clear that it would be a function of the beam current level. Both trickle mode and neutralizer operations would provide a means of discharging the satellite causing the surface arcing to cease. For these reasons we believe the arcing is caused by differential charging of the satellite surface.
The signals seen in the magnetic field data during trickle mode could be associated with plasma turbulence or ion acoustic waves in close proximity to the satellite. It is not clear if these signals are electrostatic or electromagnetic (Ref. 12).

The broad (1 - 2 kHz) signal is regularly seen during ion gun operations. This signal is apparently the receiver response to a white noise input.

The emission of a neutralized ion beam, which is known to provide control of spacecraft charging, was found not to generate plasma waves which might interfere with the experimental observation of ambient signals. It is possible that the emission of a sufficiently dense, cold, neutral plasma (trickle mode with neutralizer on, bias level at 0 V) could allow the shielding of antennas (such as the SCI0 dipole antenna) from satellite interference while still allowing for control of satellite charging.
APPENDIX

TABLE 1

SCATHA SATELLITE EXPERIMENTS

<table>
<thead>
<tr>
<th>Exp Id</th>
<th>Title</th>
<th>Parameters Measured</th>
</tr>
</thead>
</table>
| SC1 | Engineering Experiments Plus VLF and HF Receivers | (1) Surface potentials of various materials
(2) EM VLF wave analyzer (a few Hz to 300 kHz)
(3) EM RF wave analyzer (2 MHz to 30 MHz)
(4) Transient pulse shape analyzer |
| SC2 | Spacecraft Sheath Fields Plus Energetic Ions | (1) Potentials of spherical probes
(2) Low energy electrons and ions (15 eV/q to 18.6 keV/q)
(3) Energetic protons (17 keV to >3.3 MeV)
(4) Energetic ions Z>2 (E_I>90 keV/neucleon) |
| SC3 | High Energy Particle Spectrometer | High energy electrons and protons (E_e = 50 keV to 5.3 MeV, E_e = 1.0 MeV to 200 MeV) |
| SC4 | Satellite Electron and Positive Ion Beam System | (1) Electron beam emission system E_e = 50 eV to 3.0 keV; I_e = 1.0 μA to 13 mA)
(2) Positive ion (Xenon) beam emission system (E_I = 1.0 and 2.0 keV; I_I = 0.3 mA to 2.0 mA) |
<p>| SC5 | Rapid Scan Particle Detector | Electrons and ions (E_e = 50 eV to 1.0 MeV; E_I =50 eV to 35 MeV) |</p>
<table>
<thead>
<tr>
<th>Exp Id</th>
<th>Title</th>
<th>Parameters Measured</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC6</td>
<td>Thermal Plasma Analyzer</td>
<td>Thermal electrons and ions (E_e & E_i from 0 eV to 100 eV)</td>
</tr>
<tr>
<td>SC7</td>
<td>Light Ion Mass Spectrometer</td>
<td>Light ion density, temperature and composition ($E_I = 0.0$ to 1000 eV; H^+, He^+, O^+)</td>
</tr>
</tbody>
</table>
| SC8 | Energetic Ion Composition Experiment | (1) Ion composition of energetic plasma ($E_I = 100$ eV to 32 keV; $M^I = 0.8$ to 160 AMU with $M/Q = 1, 2, 4$ or 16)
(2) Low energy electrons ($E = 70$ eV to 24 keV in 4 channels) |
| SC9 | UCSD Charged Particle Experiment | Electrons and ions (one set with $E = $ few eV to 81 keV, two others with $E = 0.2$ eV to 1.55 keV) |
| SC10 | Electric Field Detector | DC and ELF electric fields and satellite potential (ELF 0.2 to 200 Hz; common mode voltage 0 to \pm 5 keV) |
| SC11 | Magnetic Field Monitor | DC and ELF magnetic field (range from ± 0.3 to ± 500 nT; ELF about 1 to 100 Hz) |
| ML12 | Spacecraft Contamination Plus Thermal Control | (1) Contaminant mass deposition rates
(2) Solar absorptance of test materials |
<p>| TPM | Transient Pulse Monitor | Electromagnetic pulse environment on satellite (Pulse amplitude 2 mV to 240 V, current 2 mA to 1700 A) |</p>
<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Instrument on</td>
<td>Turns on instrument power</td>
</tr>
<tr>
<td>2. Instrument off</td>
<td>Turns off all instrument power</td>
</tr>
<tr>
<td>3. Expellant valve open</td>
<td>Opens solenoid valve</td>
</tr>
<tr>
<td>4. Expellant valve closed</td>
<td>Closes expellant valve</td>
</tr>
<tr>
<td>5. Cathode heater preheat</td>
<td>Turns on the cathode to Level 1 and turns on discharge supply</td>
</tr>
<tr>
<td>6. Ion gun power on</td>
<td>Turns on the ion gun power</td>
</tr>
<tr>
<td>7. Ion gun power off</td>
<td>Turns off the ion gun power</td>
</tr>
<tr>
<td>8. Beam voltage Level 1</td>
<td>Sets the beam power supply to 1000 V</td>
</tr>
<tr>
<td>9. Beam voltage Level 2</td>
<td>Sets the beam power supply to 2000 V</td>
</tr>
<tr>
<td>10. Keeper off</td>
<td>Turns the keeper supply off</td>
</tr>
<tr>
<td>11. Discharge current and neutralizer emission Level 1</td>
<td>Sets the discharge current reference to achieve 20 mA current; sets neutralizer emission level to 0.4 mA</td>
</tr>
<tr>
<td>12. Discharge current and neutralizer emission Level 2</td>
<td>Sets the discharge current reference to achieve 125 mA current; sets neutralizer emission level to 1.2 mA</td>
</tr>
<tr>
<td>13. Discharge current and neutralizer emission Level 3</td>
<td>Sets the discharge current reference to achieve 200 mA current; sets neutralizer emission level to 2.2 mA</td>
</tr>
<tr>
<td>14. Neutralizer emission Level 4</td>
<td>Sets neutralizer emission level to 2 mA</td>
</tr>
<tr>
<td>Command</td>
<td>Function</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--</td>
</tr>
<tr>
<td>15. Neutralizer emission</td>
<td>Sets neutralizer emission level to 20 µA</td>
</tr>
<tr>
<td>Level 5</td>
<td></td>
</tr>
<tr>
<td>16. Neutralizer No. 1</td>
<td>Selects neutralizer filament No. 1</td>
</tr>
<tr>
<td>17. Neutralizer No. 2</td>
<td>Selects neutralizer filament No. 2</td>
</tr>
<tr>
<td>18. Neutralizer heater on</td>
<td>Turns on the neutralizer cathode heater</td>
</tr>
<tr>
<td>19. Neutralizer heater off</td>
<td>Turns off the neutralizer heater</td>
</tr>
<tr>
<td>20. Neutralizer bias off</td>
<td>Turns off the neutralizer bias power supply</td>
</tr>
<tr>
<td>21. Neutralizer bias</td>
<td>Sets the neutralizer bias for positive polarity</td>
</tr>
<tr>
<td>positive</td>
<td></td>
</tr>
<tr>
<td>22. Neutralizer bias</td>
<td>Sets the neutralizer bias for negative polarity</td>
</tr>
<tr>
<td>negative</td>
<td></td>
</tr>
<tr>
<td>23. Neutralizer bias</td>
<td>Turns on the neutralizer bias to 10 V</td>
</tr>
<tr>
<td>Level 1</td>
<td></td>
</tr>
<tr>
<td>24. Neutralizer bias</td>
<td>Turns on the neutralizer bias to 25 V</td>
</tr>
<tr>
<td>Level 2</td>
<td></td>
</tr>
<tr>
<td>25. Neutralizer bias</td>
<td>Turns on the neutralizer bias to 100 V</td>
</tr>
<tr>
<td>Level 3</td>
<td></td>
</tr>
<tr>
<td>26. Neutralizer bias</td>
<td>Turns on the neutralizer bias to 500 V</td>
</tr>
<tr>
<td>Level 4</td>
<td></td>
</tr>
<tr>
<td>27. Neutralizer bias</td>
<td>Turns on the neutralizer bias to 1000 V</td>
</tr>
<tr>
<td>Level 5</td>
<td></td>
</tr>
<tr>
<td>28. High voltage off</td>
<td>Turns off the beam and accel power supplies</td>
</tr>
<tr>
<td>29. Cathode conditioning</td>
<td>Turns on the cathode heater</td>
</tr>
</tbody>
</table>
LIST OF REFERENCES

BIBLIOGRAPHY

<table>
<thead>
<tr>
<th>No.</th>
<th>Copies</th>
<th>Distribution List</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>2</td>
<td>Defense Technical Information Center
Cameron Station
Alexandria, Virginia 22304-6145</td>
</tr>
<tr>
<td>2.</td>
<td>2</td>
<td>Library, Code 0142
Naval Postgraduate School
Monterey, California 93943-5002</td>
</tr>
<tr>
<td>3.</td>
<td>2</td>
<td>Department Chairman, Code 61
Department of Physics
Naval Postgraduate School
Monterey, California 93943</td>
</tr>
<tr>
<td>4.</td>
<td>20</td>
<td>Dr. R. C. Olsen, Code 610S
Department of Physics
Naval Postgraduate School
Monterey, California 93943</td>
</tr>
<tr>
<td>5.</td>
<td>1</td>
<td>Dr. S. Gnanalingam, Code 61GM
Department of Physics
Naval Postgraduate School
Monterey, California 93943</td>
</tr>
<tr>
<td>6.</td>
<td>1</td>
<td>Ms. D. E. Donatelli
Space Physics Division
Air Force Geophysics Laboratory/PH
Hanscom AFB, Massachusetts 01731</td>
</tr>
<tr>
<td>7.</td>
<td>1</td>
<td>Dr. R. Sagalyn
Space Physics Division
Air Force Geophysics Laboratory/PH
Hanscom AFB, Massachusetts 01731</td>
</tr>
<tr>
<td>8.</td>
<td>1</td>
<td>Mr. G. Mullen
Space Physics Division
Air Force Geophysics Laboratory/PHP
Hanscom AFB, Massachusetts 01731</td>
</tr>
<tr>
<td>9.</td>
<td>1</td>
<td>Dr. S. Lai
Space Physics Division
Air Force Geophysics Laboratory/PH
Hanscom AFB, Massachusetts 01731</td>
</tr>
</tbody>
</table>
10. Dr. B. Burke
Space Physics Division
Air Force Geophysics Laboratory/PHA
Hanscom AFB, Massachusetts 01731

11. Dr. N. Maynard
Space Physics Division
Air Force Geophysics Laboratory/PH
Hanscom AFB, Massachusetts 01731

12. Mr. H. A. Cohen
W. J. Schafer Associates
1901 North Fort Meyer Drive
Arlington, Virginia 22209

13. Mr. R. Gracen Joiner
Office of Naval Research, Code 1114
800 North Quincy Street
Arlington, Virginia 22217-5000

14. Dr. H. C. Koons
Space Sciences Laboratory
The Aerospace Corporation, M2/260
P. O. Box 92957
Los Angeles, California 90009

15. Dr. J. Roeder
Space Sciences Laboratory
The Aerospace Corporation, M2/260
P. O. Box 92957
Los Angeles, California 90009

16. Dr. E. C. Whipple
Center for Astrophysics and Space Science
University of California at San Diego
La Jolla, California 92037

17. Dr. C. E. McIlwain
Center for Astrophysics and Space Science
University of California at San Diego
La Jolla, California 92037

18. Dr. J. Hyman
Hughes Research Lab
3011 Malibu Canyon Road
Malibu, California 90265
19. Dr. T. Williamson
Hughes Research Lab
3011 Malibu Canyon Road
Malibu, California 90265

20. Dr. S. Shawhan
NASA Headquarters/E
Washington, DC 20546

21. Dr. C. K. Purvis
MC 302-1
NASA Lewis Research Center
21000 Brookpark Road
Cleveland, Ohio 44135

22. Dr. J. Kolecki
MC 302-1
NASA Lewis Research Center
21000 Brookpark Road
Cleveland, Ohio 44135

23. Dr. C. R. Chappell
NASA Marshall Space Flight Center
Huntsville, Alabama 35812

24. Dr. T. E. Moore, ES53
NASA Marshall Space Flight Center
Huntsville, Alabama 35812

25. Dr. J. H. Waite, ES53
NASA Marshall Space Flight Center
Huntsville, Alabama 35812

26. Dr. D. Hastings
Department of Aeronautics and Astronautics
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

27. Dr. I. Katz
S - Cubed
P. O. Box 1620
La Jolla, California 92038-1620

28. Dr. J. Raitt
CASS
Utah State University
Logan, Utah 84322
29. Professor Nobuki Kawashima
 Institute of Space and Astronautical Science
 Komaba 4 - chome
 Meguro - ku
 Tokyo, Japan 153

30. Professor W. Riedler
 Institute fuer Weltraumforschung Oesterreichische
 Akademieder Wissenschaften
 Inffeldgasse 12
 A - 8810 Graz, Austria

31. Dr. K. Torkar
 Institute fuer Weltraumforschung Oesterreichische
 Akademieder Wissenschaften
 Inffeldgasse 12
 A - 8810 Graz, Austria

32. Dr. R. Schmidt
 Space Science Department
 ESA/ESTEC
 Noordwijk, The Netherlands

33. Dr. A. Pedersen
 Space Science Department
 ESA/ESTEC
 Noordwijk, The Netherlands

34. LT L. E. Weddle, USN
 10085 West Georgetown Road
 Columbus, Indiana 47201

35. Dr. W. F. Denig
 Space Physics Division
 Air Force Geophysics Laboratory/PHG
 Hanscom AFB, Massachusetts 01731

36. Dr. N. Omidi
 IGPP
 University of California at Los Angeles
 Los Angeles, California 90024

37. Dr. Maha Ashour - Abdalla
 IGPP
 University of California at Los Angeles
 Los Angeles, California 90024

38. Dr. R. R. Anderson
 Department of Physics and Astronomy
 University of Iowa
 Iowa City, Iowa 52242