Gating Kinetics and Ion Transfer in Channels of Nerve Membrane

Fishman, Harvey M.

Annual
From 11/86 to 10/87
October 21, 1987
11

The ultimate objective of this project is to obtain an electrochemical description of the molecular processes underlying the movement of ions across nerve membranes during excitation of a nerve fiber. The short-term objectives are to obtain fundamental information on the processes of ion transfer in Na and K channels known as "gating" (electric-field initiated alteration of the membrane to the conduction of specific ions) and "conductance" (the passage of ions through a channel after ions gain access to a channel). Whether the gating mechanism can be validly described by linear, equilibrium processes will be determined by examining the time-reversal properties of ion channel conductance fluctuations and/or by comparison of gating-current fluctuations with those predicted from the Nyquist relation and measured membrane admittance. The kinetics of gated channels derived from analysis of stochastic (microscopic) current fluctuations and those derived from macroscopic determinations will be compared to ascertain whether an assumed relationship exists. Furthermore, the macroscopic gating kinetics of Na and K channels derived from step clamp transients will be compared with

DTIC SELECTED

REPORT DOCUMENTATION PAGE

AD-A195 092

NA

3 Distribution/Availability of Report
Distribution unlimited

Univ. of Texas Medical Branch

7a. Name of Monitoring Organization
Office of Naval Research

Univ. of Texas Medical Branch

7b. Address (City, State, and ZIP Code)
800 N. Quincy Street
Arlington, VA 22217-5000

Department of Physiology and Biophysics
Galveston, Texas 77550

Office of Naval Research

9. Procurement Instrument Identification Number
ONR: 0001-87-K-0055

11. Title (Include Security Classification)
Gating Kinetics and Ion Transfer in Channels of Nerve Membrane (U)

12a. Type of Report
12b. Time Covered
Annual
From 11/86 to 10/87

13. Supplementary Notation

14. Date of Report (Year, Month, Day)
October 21, 1987

15. Page Count
11

17. COSATI Codes
08

18. Subject Terms (Continue on reverse if necessary and identify by block number)
Ion channels, nerve conduction kinetics, membrane admittance, thermodynamics of gating, conductance

19. Abstract (Continue on reverse if necessary and identify by block number)
The ultimate objective of this project is to obtain an electrochemical description of the molecular processes underlying the movement of ions across nerve membranes during excitation of a nerve fiber. The short-term objectives are to obtain fundamental information on the processes of ion transfer in Na and K channels known as "gating" (electric-field initiated alteration of the membrane to the conduction of specific ions) and "conductance" (the passage of ions through a channel after ions gain access to a channel). Whether the gating mechanism can be validly described by linear, equilibrium processes will be determined by examining the time-reversal properties of ion channel conductance fluctuations and/or by comparison of gating-current fluctuations with those predicted from the Nyquist relation and measured membrane admittance. The kinetics of gated channels derived from analysis of stochastic (microscopic) current fluctuations and those derived from macroscopic determinations will be compared to ascertain whether an assumed relationship exists. Furthermore, the macroscopic gating kinetics of Na and K channels derived from step clamp transients will be compared with

20. Distribution/Availability of Abstract

21. Abstract Security Classification

DTIC USERS

22a. Name of Responsible Individual
Dr. J.A. Majde

22b. Telephone (Include Area Code)
(202) 696-4055

22c. Office Symbol
ONR
19. Those derived in steady state via small-amplitude admittance measurements to ascertain if kinetic determinations are time invariant. Conductance studies will focus on the voltage-sensitivity of the Na channel conductance and whether this could arise from channel blockage by Ca or H ions, multiple conducting states of channels, or from a heterogeneous population of channels.
Research Objectives

This project employs innovative measurements and techniques to obtain fundamental electrochemical information on the processes of ion transfer in Na and K channels known as "gating" (electric-field initiated alteration of the membrane to the conduction of specific ions) and "conductance" (the passage of ions through a channel after ions gain access to a channel) in order to assess the applicability of linear versus nonlinear rate theory and equilibrium versus nonequilibrium thermodynamics to models of ion channel kinetics.

Brief statement of major accomplishments in the first year

The focus of activity during the past year was on obtaining meaningful macrokinetic characterization of three types of K channels (outward delayed rectifier, inward anomalous rectifier and Ca-activated K conductance) in three preparations: squid giant axon, neuronal soma membranes in snail (Helix aspersa) and sea hare (Aplysia). In the classical squid axon preparation a detailed comparison between estimates of the relaxation time obtained via Hodgkin-Huxley (HH) analysis of step, voltage-clamp current responses and direct linear analysis in the steady state (200 msec after step clamp) via curve fits of a complex admittance model to acquired admittance data showed that the HH estimates were both model dependent and empirical in that the estimates do not agree with those obtained from a truly linear analysis (admittance). Thus the HH methodology cannot be used to obtain kinetic parameters that can be related to any physicochemical theory. Alternatively, we have shown that characterization of the linear kinetics of ion conduction processes in membranes is more appropriately carried out via admittance measurements and analysis. Admittance measurements were thus used exclusively to obtain relaxation times of K conductances in the neuronal preparations.
Analysis of K Conductance Relaxations in Squid Axon Membrane

Application of the Hodgkin-Huxley (HH) power law formulation has become a standard procedure in the analysis of conduction in membrane preparations. Whether the HH methodology and formulation yields relaxation times that are independent of the empiricism of the assumed power law and whether the relaxation times are consistent with those obtained by a direct (small signal) linear analysis were previously unexamined questions. To resolve these issues, intact squid axons were voltage clamped by conventional axial electrode techniques and the K current response recorded after blockage of Na conduction by cetrodotoxin (1 uM) added to the external artificial sea water. The K current response to step voltage clamps from 1 to 80 mV from a holding potential of -65 mV were fitted by the equation

$$i_K = I_{K0} (1 - K_0 e^{-t/\tau_n})^x$$

(1)

where I_{K0} and K_0 are arbitrary parameters and τ_n, the relaxation time, and x, the exponent in the HH power law formulation are variables which could be changed in order to minimize (least squares criterion) the difference between equation (1) and the current records with leakage and capacitive transient removed. The best fits to data, as seen in Fig. 1, were obtained for x variable rather than 4, the HH value. Thus, estimates of τ_n depended on the value of x used to fit the step response, as shown in Fig. 2. Clearly, the relaxation times determined in this way are an empirical set of numbers.

Next, we carried out a driving point (admittance) linear analysis to obtain $\tau_n(V)$ directly and to compare the values obtained with those from an HH analysis of step clamp responses in the same axon. Rapid acquisition of admittance data was achieved by use of a Fourier synthesized signal as a small perturbation...
Fig. 1 Comparison of the Hodgkin-Huxley (HH) model fits of eq. (1) of the squid axon K current (capacitive transient and leakage current removed) in response to 5 mV (-60 mV) to 60 mV (-5 mV) voltage steps from a holding potential of -65 mV.

Fig. 2 K conductance relaxation time as a function of voltage, $\tau_n(V)$, derived from best fit of the HH description of i_K in eq. (1) for $x = \text{variable}$ and $x = 4$ to squid axon, voltage clamp responses in Fig. 1. HH $\tau_n(V)$ curve is calculated from HH formulation for 9.2°, assuming a Q10 = 3. Curves fits of data by eye.
superposed on a step voltage clamp together with Fourier techniques developed by us and described previously. Admittance data acquired 200 msec after each step clamp was shown to be in steady state and were fitted by the equations

$$Y(j\omega) = \frac{[R_s + Y_m(j\omega)]^{-1}}{2}$$

(2)

where R_s is the resistance between voltage-sensing electrodes and the inner and outer membrane surfaces and $Y_m(j\omega)$ is the membrane complex admittance, given by

$$Y_m(j\omega) = (j\omega)^{\alpha} C_m + g_o + g_k (1 + j\omega \tau_n)^{-1}$$

(3)

In equation (3), C_m is membrane capacitance, α is a number <1 that reflects the constant-phase-angle character of C_m, g_o is the membrane chord conductance, and the frequency-dependent term involving g_k and τ_n reflects the relaxation kinetics.

Fig. 3 Comparison of K conductance relaxation times, τ_n, determined by model curve fits of : (1) step voltage clamp responses with x variable (filled circles), as in Fig. 1 and (2) the membrane admittance 200 msec after step clamps (filled triangles) in the same axon and under the same experimental conditions. Curves are drawn by eye.

Fig. 3 shows the $\tau_n(V)$ data obtained by fit of equations (2) and (3) to squid axon admittance data (filled triangles) together with the estimates obtained from fit of equation (1) to step clamp transient responses with x variable (the best fit) in the same axon. We conclude that an HH analysis is not equivalent to a linear analysis and that it yields values for τ_n that have
Linear Analysis of K Conduction from Impedance Determinations in Snail Neuron

Three types of potassium conductance were distinguishable pharmacologically in isolated single neuron from Helix aspersa (snail). The linear kinetic parameters of the voltage-sensitive, "delayed rectifier" K conductance and the Ca-activated, K conductance were obtained by curve fitting model admittance functions of frequency to complex admittances obtained from the reciprocal of measured impedance data. The complex impedance of the K conduction process of an identified soma cell membrane was measured in the frequency range 0.25 Hz to 100 Hz. Relaxation times of activation of voltage-sensitive, "delayed rectifier" K conductance were in the range 14.7 msec at 0 mV and 6 msec at 40 mV. Relaxation times for the Ca-activated, K conductance were estimated to be between 108 msec at 0 mV and 65.7 msec at 50 mV. The capacitive-like kinetic behavior of the delayed rectifier decreased from 1.67 μF/cm² to 0.64 μF/cm² in this depolarized voltage range. At hyperpolarized voltages in high external potassium, a small amount of rectification of inward K current was observed. A manuscript containing the details of this work has been accepted for a special issue of the journal FERROELECTRICS.
Inward K Rectifier Channel Kinetics from Analysis of Complex Conductances in Aplysia Neuronal Membrane.

The inward K+ rectifier in Aplysia neuron and Ba++ blockade of the rectification process were studied by rapid measurement of complex admittances during voltage clamps to membrane potentials in the range of -90 to -40 mV. Complex ionic conductances of K+ and Cl- rectifiers were extracted from complex admittances of other membrane conduction processes and capacitance by vector subtraction of the membrane complex admittance during suppressed inward K+ current (near zero-mean current and in zero [K+]o) from complex admittances determined at other [K+]o and membrane potentials. The contribution of the K+ rectifier to the admittance is distinguishable in the frequency domain above 1 Hz from the contribution of the Cl- rectifier, which is only apparent at frequencies less than 0.1 Hz. The voltage dependence (-90 to -40 mV) of the chord conductance (0.2 to 0.05 uS) and the relaxation time (4-8 ms) of the K+ rectifier at [K+]o = 40 mM were determined by curve fits of admittance data by an admittance model based on the linearized Hodgkin-Huxley equations. The conductance of the inward K+ rectifier at -80 mV membrane potential had a square-root dependence on external K+ concentration and the relaxation time increased from 2 ms to 7.5 ms for [K+]o = 20 and 100 mM, respectively. The admittance of the inward K+ rectifier, affected by Ba++, was obtained by complex vector subtraction of the admittance for which the inward K+ rectifier was blocked (at -35 mV and [Ba++]o = 5 mM) from admittances determined at -80 mV and at other Ba++ concentrations. The relaxation time of the blockade process decreased with increases in Ba++ concentration. An open-closed channel state model produces the inductive-like kinetic behavior in the admittance of the inward K+ rectifier and the addition of a blocked channel state accounts for the capacitive-like kinetic behavior of the Ba++ blockade process. A manuscript
Additional activities

A manuscript was submitted for publication in a book on the "Mechanistic approaches to Interactions of Electromagnetic Fields with Living System". The main thesis of the paper is that the responsiveness of elasmobranch fishes to weak electric fields can be understood from the known anatomical structures and electrophysiology of the electroreceptive organ known as the ampulla of Lorentzini in these fishes. Within each ampulla there are 1-10 thousand receptor cells which respond to the same electric field and whose outputs are summed in the afferent nerve which innervates the basolateral surface of these receptor cells. By summation of their outputs the noise level of any one receptor is reduced by the factor $1/\sqrt{n}$, where n is the number of receptor cells.

Publications

2. Fishman, H.M. and Lipicky, R.J. 1987. HH analysis of K current relaxations does not yield the relaxation time of the linearized conducting system. 9th International Biophysics Congress, Jerusalem, Israel.

Manuscripts Submitted for Publication

DISTRIBUTION LIST
Membrane Electrochemistry Program

Annual, Final and Technical Reports (one copy each except as noted)

INVESTIGATORS

Dr. William E. Brownell
Department of Otolaryngology-HNS
Johns Hopkins University
School of Medicine
720 Rutland Avenue
Baltimore, MD 21205

Dr. Marco Colombini
Department of Zoology
University of Maryland
College Park, MD 20742

Dr. D. W. Deamer
Department of Zoology
University of California
Davis, CA 95616

Dr. Edward A. Dratz
Department of Chemistry
Montana State University
Bozeman, MT 59717

Dr. Harvey M. Fishman
Department of Physiology and Biophysics
University of Texas Medical Branch
Galveston, TX 77550

Dr. Sol M. Gruner
Department of Physics
Jadwin Hall
Princeton University
P. O. Box 708
Princeton, NJ 08544

Dr. Felix T. Hong
Department of Physiology
Wayne State University
540 E. Canfield Avenue
Detroit, MI 48201

Dr. Huey W. Huang
Department of Physics
Rice University
Houston, TX 77001

Dr. Gilbert Ling
Pennsylvania Hospital
Eighth and Spruce Streets
Philadelphia, PA 19107

Dr. Israel R. Miller
The Weizmann Institute of Science
Rehovot 76100
ISRAEL

Dr. V. Adrian Parsegian
Laboratory of Chemical Biology,
NIADDK
Room 9N-307
Building 10
Bethesda, MD 20892

Dr. David S. Perlin
Department of Biochemistry
Public Health Research Institute
455 First Avenue
New York, NY 10016

Dr. H. Gilbert Smith
EG & G Mason Research Institute
57 Union Street
Worcester, MA 01608

Dr. Michael E. Starzak
Department of Chemistry
State University of New York
Binghamton, NY 13901

Dr. H. Ti Tien
Department of Physiology
Membrane Biophysics Laboratory
Michigan State University
East Lansing, MI 48824

Dr. Tian Y. Tsong
Department of Biological Chemistry
Johns Hopkins University
School of Medicine
725 N. Wolfe Street
Baltimore, MD 21205

Dr. Petr Vanyscek
Department of Chemistry
Northern Illinois University
De Kalb, IL 60115

Dr. Howard Wachtel
Dept. of Electrical & Computer Eng.
University of Colorado, Campus Box 425
Boulder, CO 80309

Dr. James C. Weaver
Div. Health Sciences & Technology
Room 20A-128
Massachusetts Institute of Tech.
Cambridge, MA 20742

Dr. George S. Wilson
Department of Chemistry
University of Kansas
Lawrence, KS 66045
Annual, Final and Technical Reports

ADMINISTRATORS

Dr. Jeannine A. Majde, Code 1141SB (2 copies)
Program Manager, Systems Biology
Office of Naval Research
800 N. Quincy Street
Arlington, VA 22217-5000

Dr. Robert J. Nowak, Code 1113ES
Scientific Officer, Electrochemical Sciences
Office of Naval Research
800 N. Quincy Street
Arlington, VA 22217-5000

Dr. Martin Blank, Scientific Officer
Department of Physiology
Columbia University College of Physicians and Surgeons
630 West 168th Street
New York, NY 10032

Program Manager
Biological/Human Factors Division
Code 125
Office of Naval Research
800 N. Quincy Street
Arlington, VA 22217-5000

Administrator (2 copies) (Enclose DTIC Form 50)
Defense Technical Information Center
Building 5, Cameron Station
Alexandria, VA 22314

Program Manager
Support Technology Directorate
Office of Naval Technology, Code 223
800 N. Quincy Street
Arlington, VA 22217-5000

Administrative Contracting Officer
ONR Resident Representative
(address varies - obtain from contract or your business office)

Annual and Final Reports Only (one copy each)

DoD ACTIVITIES

Commander
Chemical and Biological Sciences Division
Army Research Office, P. O. Box 1221
Research Triangle Park, NC 27709

Directorate of Life Sciences
Air Force Office of Scientific Research
Bolling Air Force Base
Washington, DC 20332

Head
Biomolecular Engineering Branch
Code 6190
Naval Research Laboratory
Washington, DC 20375

Final and Technical Reports Only

Director, Naval Research Laboratory (6 copies)
Attr: Technical Information Division, Code 2627
Washington, DC 20375
END
DATE
FILM
8-88
DTIC