| AD-A194 029 | A LINEAR-TIME ALGORITHM FOR FINDING A MINIMUM SPANNING | 1/1 |
| PSEUDOFOREST(U) PRINCETON UNIV NJ DEPT OF COMPUTER |
SCIENCE			
H N GABOW ET AL. JUL 87 CS-TR-100-87			
UNCLASSIFIED	N00014-87-K-0467		
F/G 12/4			
NL			
MICROCOPY RESOLUTION TEST CHART

1.0 1.1 1.25 1.6 1.8 2.0 2.2
A LINEAR-TIME ALGORITHM FOR FINDING A MINIMUM SPANNING PSEUDOFOREST

Harold N. Gabow
Robert E. Tarjan

CS-TR-108-87
July 1987

Department of Computer Science
A LINEAR-TIME ALGORITHM FOR FINDING
A MINIMUM SPANNING PSEUDOFOREST

Harold N. Gabow
Robert E. Tarjan

CS-TR-108-87
July 1987
A Linear-Time Algorithm for Finding a Minimum Spanning Pseudoforest

Harold N. Gabow\(^1\)
Department of Computer Science
University of Colorado
Boulder, CO 80309

Robert E. Tarjan\(^2\)
Computer Science Department
Princeton University
Princeton, NJ 08544

and

AT&T Bell Laboratories
Murray Hill, NJ 07974

July, 1987

Abstract.

A pseudoforest is a graph each of whose connected components is a tree or a tree plus an edge; a spanning pseudoforest of a graph contains the greatest number of edges possible. This paper shows that a minimum cost spanning pseudoforest of a graph with \(n\) vertices and \(m\) edges can be found in \(O(m + n)\) time. This implies that a minimum spanning tree can be found in \(O(m)\) time for graphs with girth at least \(\log^i n\) for some constant \(i\).

\(^1\) Research supported in part by NSF Grant No. MCS-8302648 and AT&T Bell Laboratories.

\(^2\) Research supported in part by NSF Grant No. DCR-8605962 and ONR Contract No. N00014-87-K-0467.
1. Introduction.

A pseudotree is a connected graph with equal number of vertices and edges, i.e., a tree plus an edge creating a cycle. A pseudoforest is a graph each of whose connected components has at least as many vertices as edges, i.e., each component is a tree or a pseudotree. Pseudoforests arise in many applications although the terminology is not standard. We use the terminology of [PQ], which uses pseudoforests to compute the density and arboricity of a graph; see [W] for refinements of this approach. Pseudotrees are essentially the 1-trees used in [HK] to solve the traveling salesman problem. The directed version of a pseudoforest is called a functional graph in [Be], since it corresponds to the graph of a finite function. For this reason pseudoforests commonly arise in parallel processing, when each processor chooses a successor (e.g., [GPS]). The pseudoforests of a graph form the bicircular matroid, which is important in the study of rigidity of bar-and-body frameworks [WW]. In the problem of minimum cost network flow with losses and gains [L], a linear programming basis is a pseudoforest [D]. A pseudotree is also called a unicyclic graph [e.g., MH].

With these applications as motivation we propose the minimum spanning pseudoforest problem: Consider a graph G with n vertices and m edges. A pseudoforest spans G if it has the greatest possible number of edges. Assume every edge e has a real-valued cost $c(e)$. The cost of a set of edges is the sum of all its edge costs. A minimum spanning pseudoforest has the smallest cost possible. This paper presents an algorithm to find such a pseudoforest in time $O(m + n)$.

The pseudoforest problem relates to finding a minimum spanning tree. The best-known time for finding a minimum spanning tree is $O(m \log \beta(m, n))$ [GGST], where

$$\beta(m, n) = \min(i \mid \log^{(i)} n \leq m/n).$$

Here \log denotes logarithm base two, and $\log^{(i)} n$ is the ith iterated logarithm, defined by $\log^{(0)} n = n$, $\log^{(i+1)} n = \log(\log^{(i)} n)$. Note that if $m/n \geq \log^{(i)} n$ for some constant i then $\beta(m, n) \leq i$, so the time to find a minimum spanning tree is $O(m)$. This paper presents a related result: If a graph has girth at least $\log^{(i)} n$ for some constant i then a minimum spanning tree can be found in $O(m)$ time.

Section 2 presents the results. This section closes with definitions and background from graph theory and data structures.

If S is a set and e an element, $S + e$ denotes $S \cup \{e\}$ and $S - e$ denotes $S - \{e\}$. For a graph G, $V(G)$ and $E(G)$ denote its vertex set and edge set, respectively. Hence for the given graph G, $n = |V(G)|$ and $m = |E(G)|$. An edge e is incident to a subgraph H if one or both ends is in $V(H)$ but $e \notin E(H)$.
A tree (pseudotree) component of a graph G is a connected component of G that is a tree (pseudotree). A spanning pseudoforest P for a graph G consists of every tree component of G, plus for every other connected component C of G, one or more pseudotree components that partition $V(C)$. Note that P contains exactly $|V(C)|$ edges of G.

The set merging problem [T] is to maintain a collection of disjoint sets which, after initialization, is subject to two operations:

- $\text{unite}(S, S')$— form a new set $S \cup S'$, thereby destroying sets S and S';
- $\text{find}(e)$— return the name of the set containing element e.

The set merging algorithm used in Section 2 is union by size: It represents each set S by a union tree, i.e., a tree whose nodes are the elements of S. A unite makes the root of the smaller union tree a child of the root of the larger. An operation $\text{find}(v)$ is done by following the path in the union tree from v to the root. (No path compression is done). Hence a unite operation is $O(1)$ time and $\text{find}(v)$ is $O(\log s)$, where s is the size of the set containing v.

In this paper a priority queue is a data structure on a universe that is partitioned into disjoint queues, where each element has a real-valued cost, and after initialization the following operations can be performed:

- $\text{meld}(Q, Q')$— form a new queue by combining Q and Q', thereby destroying queues Q and Q';
- $\text{find_min}(Q)$— return the smallest cost element in queue Q;
- $\text{delete}(e, Q)$— remove element e from queue Q.

The algorithm used in Section 2 implements priority queues with Fibonacci heaps [FT]. The following time bounds hold: meld is $O(1)$; $\text{find_min}(Q)$ is $O(\log s)$, where s is the size of Q; $\text{delete}(e, Q)$ is $O(\log s)$, where s is the size of the Fibonacci tree containing e. Note these are amortized time bounds. Also to achieve the bound for delete the algorithm of [FT] is modified slightly, making it lazier: Unlike [FT] a queue does not keep track of its minimum element. Rather $\text{find_min}(Q)$ links trees of Q until there is at most one tree of each rank, and then finds and returns the desired minimum. $\text{delete}(e, Q)$ cuts e from its parent and adds the children of e to the list of trees of Q.

The analysis of [FT] easily extends to prove the above time bounds. (The same time bounds can be achieved using binomial queues [Br] modified to do lazy melding).

2. The algorithm.

The algorithm is based on a locality property similar to one possessed by minimum spanning trees [T].
Lemma 2.1. Let P be a subgraph of a minimum spanning pseudoforest. Let e be a smallest cost edge incident to some tree component T of P. Then $P + e$ is a subgraph of a minimum spanning pseudoforest.

Proof. Let P^* be a minimum spanning pseudoforest containing P, and suppose P^* does not contain e. Let f be an edge of P^* that is incident to T such that the component of $P^* - f$ containing T is a tree (Specifically if T is in a tree component of P then f is an edge of P incident to T; if T is in a pseudotree component with cycle C, then f is an edge of P incident to T or on the path from T to C). By definition, $c(e) \leq c(f)$. Hence $P^* - f + e$ is the desired minimum spanning pseudoforest. \\

The algorithm enlarges a subgraph P to a minimum spanning pseudoforest. For efficiency it grows the components of P at approximately the same rate. More precisely let $d(v)$ denote the degree of vertex v in the given graph G; the (total) degree of a subgraph H is $\sum\{d(v) | v \in V(H)\}$. The algorithm grows components so that they have similar degrees. The details are as follows.

The algorithm initializes P to contain every vertex v of G (v is initially a tree component of P). It then repeats the following step as long as P contains a tree component with an incident edge:

Enlarging Step. Choose a tree component T of smallest degree and add to P a minimum cost edge incident to T.

Correctness of this algorithm follows from the lemma; clearly pseudoforest P spans G when the algorithm halts.

The enlarging step is implemented with the following data structures. A set merging data structure maintains the partition of $V(G)$ induced by the components of P. Each component of P is marked as a tree or pseudotree. Each tree component T maintains its degree $d(T)$, and a priority queue of incident edges $Q(T)$, ordered by cost. An edge can be in two priority queues, in which case the two occurrences are linked by pointers. There is an array $C[1..2m]$, where $C[d]$ points to a doubly-linked list of all tree components of degree d with an incident edge.

With this data structure the enlarging step works as follows: The outermost loop examines the entries in C in increasing order to find the next smallest tree component T. T is removed from its C-list. The smallest edge e in $Q(T)$ is obtained using find__min. The set merging data structure finds the two components containing the ends of e, say T and S. If $S = T$ it is marked
as a pseudotree. If $S \neq T$ then sets $V(S)$ and $V(T)$ are united; further if S is a tree it is deleted from its C-list, e is deleted from $Q(S)$ and $Q(T)$, these queues are melded, the new tree component $S \cup T$ gets degree $\delta = d(s) + d(t)$ and is added to the list $C[\delta]$ if its queue is nonempty. Finally in all cases, e is added to P.

To estimate the time, note that all initialization uses $O(m+n)$ time. The time for all enlarging steps, excluding priority queue find-mins and deletes and set merging finds, is $O(m+n)$. To estimate the time for find-mins, deletes and finds, define the rank of a component C as

$$r(C) = \lceil \log d(C) \rceil.$$

A simple induction shows that when T is chosen in the enlarging step, the size of any Fibonacci tree is at most $d(T)$ (recall that find-min is the only operation that enlarges Fibonacci trees; initially every edge is in its own Fibonacci tree). A similar induction shows that when T is chosen the height of the union tree for any component C is at most $\min\{r(C), 1+r(T)\}$ (since T's height is at most $r(T)$). Thus the find-min, find and two deletes for T take time $O(\log d(T) + r(T)) = O(r(T))$. Let $T(r)$ denote the set of all rank r tree components chosen as T in the enlarging step. Then the total find-min, delete and find time is at most a constant times

$$\sum_{r=0}^{\infty} r|T(r)|.$$

For any rank r, any edge is counted in the degree of at most two trees of $T(r)$ (since the enlarging step unites T into a pseudotree or increases the rank of the component containing T). Hence $\sum d(T)|T \in T(r)| \leq 2m$. Any $T \in T(r)$ has $d(T) \geq 2^r$. Thus $|T(r)| \leq m/2^{r+1}$. This implies the total time is at most a constant times $\sum_{r=0}^{\infty} r m/2^{r+1} = O(m)$.

Theorem 2.1. A minimum spanning pseudoforest can be found in time $O(m+n)$. $
$

Now we turn to the minimum spanning tree problem. Let P be a minimum spanning pseudoforest. Form a set C by choosing a maximum cost edge from each cycle of P.

Lemma 2.2. $P - C$ is a subgraph of a minimum spanning tree.

Proof. Let T be a minimum spanning tree with as many edges of P as possible. Suppose $P - C$ is not a subgraph of T. Let Q be a component of $(P - C) \cap T$ that is not a component of $P - C$; choose Q so it is not incident to an edge of C. Let e be an edge of P incident to Q such that the component of $P - e$ containing Q is a tree (e is found as in Lemma 2.1). Let f be an edge incident
to \(Q \) in the fundamental cycle of \(e \) in \(T \) (\(f \) exists since \(e \notin T \cup C \)). Then \(P - e + f \) is a spanning pseudoforest, whence \(c(e) \leq c(f) \). \(T - f + e \) is a spanning tree containing more edges of \(P \) than \(T \), whence \(c(f) < c(e) \). This contradiction proves the lemma. \(\blacksquare \)

The lemma justifies the following minimum spanning tree algorithm. Find a minimum spanning pseudoforest \(P \). Form the forest \(F \) by deleting a maximum cost edge from each cycle of \(P \); form the graph \(G' \) by contracting each tree of \(F \) to a vertex. Find a minimum spanning tree \(T \) of \(G' \). Now \(T \cup F \) is a minimum spanning tree of \(G \).

This algorithm improves the bound for minimum spanning trees in the following special case. For the improvement it suffices to find \(T \) using the minimum spanning tree algorithm of [FT], which uses time \(O(m\beta(m, n)) \) but is slightly simpler than [GGST]. Recall the girth \(g \) of a graph is the length of a shortest cycle [H].

Theorem 2.2. Let \(G \) be a graph with girth \(g \geq \log^{(i)} n \) for some constant \(i \). Then a minimum spanning tree of \(G \) can be found in time \(O(m) \).

Proof. Except for finding \(T \), the algorithm uses linear time. Let \(n' = |V(G')| \), \(m' = |E(G')| \), so \(T \) is found in time \(O(m'\beta(m', n')) \). Clearly \(n' \leq n/g \) and \(m' \leq m \). Note that \(m\beta(m, n) \) is an increasing function of \(m \) (since \(\beta(m, n) \leq n \) and \(\beta(m + 1, n) \geq \beta(m, n) - 1 \)). Hence \(m\beta(m, n) \leq m\beta(m, n') \leq m\beta(m, n/g) \). Since \(m \geq n \), \(\beta(m, n/g) \leq \beta(n, n/g) \leq \beta(n, n) \). Since \(g \geq \log^{(i)} n \), \(\beta(n, n) \leq i \) by definition. This gives the theorem. \(\blacksquare \)

In conclusion, a minimum spanning tree can be found in linear time if the graph has density or girth at least \(\log^{(i)} n \). This narrows the open case down to graphs that are extremely sparse.

Acknowledgments.

We thank David Shmoys for pointing out the applications of pseudoforests to networks.
References.

END DATE FILMED 7-88 DTIC