SURVEY OF TECHNOLOGY WITH POSSIBLE APPLICATIONS TO UNITED STATES COAST GUARD RESEARCH AND DEVELOPMENT CENTER GROTON CT S ALLEN ET AL. SEP 67

UNCLASSIFIED CG-D-96-98-VOL-2
SURVEY OF TECHNOLOGY WITH POSSIBLE APPLICATIONS TO UNITED STATES COAST GUARD BUOY TENDERS

VOLUME II - LITERATURE ABSTRACTS

S. ALLEN (editor)
R. YOUNG
K. BITTING
C. KOHLER
R. WALKER
R. WYLAND
D. PIETRASZEWSKI

U.S. COAST GUARD RESEARCH AND DEVELOPMENT CENTER
avery point, groton, connecticut 06340-6096

FINAL REPORT
SEPTEMBER 1987

DISTRIBUTION STATEMENT A
Approved for public release
Distribution Unlimited

This document is available to the U.S. public through the
National Technical Information Service, Springfield, Virginia 22161

Prepared for:
U.S. Department Of Transportation
United States Coast Guard
Office of Engineering and Development
Washington, DC 20593
NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

The United States Government does not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to the object of this report.

The contents of this report reflect the views of the Coast Guard Research and Development Center, which is responsible for the facts and accuracy of data presented. This report does not constitute a standard, specification, or regulation.

SAMUEL F. POWEL, III
Technical Director
U.S. Coast Guard Research and Development Center
Avery Point, Groton, Connecticut 06340-6096
This report is divided into three volumes. Volume I, "Technology Assessment", contains state-of-the-art summaries and projected trends for major technology areas pertinent to buoy tender design. Volume II, "Literature Abstracts", contains an annotated bibliography of the citations obtained during the technology survey. Volume III, "Technology Characterization", contains a description of the relational model and documentation of the computerized database used for storage and analysis of buoy tender data.

Volumes I, II, and III are contained within separate binders due to size considerations. Detailed abstracts of Volumes I and III may be found within each volume. What follows is the abstract for only Volume II.

Volume II, "Literature Abstracts", contains a bibliography of citations obtained in the technology survey. Citations include abstracts where available, and are organized by the following categories:

1. foreign aids to navigation vessels
2. aids to navigation; foreign practices
3. offshore supply support/work vessels
4. hull forms for seakeeping
5. propulsion systems
6. weight handling systems
7. vessel automation, navigation, control and monitoring

17. Key Words

buoy tenders seakeeping
aids-to-navigation propulsion
offshore supply vessels weight handling

18. Distribution Statement

Document is available to the U.S. public through the National Technical Information Service, Springfield, Virginia 22161
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Background</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Objective</td>
<td>1</td>
</tr>
<tr>
<td>1.3 Report Organization</td>
<td>1</td>
</tr>
<tr>
<td>1.4 Description of Literature Abstracts</td>
<td>1</td>
</tr>
<tr>
<td>APPENDIX A</td>
<td>A-1</td>
</tr>
</tbody>
</table>
1.0 INTRODUCTION

1.1 Background

Because of the advancing age of current U.S. Coast Guard buoy tenders of the WLB (180 foot) and WLM (157 foot) classes, the Commandant of the Coast Guard has initiated the WLB/WLM Capability Replacement Project within the Office of Acquisition (G-A). As part of this project, current technology pertinent to buoy tender design has been surveyed as task 205.06.4.1.

1.2 Objective

The objective of this survey is to compile, document and review the state-of-the-art in specific areas of marine technology that apply to buoy tending. Areas of technology identified by G-A which have been surveyed are:

- Foreign Aids to Navigation Vessels
- Aids to Navigation; Foreign Practices
- Offshore Supply/Support/Work Vessels
- Hull Forms for Seakeeping
- Propulsion Systems
- Weight Handling Systems
- Vessel Automation/Propulsion/Navigation/Control and Monitoring

1.3 Report Organization

This report is divided into three volumes. Volume I, "Technology Assessment", contains state-of-the-art summaries and projected trends for major technology areas pertinent to buoy tender design. Current status in each area is presented along with recent and projected changes.

Volume II, "Literature Abstracts", contains an annotated bibliography of the citations obtained during the survey.

Volume III, "Technology Characterization", contains a description of the relational model and documentation of the computerized database used for storage and analysis of buoy tender data.

1.4 Description of Literature Abstracts

Actual abstracts of citations obtained during the survey are included in Appendix A. Not all citations included in Appendix A have been referenced in Volume I Technology Assessment. The intent has been to include all relevant citations in areas which were researched. Abstracts are organized by each of the major technology areas listed in Section 1.2.
AIDS TO NAVIGATION; FOREIGN PRACTICES

Antonides, L.J. "The Buoy Tender BREEVEERTIEN", IALA Bulletin No. 65, 1976-1. (see Foreign Tenders Section for Abstract)

"A Sophisticated Buoy Tender for UK Port Authority," Small Ships, October 1983. (see Foreign Tenders Section for Abstract)

"BALTICA: built for heavy navaints servicing and icebreaking." IALA Bulletin 1984/1. (see Foreign Tenders Section for Abstract)

Cope, Cpt S.T. "A New Design for a Buoy Tender." No citation. (Affil: AGA Navigation Aids, UK)

"Patricia: Elegance and Efficiency in a New Diesel Electric Flagship for Trinity House," The Motor Ship, July 1982. (see Foreign Tenders Section for Abstract)

Smid, H., Siebeneicher, J., "Multi-Functional Vessels Designed for Oil Recovery and Also Used for Buoy-Tending and Ice-Breaking," no citation. (Affil: Federal Ministry of Transport, Bonn, West Germany) (see Foreign Tenders Section for Abstract)

Vreeswijk, J.K. "Efficiency in Buoyage Maintenance" IALA Bulletin No. 72, 1977/4

Waas, H. "Buoy Tender Walter Korte," Sixth International Technical Conference on Lighthouses and other Aids to Navigation, U.S. Coast Guard, Washington, DC, September 26, 1960. (see Foreign Tenders Section for Abstract)

A-1
"A SOPHISTICATED BUOY TENDER FOR U.K. PORT AUTHORITY," Small Ships, October/November 1983

This 2-page article on the UK Port Authority buoy tender Wilton (loa 40.0 m, beam 9.25 m, draft 3.7 m) describes the unique propulsion arrangement; 1 x British Polar F20 diesel driving 3x300 hp Schottel azimuthing units, one at the bow and 2 at the stern allowing a high degree of maneuverability. A sophisticated dynamic positioning system provides automatic piloting and position control while servicing aids. The vessel is responsible for 50 navaids in the River Tees, Tees Bay and Hartlepool Bay as well as obstruction clearance and light salvage duties. Wilton is not an offshore vessel.

Antonides, L.J., "The Buoy Tender 'BREEVEERTIEN'," IALA Bulletin No. 65, 1976/1

The buoy tender "BREEVEERTIEN" built in 1973, is a new type of vessel compared to those previously used by the Dutch Lighthouse Service. Its larger size makes it possible to carry six to eight 10 m³ buoys. Its increased power gave a trial speed of 14.25 knots while the use of two thrusters and the change from a derrick to a crane increase the number of weather working days. There is also increased flexibility in power distribution.

The paper summarizes the main features of the ship, her general layout, stability, behavior at sea and maneuverability. The necessary stability has been obtained, despite the low freeboard (1.30 m) required for easy buoy handling, and the bow and stern thrusters contribute to the maneuverability of the ship. The reasons for selecting an electric revolving crane are also described in detail as well as the ergonomic studies which underlie the layout of the bridge and the wings together with the positioning of the various controls of the propeller and thrusters, and the working deck.

Behavior at sea was also important in relation to the number of days that could be worked due to weather. "BREEVEERTIEN," with very effective means of station keeping, can work in winds up to force 6 with a wave height of 2.3 m compared with force 3-4 with wave height of 1.1 m for older ships. The ship could operate 67% of the time instead of 32% due to weather.

"BALTICA," a navigation-aids tender designed jointly by her owners - the National Administration of Shipping & Navigation, Sweden - and her Swedish builders AB Asiverken, is primarily intended for handling heavy navigation buoys and to service fixed navigational aids. She is also intended to assist in various other works, and will be available for ice breaking in ports and coastal channels and for pollution control. She has the forward working-deck traditionally favored by the Administration although a layout similar to that of an anchor-handling supply ship was
also considered. The article, which gives reasons for retaining the forward working-deck arrangement, describes the ship and, in particular, her operational equipment, and includes general-arrangement and engine room drawings and an equipment list.

Main particulars of the vessel include: length, o.a./b.p. 180 ft (54-9/50 m) moulded breadth 39.4 ft (12 m); moulded depth (main deck 29.5 ft (9 m)); mean draft 12.1 ft (3-7 m); displacement 1238 tons; two Hedemora V16A/12 main engines, 1295 kW each at 1200 rpm, geared to a single c.p. propeller running at 300 rpm; 300-hp thruster at both bow and stern; five 275-kVA generator sets; service speed 15 knots; complement 12, with accommodation for 12 extra; built (but not classed) to DnV, 1A1, Ice 1A, EO

The buoy tender "GUSTAV MEYER" described in this paper is the prototype of a series of four newbuildings which were put into service by the German Waterways and Navigation Board during the years 1966 to 1968. The vessel was designed to service aids in the rivers and protected waterways.

The paper discloses to what extent the design features of the "GUSTAV MEYER" were influenced by the experience gained from operating earlier tenders and which aspects gave rise to depart from the standard arrangement of the machinery, crew's quarters, storage space and working rooms required aboard a buoy tender. Besides a brief description of the special construction of the buoy crane is given.

This brief article describes the Canadian Coast Guard vessel 'Sir James Douglas' and her duties on the West Canadian Coast. The vessel was built in 1956, 150 feet loa, 30 foot beam and a draft of a 10 feet 4 inches. Sir James Douglas is classed as a Type 1000 (Medium Navaids Tender/Ice Strengthened) and is primarily responsible for the light stations and buoys in the waters around Vancouver Island, the West Canadian Coast and the Fraser River.

The development of a successful design of buoyage and Lighthouse Tender, requires careful assessment of the work and duties the vessel will be required to fulfill and recognition of the high demands placed upon the vessel, its equipment and on those personnel required to ensure that all work is safely and efficiently carried out, while at sea, under widely varying conditions. The principal areas of investigation followed in evolving the most recent Trinity House Tender Vessel design, are put forward in this paper.
The latest vessel for the Trinity House is "THV MERMAID." Vessel particular: LOA - 80.4 m, Beam moulded - 14.5 m, Draft - 4.0 m, speed 12 kts, complement - 24, power - diesel electric 2x 860 kW @ 220 rpm. This vessel has 10 vertical stowage buoy pockets on the working deck which is served by a 20-ton derrick crane and a helideck aft.

"Flash - The Yearbook of the Trinity House Service, 1987," Trinity House Yearbook
This is the yearbook for the Trinity House Lighthouse Service which is the General Lighthouse Authority for England, Wales, The Channel Islands and Gibraltar and is responsible for providing Lighthouses, Light Vessels, Buoys and Beacons.
Included in this yearbook is a 2-page spread with particulars on the newest buoy tender "THV MERMAID" recently completed by Hyundai Heavy Industries Co. Ltd. in Korea. Additionally there is a listing of the Trinity House Fleet including district tenders (4), workboats (6), cutters (1), launches (26), etc.

Kinami, A., "Buoy Tender in Japan", Tenth Conference of the International Association of Lighthouse Authorities, IALA-1980, paper 4.1.1
In order to install and maintain the buoys placed in Japanese waters, the Maritime Safety Agency possesses four buoy tenders. One of these buoy tenders, of the catamaran type and called "MYOJO", was already introduced in the IALA Bulletin No. 37 published in July, 1968. Replacement by new vessels of three other old buoy tenders has been taking place since 1979. This paper describes the technical features and main function of the buoy tender "HOKUTO", which was the first of these built.

The Buoyage & Salvage vessel "Vigilant" described in this paper was commissioned in July 1978 and replaced two older steam-powered vessels.
The Mersey Docks & Harbour Company is responsible for buoyage, wreck raising, hydrographic surveying and conservancy in general for the Port of Liverpool.
"Vigilant" as this paper reveals is able to carry out, in addition to buoyage duties, first aid salvage, fire-fighting and hydrographic surveying.

"Operation Order, CCGS JACKMAN, Evaluation Trials of the Offshore Supply Type Vessel for Non-SAR Coast Guard Operations", Canadian Coast Guard Document, August 1980
The vessel "JACKMAN" was acquired by the Canadian Coast Guard in July 1980 as a primary SAR resource for permanent deployment in the Newfoundland Region. The vessel is a 200-foot,
2000 HP offshore supply vessel (OSV) procured from the private sector and converted for Coast Guard use. Subsequently the CCG decided to conduct an operational evaluation for non-SAR program tasks associated with the Type 1000 Fleet Unit. Experiments were to be conducted using a deck-mounted mobile crane, and the vessel’s own towing winch and stern roller, handling buoys over the ship’s side aft, and the anchors over the stern.

This document is an operation order and provides background information and general guidelines on the test procedure and logistic operations. The primary emphasis was on testing the suitability of an OSV for buoys handling. In particular, the maneuverability of the vessel in coastal sea state conditions and fast-water conditions (4-5 kts) were to be assessed. This document provides a general test outline and objectives and does not contain any test results or description of the vessel or vessel systems.

A second document attached provides some detail on vessel description and a very abbreviated assessment of the test results. Overall impression was that it could meet or exceed the majority of Type 1000 performance requirements. Recommendations included adapting the positive features of an OSV-type vessel to existing vessels and develop a modified Type 1050 Fleet Unit for including in the financial plan.

This brief paper presents some thoughts on buoy tender design trade-offs. Examples are given from the current international fleet.

"'PATRICIA': ELEGANCE AND EFFICIENCY IN THE NEW DIESEL ELECTRIC FLAGSHIP FOR TRINITY HOUSE," The Motor Ship, July 1982

A purpose-designed vessel was recently built for Trinity House to enable the service to meet its schedule of buoy tending, lighthouse/ship replenishment and platform for facility inspections, as well as occasional duty as royal escort. The vessel is 86.3 m. loa, 13.8 m in breadth, diesel electric powered with a total of 4000 bhp. She has a forward well deck arrangement which contains 10 storage wells for vertical storage of buoys. Weights are handled by a 20-ton jib crane stepped forward. A helideck aft supports replenishment by air duties. Quality of construction as well as outright elegance were designed into the vessel to provide a suitable platform for facility inspections, royal escort duty and an expected 40-year lifetime. Cost (about 1981) was 9 million pounds Sterling.
"'RELUME': A BUOY TENDER VESSEL FOR ARABIAN GULF SERVICE," The Motor Ship, September 1979

The "RELUME" is a buoy tender vessel built in Scotland by Ailsa Shipbuilding Co. Ltd for the Middle East Navigation Aids Service (MENAS) and delivered in May 1979. The vessel particulars are: loa - 75.94 m, breadth, molded - 12.24 m, draft - 3.75 m, deadweight - 761 tons, propulsion - 2x Allen 6PBCS12DX, output - 2x815 bhp @ 750 rpm, complement - 55. The vessel carries a 20-ton electro-hydraulic crane stepped fwd of the fwd well deck area. She has stowage space for 8 buoys on deck and 4 in the holds. Particular consideration is given to the design of a central fresh water cooling system to handle machinery waste heat in tropical conditions.

In July 1984, the oil recovery vessel "MELLUM" (principal characteristics: overall length 2345' (71.50 m), overall breadth 49.5' (15.10 m), draft 17.2' (5.25 m), propulsion 4x1655 kw, speed 16 knots) was commissioned in the Federal German Republic. It is mainly used as a buoy-tender and, due to its construction and propulsive efficiency, it can also serve for icebreaking. This vessel is part of a large program for oil pollution control. By using this vessel for navigational aids servicing, it has been possible to fulfill the conditions for the use of such costly oil recovery vessels for multiple functions. This is much more economical and provides a greater operational range for these vessels.

This design was developed following successful testing of the offshore supply vessel "OSTERTOR" which was modified for buoy tending and pollution control tasks and recommissioned as the "SCHARHORN" in 1982.

Srivathsan, B.S. and Arjunani, I.G., "A NEW LIGHTHOUSE TENDER FOR INDIA, IALA-Paper 9.2.3

For the construction, installation and maintenance of Navigational Aids in Andaman & Nicobar Group of Islands the main Lighthouse Tender M.V. Sagardeep was being diverted from main land which proved to be uneconomical and resulted in slow progress of works. Hence, a new Lighthouse Tender for these islands has been built and commissioned into service. This paper describes the duties and functions of the vessel including its technical features and capabilities.

M.V. Pradeep vessel particulars: loa 160.7' (49.0 m), beam moulded 31.2' (9.5 m), service draft 9.2' (2.8 m), gross tonnage 650 tons, speed 12 kts, power 2x GRW MAN R8V 490 BHP each @ 1500 rpm, crew 30.
This document contains the complete written specifications used in procurement of CCG's Type 1050 navais vessel.
Exhaustive detail of systems is presented.

CCGS has experimented with handling navais in the St. Lawrence using a modified offshore supply vessel (OSV). A mobile crane was mounted on the aft deck for handling buoys over the side and anchors over the vessel's own stern roller. Based on the success of these trials, a new design buoy tender was commissioned to be built based on the OSV design. Designated the 1050 class, the principal missions were inland and protected coastal waterway buoy tending, and light icebreaking. A large, specially built motion-compensated crane (Lebher - 20 ton) was installed on the aft deck for buoy work. The main propulsion of the vessel is provided by four Wartsila diesels combined in pairs to drive two cpps in Kort nozzles. Total shp = 8,400. The ship is highly maneuverable having a jet pump type bow thruster 750 hp) and a 400 hp CPP-type stern thruster. Both are electric-driven as is the main crane. Maximum speed of the vessel is 12.3 kts on two engines and 14.3 on four. A second (and last) vessel of the 1050 class was launched recently (January 1987) and named the "EARL GREY."

In 1957 the German Maritime Signals Board commissioned the new buoy tender "WALTER KORTE." Principal characteristics: LOA 180' (54.8 m), beam 29.5' (9.0 m), draft 11.5' (3.5 m), speed 14 kts, range 3500 nm, power 4x 6 cycle Maybach diesels, 1800 total HP. The vessel was designed with a forward well deck and 12t jib crane stepped forward. Vessel maneuverability was enhanced by using a 4-blade CPP for main propulsion along with a 200 HP active rudder and 250 HP bow thruster. The vessel can sidle without rotation using only the active rudder (+ 90 deg.) and the bow thruster. There is 1786 ft² (166 m²) for buoy storage on the buoy deck.
OFFSHORE SUPPLY/SUPPORT/WORK VESSELS

TECHNICAL AND OVERVIEW ARTICLES

Comments on the development of the anchor-handling tug, which should not be confused with the anchor-handling supply boat. Pipeline lay barges need to set their anchors very frequently, and can justify a vessel specialized for just this task, as opposed to the more generalized anchor-handling supply vessels. Very high power and maneuverability characterize the anchor handling tug.

A typical OSV was evaluated to determine of the ship could be converted into a buoy tender in this study by 3 students in the MIT Naval Constructor’s program. Keeping the hull form and propulsion machinery the same, the internal arrangement of the design was altered to meet the design requirements of the buoy tender. This preliminary analysis which includes weight and volume allocations, stability, floodable length, auxiliary machinery and propulsion calculations, shows that an OSV can be converted into a useful buoy tender. However, there are limitations in the areas of ice operations, towing ability, freeboard, volume margin and most critically in subdivision. An any one-compartment standard of subdivision is not achieved in the engine room, however, the wing tanks outboard offer a measure of protection from penetration to that compartment.

Details the design and construction of the most innovative supply vessel produced in the last 10 years. It employs many firsts and unusual features in an integrated design which provided "a supply ship of about the same capacity of our first vessels, but would be relatively cheap to build, have improved maneuverability, be fuel efficient, and easily controlled without the complexity of a computer". The single-screw, rotatable thruster, single engine, bulbous bow, V-section stern, design seems to have succeeded in all these respects. A landmark design.

Short article noting developments in the offshore fleet such as the expansion in the number of vessels and the trend toward multi-purpose vessels.

Review of 1981 offshore workboat construction and forecast for the next year. The last truly solvent year in the industry, although not the high point in the construction boom.

Traces the design from feasibility to contract design. The 200 ft monohull is propelled by three rotatable thrusters driven by a SCR diesel electric prime mover system, was based on OSV designs, and was chosen over SWATH, catamaran and barge concepts. Seakeeping, maneuvering, stability, propulsion, systems redundancy, maintainability, retrieval operation, structure and hull protection are discussed. The Booster retrieval operation resembles in some ways typical SRA tasks, and thus it is interesting to see how it was approached by the designers.

From a study which led to regulations Stand-by Rescue Ships in the U.K. Examines the need for such vessels and the details of design, pick-up boats, medical capabilities, communications and personnel. Shows another example of vessels designed for performing over-the-side operations at sea.

Provides information on the whole range of North Sea support vessels, including crane barges, geophysical ships, standby/rescue vessels, as well as supply/anchor handling boats. Slightly more comprehensive than Fleet Data Services' "Offshore Service Vessels", but still oriented towards the charterer rather than the designer.

Covers the design of the ARS-50 class of salvage ships with regard to general arrangements, human support, mass properties, stability and hydrodynamics. The impact of modern systems and requirements for mixed-sex crews, habitability standards, waste treatment, etc., along with the requirements of the mission are discussed. It is interesting to note that the vessel was designed and built using the commercial construction standards of the American Bureau of Shipping (ABS), and that this may be the last auxiliary type that will be designed 'in house' as the present trend is to farm out the total design to a single design agent.

Reminds designers that attention to detail can help make an efficient ship. Provides numerous examples of details of arrangements, hull form, structure, etc., and makes comparisons between US and foreign practice.

Det Norske Veritas offers some advice for those involved in the design and construction of multi-function supply vessels with particular emphasis on fire fighting, oil spill recovery, dry cement, and liquid mud systems, which are often fitted as afterthoughts, causing arrangement problems at a late stage of vessel construction.

A useful design guide for this type of vessel.

At the beginning of the downturn, builders, operators, drillers and contractor’s painted an optimistic picture of market conditions that did not pan out.

Develops a rough preliminary design of a U.S. Navy Salvage Ship to show how specialized missions influence design. Towing, weight handling, pulling and diver support all impact the vessel.

Milwee, W.L., "Design Considerations in the Design Architecture of Salvage Ships", Naval Engineers Journal, March 1984, pp 59-68.

Further illustrates the impact on ship design of the specialized service of Salvage. The first part of the paper concentrates on the characteristics of the rescue tug, and how it differs from the general ocean tug, while the second part looks at the pulling ship.

Looks at the differences between the two classes of vessels and considers their capabilities. While the TSV will continue to penetrate markets formerly reserved for pure tugs, the superior towing power, maneuverability, and salvage capabilities of the ocean tug will keep it around for some time.

Details the use of workboats to tow icebergs away from drilling rigs off Labrador.

Provides details on the world-wide workboat fleet of the time.

"Offshore Service Vessels, A Guide to the American Fleet", Fleet Data Services, P.O. Box 2576, Nacogdoches, TX 75963-2576, 1986.
Provides information on the active American OSV fleet, primarily for charterers, fleets and suppliers. A little short on detailed design information. Covers all self-propelled OSV's over 60ft LOA except for pure tugs.

A fine overview paper which was relied upon heavily in writing the narrative review. Discusses the development of the offshore supply vessel. Laws, regulation and inspections of the vessel as applied by the Coast Guard are outlined. Manning, use of the vessels, and basic vessel design are also considered. Should be read by anyone wishing to understand the design and use of OSV's.

An essential reference, it extends earlier work by Mok and Hill, and provides the principal design parameters of 196 towing and supply vessels built since the inception of the industry. Trends in the characteristics are examined, and tables and plots are presented as an aid in planning future vessels.

Reviews vessel designs proposed by builders for hostile, specifically Artic operations. The oil glut impacted Artic oil exploration even more than less hostile areas, and few of these big, complex, expensive vessels were built.

See seakeeping section for abstract.

The OSV industry finally realizes it's in deep trouble, yet still predicts an upturn which as of this writing (1987) has not materialized. Opinions are from speakers at the Eighth Annual Marine/Offshore Industry Outlook Conference at Texas A&M.

A-11

The various duties unertaken by supply ships have given rise to the tug/supply ship and this paper looks at these duties. While it could be argued that the dual role imposes restrictions on her use, it must also be remembered the her increased flexibility of operations can show remarkable cost savings.

The industry looks to increase innovation, efficiency and quality, while suffering through a sever shakeout. The impact of Federal loan guarantees and P&I clubs is examined along with the potential for doing work for the government. No one predicts a major upturn in the near future.

SHIP REPORTS

The marine equivalent of birth announcements or new product press releases, Ship Reports provide the basic characteristics of the new vessel, a brief description, and discussion of any special features. Abstracts are not provided for the following reports due to the brief nature of the articles themselves, unless the vessel is particularly novel or noteworthy. If the boat’s name is not mentioned in the title, it will be noted at the end if the citation, and is always in ‘single quotes’.

"A shipyard and four vessels later...", The Work Boat, ('Cane River').

"Arctic offshore needs spur innovation", Marine Engineering/Log, April 1985, pp 66-7, 93.

"Back-to-back Deliveries", The Work Boat, ('Lamnalco Mallard', 'Lamnalco Teal', and 'Gulf Fleet 48')
"Big Boat Big Job", The Work Boat, February/March 1987, pp 26-8, 51 ('Damon Chouest')

"Big surprise 'under the hood'", The Work Boat, August 1981, pp 81, 104-5, ('PBR/330')

The surprise is the use in a supply vessel of a MTU high speed diesel more commonly seen in crewboats. Done for commonality with the owner's fleet of crewboats.

"Bruce Offshore takes four", The Work Boat, pp 47-8, ('Shirley Bruce')

"'Capt. George' Quality is the key", The Work Boat, December 1978, pp 81, 114.

"China Delivering Anchor Handling/Supply Ship Series to Sentinel of Singapore", The Motor Ship, May 1984, pp 36-7, ('SSS Shanghai').

"Diesel electric 'Kodiak 1' is largest US built tug/supply vessel", The Motor Ship, August 1983.

The many articles on this vessel and her sister ships reflect the innovation she represented. The scarcity of good
offshore electricians has prevented a wider acceptance of this concept, but there have been other ships built with very similar configurations of power plants, and acceptance of the advantages of this system is growing.

"Equipped with Aquamaster propulsion", Navigator 86, pp 37-9, (m/s Solvbas)

"First diesel-electric supply vessel", Marine Engineering/Log, April 1979, pp 83-4, (‘Acadian Mariner’).

"First for Goole", Shipbuilding and Marine Engineering International, 1986, (‘Stirling Esk’)

"First of Gulf’s Artic Class 4 supply ships", Small Ships, BSRA Abstract #61,204, pp 18.

"’Geo Tide’", The Work Boat, pp71,73,121.

"GRP catamaran gives Norwegian edge in offshore surveying and support", The Motor Ship, pp 30-1, (‘Blom Surveyor’).

"Halter delivers tug/supply 'Summer Sun'", The Work Boat.

"Halter sores 4-Point play", The Work Boat, March 1983, pp 81, 121-2, ('Point Bravo, Chaleur, Liberty, & Normandy')

One of the few "severe service" work boats from U.S. yards to actually hit the water.

"Halter’s 1000th", The Work Boat, August 1982, pp 74-5, 118 ('Doc Tide').
Represents the highest development of the "stock" supply boat. Hull finer fore and aft to reduce resistance and improve seakeeping, raised bow, two speed gearbox, Kort nozzles.

"Hauling 'pigs' for Aramco", The Work Boat, June 1982, pp 97, 154-5, ('Safaniya Five')

"Icebreakers and supply vessels", Navigator 86, p 23 (Valmet proposals).

"Inland and Offshore", Marine Engineering/Log, March 1979, pp 66 ('Ogum', 'State Victory', 'State Hawk' and 'State Pelican')

"Kalvik", 'Terry Fox' in Service", Harbour and Shipping, November 1983, pp 26-34, BSRA Abstract #63,496.

"LATE builds a diving support vessel", Navigator 86, pp 18-20 (Finnish built for USSR).

"LEEVAC to build world class vessel", The Work Boat, February 1983, (ME 500 World Class).
Proposal linking LEEVAC with Maritime Engineering A/S of Oslo Norway. Still only a proposal, but notable in it's attempt to combine European and Gulf practices. Depth is larger than usual, allowing much higher freeboard aft, and facilitating compliance with IMO damage stability code. Also optimized for bollard pull over free-running speed.

This utility boat is an echo of the smaller, simpler boats of the 60's. No underdeck bulk tanks, for example. Resembles a shrimp boat, and was built at a fish boat yard.

"Marine Fabricators: launching a new era", The Work Boat, pp 73,75 ('Pontus', 'Sallee')

"Multi-pupose standby vessel for severe environments", Ocean Industry, August 1981, p 82, ('Vigilant' class)

"m.t. 'EL HAFID'", Holland Shipbuilding, April 1982, BSRA Abstract #57,924, pp 36-7.

"m.t. 'RETRIEVER'", Holland Shipbuilding, April 1982, BSRA Abstract #57,923, pp 29-31.

"m.v. 'GELDERLAND'", Holland Shipbuilding, June 1982, BSRA Abstract #59,960, pp 36-7.

'Gulf Fleet 22', '23', 'Edda Sprite', 'Sun Tide', 'Moon Tide', 'State Pride', 'Frigg', 'Mercia Shore', 'Smit Salvor', 'Sybil Freeman', 'Juanita Patrick')

An example of the scrambling for niches that accompanied the downturn in the OSV market. While under construction, this 214 ft supply boat was "jumboized" with a 40 ft midbody plug, and equipped with a stern ramp to form a tug/supply/RO/RO container ship.

Boats use a 2400 hp engine on the port side driving an open wheel and a 1600 hp engine on the stbd side with a ducted propeller.

The larger 'Emperor', designed for servicing multi-platform installations, chose a diesel-electric "power station" approach to provide flexible economy over a wide range of propulsion and discharging loadings, while the 'Viscount', a smaller, less sophisticated vessel for supplying MODU's, sought low capital and running costs with two direct drive diesels turning CP wheels.

"Seagoing Fire Horses are Workhorses, To", The Work Boat, January 1981, pp 131-3, 208-10, ('Point Au Fer', 'Point T')

"'Sentinel' - third generation standby rescue vessel", Noroil, April 1982, BSRA Abstract #57,926, pp 60, 63.

"'Sentinel': a third generation standby rescue vessel series", The Motor Ship, June 1983, ('Sentinel Cathinka').
This shipyard declined to enter the race for "Hostile Class" vessels, and felt the market was better for a dedicated DSV.

Gives the basic specifications of the nine vessel designs in the Ulstein series.

"Special Ships Profile, ‘Flinders Tide’, Supply Vessel", Special Ships, BSRA Abstract #55,025, p. 6

First of the highly sophisticated offshore service vessels, designed to compete with very expensive semi-submersibles. Features a full diving spread, dynamic positioning, diesel-electric "power station" propulsion and ship service generators, extensive shops and craneage, etc. The British Navy chartered 2 of these vessels during the Falklands campaign, and retains one as a Forward Repair Ship serving as a submarine and frigate tender.

"'Stena Seawell' First of the Stena monohull maintenance and well service vessels from Sunderland", Shipping World & Shipbuilder, July/August 1986, pp 345-7.

"Supply boat for Dutch offshore rigs", Small Ships, January/February 1987, p 9, ('Shelf Express')
Uses 2 shaft generators for ship’s service, with only one separate emergency/harbour diesel generator. The 2 thrusters and the 2 propellers are all controllable pitch, and the ship can be positioned using just one joystick.

"'Swan Ocean': sophisticated diving support vessel from Wartsila", The Motor Ship, pp 79-83.

One of the first Gulf of Mexico boats to use direct dive diesels and Controllable/Reversible Pitch Propellers.

"They build 'em, they run 'em", The Work Boat, September 1981, pp 67. 91-2, ('Nellie H').

"They Really Are Big, Good & Ready", The Work Boat, pp 89-91, ('Bay Service')

"Transportation Resources' fourth is an Armor-Plated Lady", The Work Boat, January 1981, ('Pearl River').

A-19
"Ulstein Delivers two UT 716 Vessels", The Work Boat, ('Gullbas', 'Troms Skarven')

"Zapata and Bird-Johnson Collaborate to Meet Hostile Offshore Demands", Marine Engineering/Log, ('Freedom, Liberty, Heritage, Pioneer, Dominion, Sovereign, Statesman, and Ambassador Service')

"12th Annual Distinctive Shallow Draft Vessel Awards", Marine Engineering/Log, Jan 1983 ('Doc Tide', 'Cape Service', 'Geo Tide', 'Livita', 'Maersk Rover', 'Seaforth Monarch', 'Stirling Imp')

HULL FORMS FOR SEAKEEPING

GENERAL REFERENCES

Has become the standard reference for seakeeping problems. Develops the theory for all major phenomena concerning the interaction of ships and rough seas, presenting the state-of-the-art at the time, and with many example calculations. Highly recommended, but not for the casual reader.

Naval architecture text with a slightly dated section covering the most important aspects of seakeeping and the effects of design parameters on performance.

Basic Naval Architecture text with a brief discussion of ship motions useful to those un-familiar with the subject.
An essential reference. Has been relied on very heavily for the narrative sections on Seakeeping. Surveys the development of seakeeping research since the 1975 Workshop on Seakeeping in the Ship Design Process. Recommendations are made for the most urgently needed research to accelerate the application of seakeeping knowledge to improved ship design. For the reader with at least a basic knowledge of the field.

Now somewhat dated, but presents a vast amount of anecdotal information regarding the behavior of ships in a seaway as well as the theory of the early 1960's. Covers every conceivable aspect of seakeeping. Also has many historical references.

Basic Naval Architecture text which has a good section on seakeeping, developing the basic theory, discussing the method of seakeeping test and analysis, and noting the effect of design parameters on seakeeping performance.

PREDICTION, EVALUATION AND OPTIMIZATION

Seakeeping can be rationally included in the ship design process. The prerequisite is determination of trends in seakeeping variable with changes in hull geometry at an early stage in the design process. This paper outlines a "standard series" approach to the trend determination problem. It involves construction of an extensive database and interpolation over a subset for each specific problem. Series 60 hulls were used, and the motions of the vessels in Pierson-Moskowitz seas were computed using the method of Korvin-Kroukovsky with coefficients as determined by Grim's method. This paper concerns itself mostly with the method, and presents some correlation studies, the actual database is huge, although a portion of the information can be found in Bhattacharya.

Presents methodologies for empirical assessment of the nonkinematic components of ship-to-wave relative motion, change of level, and bow wave profile. Applies primarily to ships proceeding in head seas, whereas critical WLB freeboard requirements are probably at zero speed, which will not require these refinements.

A-21

Documents model tests run on a model of the 157 ft WLM. Two sets of tests were performed, the first head seas run in irregular waves to examine bottom and bow flare slamming as well as motions, and the second to explore drift and yaw divergence at zero speed. Slamming severity was less than expected, and transit operations will be limited more by deck wetness than slamming in head seas. The drift tests clearly show that head seas are preferable for minimizing drift and yaw divergence. Beam seas runs indicated that the model is experiencing harmonic rolling (I.E. at twice the wave encounter frequency). Linear superposition produces reasonably accurate results in predicting buoy tender vertical-plane responses in moderate head seas.

Shows that analytical predictions of relative motions can be considered conservative under certain conditions, I.E. equal freeboard for both experimental and analytical calculations. A secondary conclusion is that for the vessel and conditions tested, dynamic swell-up and incident wave distortion decrease relative motion, the reverse of the findings from head seas trials. The largest problem with deck wetness on OSV's is likely to be amidship.

This paper highlights some features of the Navy's climatology. Briefly, models have been developed which step through 20 years of barometric pressure data, developing the wind patterns which develop from pressure gradients, and the waves which are driven by the wind. This climatology provides global wave and wind parameter statistics, identifies the occurrence and persistence of some heavy weather conditions, and aids the development of spectral shape and directionality models. Effects of these features are summarized in terms of predicted performance of several naval combatants. Some of the conclusions of interest include:

Wave heights from the hindcast correlate strongly with estimates derived from measurements, although the hindcast has a random error of about 1.4m over the entire range of wave heights. For values less than 1m, the hindcasts tend to underestimate the significant wave height. No statistical bias with respect to the "measured" wave heights was observed.

Evidence that the Bretschneider family of spectra do not predict pitching motions very well, particularly for small combatants.

A-22
The overall statistics of ship performance agree reasonably well with data from measurements at Station India, although individual comparisons at specific times may differ.

This report presents a condensed version of the Catalog of Heavy Weather Operator Guidance (HWOG) Developed for the FF-1052 class. The catalog provides the ship operator with hard copy, quantitative predictions as to how the ship responds in a seaway and some guidance for avoiding excessive ship motions or related events, such as slamming and wetness, that may cause damage to the ship. The HWOG Catalog consists of graphs which indicate the ship heading and speed combinations, for a variety of sea conditions, that may cause excessive motions or related events, and hence damage to the ship, or loss of mission effectiveness, readiness, or crew safety. The criteria used for identifying ship damage potential were developed by examining CASREPTS. While this report presents a rational and logical method of providing operators with guidance, the method looks rather cumbersome. The wave height and period must be estimated, and there is a graph for each relevant height/period combination, making for a thick document. With the small bridge crews of Coast Guard (and merchant) vessels, it is unlikely sufficient manpower would be available to use and interpret the available data. Automation, perhaps some Artificial Intelligence, and simplified graphical display of this information may make it of more practical use.

Outlines the state-of-the-art for environmental modeling for seakeeping oriented design procedures with the US Navy. Details the revised Sea State numerical definitions, and offers a new standard for Sea State occurrence.

Extension of seakeeping evaluation techniques into smaller displacement vessels. Since for a given sea state, the smaller the vessel, the greater the motions, improvements in seakeeping are relatively more important to small vessels. Head seas limit speeds are developed using acceleration, slamming and deck wetness criteria, and considerable improvement is seen by adopting "optimum" hull forms in the higher sea states. Active stabilization is evaluated, and found to be quite effective. Finally, using long term statistical data on sea states world-wide, limit speeds for all headings, and some weighting and averaging, an overall effectiveness index is developed. Results indicate there is little to chose from between a 600 and 800 tonne vessel, while a 400 tonne vessel has reduced effectiveness. An important paper, one of the few on vessels less than frigate size.
This short article uses the now-familiar techniques of seakeeping assessment and assigns a cash return on investment for improving seakeeping. His conclusions are important enough to quote: "1) The cost of lost effectiveness is very high...the equivalent of 10-15 days/yr are lost by a conventional frigate at a cost approaching 100,000 pounds sterling/day. 2) More data is urgently needed. 3) On any interpretation of existing data it is clear that there is a considerable return on investing in longer ships. 4) Weapons systems should be selected for operational performance in bad weather--and tried in realistic conditions."

An approximate method is developed to predict SWATH ship motions at an early design stage by using cylinders to represent the underwater hulls and rectangles to represent the struts. Calculation of the necessary hydrodynamic properties of these shapes is trivial, and this reduces the labor and computer time needed for a typical prediction of 20 frequencies by a factor of 10. This reduction more than justifies the reduced accuracy of the method at the earliest phases of the vehicle selection process. The evaluation of seakeeping performance is carried out in much the same manner as presented by Bales, Olson, and others.

This paper illustrates a method to express a merit rating characteristic of a ship, indicating the percentage of its life that it will be fully operational. Similar to work done by Bales, Olson and others.

Discussing the ways in which the Navy is working towards providing guidance to ship operators on the seakeeping performance of their vessels. Types of Seakeeping Operational Data (SOD) includes Optimal Ship Routing, to minimize transit time or fuel consumption, Tactical Operations Ship Routing, to minimize ship motions in order to conduct operations, Heavy Weather Ship Routing, to avoid ship damage, and Survival Ship Routing, to avoid broaching, capsizing, or major structural failure. In order to develop SOD, the technologies of the Sea Environment, Ship Response, and Mission/Response Criteria need to be advanced and this paper describes efforts in these areas.

A-24
Presents the evaluation of a number of air-capable Navy combatant designs. Uses a relatively simple evaluation method, and does not advance the state-of-the-art, but serves as a good example of the utility of the technique and is a good source of criteria for operations. Notes once again the sensitivity of the results to the chosen environment and criteria.

Various 2-D and 3-D methods are applied to a merchant ship and a warship. The variation of hydrodynamic reactive coefficients, of added mass and damping, and of the motions and structural response are compared for each method of analysis. The results indicate that results differ little for the various strip theory (2-D) methods, so long as the possible mathematical instabilities of the close fit methods are avoided. These difficulties, which also affect the 3-D singularity distribution method, are discussed in detail, along with methods for identifying their onset. The 3-D method produces significant differences in phase from the various 2-D methods, and requires far more labor and computer time for analysis, making it unsuitable for routine design use.

For years, the standard reference. Contains statistics on the directionality, period, and wave height for various locations both on an annual and a seasonal basis. Primarily derived from visual observations.

Updates and supercedes Hogben and Lumb. The primary difference is the use of an analysis technique using wind observations to verify and improve the visual wave observations.

One of the first papers to note the poor seakeeping performance of U.S. destroyers and frigates relative to foreign, especially Russian, combatants.

Summarizes the design and seakeeping evaluation of a SWATH and two monohulls to carry a frigate payload in the North Atlantic. The 'Payload' monohull uses the Navy's state-of-the-art in ship design to arrive at a minimum size vessel which will carry the specified payload: the SWATH was developed using the same philosophy. The 'Seakeeping' monohull was un-constrained in
size, and designed to have equivalent seakeeping performance to the SWATH. Seakeeping assessments were developed in three formats: region and seasonal summaries, geographical contours of annual operability, and annual operability versus wave height distributions for the Northern North Atlantic (taking into account the effects of heading and modal period at a given wave height). The predictions were compared with data for an existing frigate and destroyer, and the analysis of this data clearly demonstrates the improved capability of innovative hull forms in Northern latitudes. The methodology used in this paper represents the furthest current development of NAVSEC's seakeeping evaluation procedures.

Discusses three seagoing box scores, the first is that of Olson, which is useful for calculating the operational worth of vehicles performing ocean surveillance functions. The second score is related to the time required to transit a fixed distance in rough seas, and relates to the ordinary transportation functions of a vessel. The third score, developed by Comstock and others, is useful for measuring the seagoing merit of vehicles performing any function, but does not directly relate to operational effectiveness. These box scores directly depend on seakeeping criteria, and prescribed values of 18 such criteria are presented and discussed.

Another application of the seakeeping assessment techniques developed by others, Olson, et al. Refinements include use of the wave height/modal-period data predicted by the Spectral Ocean Wave Model and a different procedure for calculating Limiting Significant Wave Height (LSWH). The sensitivity of the operability indices to changes in the limiting criteria is also addressed.

Documents the latest version of the Navy's standard program for predicting the motions of monohulls.

Perhaps the best introduction to the evaluation of seakeeping qualities when selecting among alternative Naval platforms. Discusses the general approach from which estimates of ship motions are derived, followed by a presentation of twelve seakeeping criteria that may be used to evaluate vessel performance. A method for obtaining meaningful seakeeping
assessments using these criteria is introduced, and illustrated by comparing the seakeeping qualities of three monohulls and a SWATH. Highly recommended.

A fuller exposition of Olson's work. Includes program listing and user's documentation.

Using currently available computer programs for computing the motions of ships and stable platforms, it is now possible to make good predictions of vessel absolute and relative motion in both regular and random waves. It remains only to combine these computations for typical supply boats and semi-submersibles to determine the relative motion between, say the platform crane boom and the after deck of the supply boat. The same method might be used to compute motions between a buoy tender (and it's crane boom) and a buoy.

Schmitke's work greatly improved the prediction of ship lateral motions by modeling of dynamic lift on skegs, rudders, bilge keels, etc. Fairly extensive comparisons of predicted and measured roll response are made, with good comparison at all headings considered. Active fin stabilizers are not included in this particular work.

In order to study the dynamics of industrial hull forms used in OSV's, fishing vessels and tugs, characterized by single or double chine hull forms, a high fwd deckhouse, shallow transom sterns, and long, low, working decks aft, a capability for "natural environment" model testing has been developed at the University of Washington. Building on the work of Paulling in using free-running models to investigate capsizing, test instrumentation was developed including a Mobile Wave Measuring platform and a suite of instruments for controlling and measuring the motion response of free-running, radio controlled models. Similar work is conducted by a subsidiary of British Hovercraft in the Solent near the Isle of Wight. Results are presented from tests of an eight foot model representing an Alaskan King Crab fishing boat, several of which have been lost with all hands in accidents possibly related to stability problems.

This paper outlines a procedure to improve the seakeeping performance of a hull constrained by a fixed displacement, a constant speed, and a motion criteria (in this case, a rather simplistic one, significant motions at five wave periods). Hull form parameters were varied over a wide range to find the optimum hull using both direct and random search techniques. The results presented for a 4300 tonne frigate have little application to WLB's but the method could easily be applied to Buoy Tender hulls, and extended to include other criteria, such as resistance.

A different approach for seakeeping optimization is outlined in this paper. The performance and design parameters of a number of existing frigate and destroyer hulls were regressed to predict the relative seakeeping performance of a given hull. Calculations of relative rank have been made to determine dependence on ship speed and modal period. Measures of merit are discussed that include maximum allowed values rather than just the absolute goal of reducing motions. In a similar effort, the method developed by Bales for determining required freeboard is applied to a large number of hulls. The results are used to show the influence of both ship size and seakeeping performance on required performance. Using these results, a simple method of predicting required freeboard is developed, and compared favorably with direct calculation and other methods.

Walden, D.A., & Kopp, P.J., "Hull Form Parameters for Improved Seakeeping and Reduced Resistance", DTNSRDC/SPD-1168-01, NTIS Accession # AD-A162 882, August 1985.

An extension of Walden and Grundman(1985), in which resistance is also factored into the cost function (using the regression equations of Holtrop) which is minimized in the optimization process. The pure seakeeping hull forms have broader waterplanes, particularly in the stern, than the resistance optimum hulls and the combination hulls fall somewhere in between. With different limits on various parameters, this method could be used to seek the optimum buoy tender hull.

MOTION STABILIZATION

An instructive report on what can go wrong with fin stabilizer installations. As noted in Foley, the 270 ft WMEC was designed with the fins forward of the bilge keels, an arrangement later shown to degrade the performance of the fins. This, along with several deficiencies in the fin control system aboard the USCGC BEAR, led to roll reductions well below prediction. The
problems and their fixes are discussed in some detail. Should be read by all designers working on fin stabilizer installations.

This paper describes the first operational use of a Rudder Roll Stabilization System (RRS). The components of the RRS are described along with the design goals and methodology. The excellent performance of the system is documented, and the potential benefits of the installed system and a system with upgraded capabilities are demonstrated using ship speed polars. The economics of various RRS alternatives are discussed and compared to active fin stabilizers. An improved RRS with high rudder rates can provide stabilization near that achievable with active fins with a far lower impact on ship cost, weight, and volume.

This program is based on the work of Cox and Lloyd and predicts stabilized and un-stabilized ship roll motion, bilge keel and anti-roll fin sizing effects and the influence of fin controller characteristics by use of a one degree-of-freedom roll motion equation. Non-linearity, and long and short crested seas are accounted for.

Methods appropriate to the selection and detail design of roll stabilization tanks (active, passive and controlled passive) are developed for use in the Contract Design phase of the ship design process. The role of model testing and methods for validating predicted tank performance are discussed. Drafts of Technical Practice Sheets for roll stabilization systems are included as appendices. Doubt is cast upon one-degree-of-freedom models particularly in oblique and irregular seas, while the roll-table simulation and three-degree-of-freedom methods appear to work equally well. (This otherwise useful reference was supplied on a very poor microfiche from NTIS, and cannot be recommended for use in that format. RRY)

Describes the use of a motion simulator in the development of design criteria for use with Surface Effect Ride Control Systems. A similar approach using human subjects performing tasks in a simulated motions environment could be used to develop criteria for other motions on any type of vessel as well as for SES'. Criteria development is perhaps the least well developed part of seakeeping assessment.

Discusses the limits of Rudder Roll Stabilization for frigates due to stability and adverse coupling problems. At encounter frequencies around 0.02 hz, both roll and yaw motions are amplified by the combined steering-stabilization system. This is likely to seriously effect the ship, particularly in conditions of potential broaching. The limited success of this application of rudder steering-stabilization systems is related to the high maneuverability of frigates resulting from their neutral steering characteristic. This gives rise to high yaw rates and significant rudder to roll coupling at the lower frequency range. This problem should be examined for buoy tenders if use of RRS is contemplated.

Details the theory of such stabilizers, as well as the sea trials, calm water trials and trans-Atlantic tests of a prototype system installed on 15000 tonne container ship also fitted with passive stabiliser tanks. Contrary to model experiments, the full scale tests showed unsatisfactory performance of the RRS and the passive tanks combined, in spite of good results with each system alone (up to 70% reduction for RRS over the unstabilized ship, greater than that achieved for the tanks). This may be related to the yaw damping effect of the tanks, or to sloshing at large amplitudes making the tanks non-linear. To be successful, a RRS depends on the capacity of the rudder to excite significant angles of roll. For new designs, the advantages of using a slightly larger and faster rudder instead of passive tanks or active fins should be considered.

The best introduction to roll stabilization and an exposition of how it is practiced in the US Navy. Covers the state of the art, criteria, evaluation, types of devices, etc. Covers bilge keels, active fins, tanks (active and passive), and briefly mentions other methods. Detailed descriptions of necessary design and performance evaluation tools for predicting unstabilized roll motion, bilge keel and antiroll fin sizing, and fin controller characteristics are provided in appendices. Essential reference.

Discusses the fin stabilizer system developed for this class. Valuable for it's discussion of the systems development, including land-based testing and sea trials.

A brief review of the various systems, their advantages and disadvantages, with particular emphasis on the fin stabilizers produced by the author's employer, which incorporate microprocessors and inertial sensors to increase reliability and effectiveness.

Presents the results of a series of model tests performed on a oscillator table using scale models of free-surface and U-tube type passive roll stabilizing tanks. Shows the effects of modifying tank geometry and vertical location. Presents a simplified mathematical expression for estimation of ship response in regular beam seas, and compares the results for a stabilized and un-stabilized ship for both types of stabilizer. The author's conclusion that free-surface tanks are superior should be noted with the caveat that their employer holds several patents on this type of stabilizer.

Covers the theory and equations of motion of tank stabilizers, gyroscopic stabilizers, and active fin stabilizers. Studies the use of fluidics to control an active tank system. Fairly good general review for the types of systems covered.

Uses standard US Navy evaluation techniques to provide roll motion predictions for two candidate hull forms (conventional and large waterplane) unstabilized and with a proposed bilge keel. Sizing computations for fins and bilge keels were made for the conventional hull and various stabilized configurations.

Provides roll motion predictions the 270 ft WMEC. The predictions are used to assess the roll stabilization obtained with various sizes of bilge keels and active fin stabilizers. The predictions indicate that a reasonable roll response can be obtained with 104 ft" bilge keels located aft of 25 ft" active fin stabilizers. It should be noted that the later work of Lloyd showed that this arrangement degrades the performance of the fins.

A slight extension of the authors 1979 paper. Has more pictures.

A report that essentially concludes that anti-roll tanks are un-necessary on single and double chine offshore supply vessels. On vessels with molded hulls (I.E. European practice), bilge keels and passive tanks are felt to greatly improve the rolling characteristics of offshore supply vessels.

Halden, Horst, "Combined Stabilisation/Anti-heeling Systems and Their Influence on Ro-Ro Vessels and Ferry Designs", RO/RO 83 Conference, BSRA Abstract # 58,559, pp 97-117.

Describes a system which can function either to counteract the static heel produced by un-symmetric loading of RO/RO cargo or to reduce dynamic roll of the ship as a U-tube stabilizer under active control. Discusses the impact on ship design of fitting such a system and the economic benefits produced by faster loading, reduced cargo damage, and reduced fuel requirements.

Provides roll motion predictions and the results of the roll decay experiments for the FFG-7 design hull form. Uses a modified single degree of freedom linear roll model which recognizes nonlinear damping (See Cox and Lloyd(1977)). Stabilization is investigated for the ship fitted with various sizes and arrangements of bilge keels, including segments forward and aft of the anti-roll fins, and keels forward of the fins.

Icebreakers are ideal installations for antiroll tanks since they are lightly damped in roll and cannot fit bilge keels or active fins. Using the Navy's procedures as outlined in Cox and Lloyd(1975), a passive tank was designed for the WAGB which achieved roll reductions of up to 70%.

A landmark paper on this cheap and effective method of low speed ship stabilization. Enough information is presented to design such a system. In the discussion there is a reference to a proposed design for such a system to be installed on the Coast Guard's 157 ft WLM's. The methodology presented in this paper indicated that such a system would out-perform bilge keels by a substantial margin, while costing 20% less.

Uses an analog computer simulation to investigate the parameters affecting roll stabilizer performance. Also validates the results using a oscillator table model. Presents charts for design purposes.

Develops a method of predicting the effectiveness of active fins which considers the losses due to bilge keel interference, the immersion of the fins in the hull boundary layer, and the effects of coupling between roll, sway and yaw motions. Model tests and full scale trials show reasonable agreement with the procedure. It is recommended that multiple fin arrangements and configurations with bilge keels mounted aft the stabilizers be avoided, and to avoid the degradation in effectiveness at low frequencies caused by lateral motions, stabilizers should be as near to horizontal and as far forward as possible. Forms the basis for the present US Navy Design Procedure for active fins.

A companion paper to Carley(1975). The rudder will be expected to amplify the rolling motions at high and low frequencies (assuming the control system is not configured to prevent this effect) and this makes it ineffective in following seas at high speeds. It is concluded that the rudder stabilizer will not be as effective as a good fin stabilizer, but is probably preferable to a passive tank.

An excellent review of this type of stabilizer. Critically reviews the advantages of tank stabilizers, the various types of tank stabilizers, the economics of their installation and the existing methods of designing and optimizing the system. Recommended, not highly technical.

Oriented towards preliminary design, this report discusses the main types of roll stabilizers and outlines the procedures for developing performance specifications for roll motions, selection of stabilizer type, preliminary estimates of stabilizer size and estimates of performance suitable for the early stages of the ship design process.

This paper addresses the justification, design philosophy, system description and technical evaluation of the FFG 7 fin stabilization system. Interesting details include discussion of fin sizing and planform, operating modes to minimize cavitation induced noise, and extensive measures, based on experience with earlier fin installations, to increase reliability and maintainability of the fin stabilization system.

"New Motion Suppression System Will Open up New Areas for Tenders" Ocean Industry, Vol 16, August 1981, pp 62-65

A motion suppression system using tanks at the sides of the vessel open to the sea at the bottom, connected with ducts and pressurized with air. This is not an active system, the fans don’t run continuously. The system was developed by SeaTek of Goleta California, and the first application, an anti-roll and anti-pitch system on a drilling tender barge, is detailed.

Another system using open-bottom tanks, this one without any interconnection between the tanks. The tanks may be open to the atmosphere through valves to provide an orifice for damping, they may be closed, or they may be pressurized. Developed at University College London and licensed to BP Ocean Technologies.

Describes a micro-processor based rudder roll stabilizer developed by Sweden’s SSPA research institute. The Roll-Nix system reduced roll motions 30% in 2m beam seas when fitted to a 35m fast attack craft.

A fine example of the results achievable with roll stabilizing tanks if the space and weight they require is allocated early in the design process. The tanks finally selected are nearly optimum. Although both U-tube and free-surface tanks were model tested, results of which appear here, this report covers primarily the U-tube design. The reasons for selecting this arrangement are not clear from reading the report, but the noise of free-surface tanks as they approach saturation, and possibly poorer arrangement of the ship’s volume are this editor’s (RRY) speculation.

The paper presents a method whereby the results of bench tests of a passive tank may be used to calculate the stabilised ship roll response to beam seas. It is shown that slightly modified equations for the roll motions of a ship equipped with a
U-Tube roll stabilizer represent the behavior of a ship with any type of stabilizer tank, with reasonable accuracy. The equations contain three unknown tank parameters which can be determined from the results of bench tests.

SEAKEEPING HULL FORMS - GENERAL

A comparison of six different ships designed as Navy workboats (Torpedo Weapon Retrievers) for Hawaiian operations. Based on the seakeeping characteristics of the various designs only, with no consideration of cost, etc., the SWATH designs provide the most promising performance.

This paper from the Canadian Defence Establishment Atlantic examines the operational need for advances in ship-platform technology and how they might best be exploited, with the emphasis on the value of speed. Advanced forms of conventional ships are examined, along with new types such as SWATH, hydrofoil and SES, in order to find the most promising types from the viewpoint of one of the smaller navies. A matrix of functional class versus platform type defines the promising regimes of size, speed and operational capability for each vehicle type.

SEAKEEPING HULL FORMS - DISPLACEMENT MONOHULLS

Beukelman, W., & Huijser, A., "Variation of Parameters Determining Seakeeping", International Shipbuilding Progress, 1975, pp 171-186

Using a strip-theory program to calculate the seakeeping responses in head seas of a systematic variation of hull forms based on the "Todd-60" series. Concludes that increased size and speed, and V'd forebody section shapes have the greatest influence on performance. Increasing block coefficient also improves performance. Concludes that radius of gyration is of little importance, in contrast with work done at the U.S. Naval Academy on frigate hulls. Perhaps the full merchant hulls behave differently than the fine combatants.

Describes a series of tests used to select a parent hull form to be used in a systematic series of model experiments aimed at providing seakeeping and resistance data for use in design. The hull form chosen attempts to balance favorable seakeeping and resistance characteristics. The report also contains some interesting comparisons of theoretical predictions with model test data, indicating fair correlation, little to chose from.
between Close Fit and Ordinary Strip Method Predictions, and poor results using equations of motion which include speed dependent damping terms. The hull forms developed in this report unfortunately have little application to buoy tenders.

Uses an ultrasonic sensor mounted on the bow of the ship instead of a wave buoy to measure the incident wave. Similar techniques have been developed by DTNSRDC.

Examines the limits of the slenderness restriction on the applicability of Strip Theory by comparing analytical predictions with model test results. The somewhat surprising conclusion is that even for Length to Beam ratios as low as 4, calculated responses in head seas show good agreement with measured model experiments. Since buoy tenders tend towards low Length to Beam ratios, this is an important finding.

A study made using MIT-5D to analytically predict the motions of a candidate T-AGOS hull. Bilge keels were used in an attempt to match the experimental results in roll for this hard chine hull, with little success. The experimental roll RAO's were substituted for analytical values in the short and long term predictions of ship and point motions.

A review of existing and emerging ship hydrodynamics technologies which are expanding hull design options, and their associated ship performance characteristics. Covers seakeeping effectiveness indices and Bales Seakeeping Rank Estimator.

A procedure for hull form development that starts out with a design optimized for seakeeping, then modifies it to improve resistance, powering, maneuvering and other characteristics without compromising seakeeping performance. This is essentially the opposite of the traditional approach to hull form generation.

Of limited value to buoy tenders, shows that location of LCB and LCF is un-important if they are co-located, LCF aft of LCB significantly improves vertical plane motions in head seas, particularly at high speeds, although deck wetness is degraded.

The factors with primary influence on Frigate rolling are studied parametrically, with predictions made for an operationally meaningful range of speed and sea conditions. The key result of the study is the overwhelming benefit of active stabilization. By comparison, all other parameters studied have an insignificant effect on rolling. Rudder roll stabilization, particularly if the dynamics of the rudder system are upgraded, compares favorably with an active fin system. Other results include the following:

-- Rolling considerations give slight preference to hull forms with high C_w and low C_B. The overall influence is slight.
-- At service speed, passive fins provide a much more effective means of reducing roll than increased bilge keel area.
-- Moderate GM values of roughly 8% of beam are favored, while roll at the worst heading increases substantially at low values of GM.
-- Variations in displacement and radius of gyration have little effect on rolling.

SEAKEEPING HULL FORMS - DISPLACEMENT MULTIHULLS

Describes the experience of taking one of the least successful naval craft of the last 40 years and making it a useable sea boat. When first tried at sea, the HAYES was afflicted with severe cross structure slamming and a sickening, corkscrew motion in which it seemed to move in all axes at the same time. Model testing and analytical analysis lead to the fitting of a hydrofoil in between the two hulls which greatly improved the motions of the vessel. Contains model and full scale results for a range of systematic variations on the hull form used for this ship and two ASR's built during the same time frame. Contains much valuable information and advice for the designer of similar vessels.

Discusses the development of the RAN’s small (31m, 170 tonnes) catamaran minehunter. Uses sandwich skin GRP
construction in the manner of Swedish monohull MCM vessels. Has many features to minimize underwater signature and maximize hull shock resistance. Hull form somewhat resembles that of the HAYES, but higher Length to Beam Ratio. Fitted with anti-pitching foil (to no one’s surprise).

The Ortolan, along with other catamaran auxiliary ships constructed in the same time period, suffered from severe slamming of the cross-structure, which created structural problems and produced large rigid-body motions. Modifications to the cross-structure to increase under-deck clearance, and the addition of a pitch-dampening foil greatly improved the seakeeping behavior of the vessel, while reducing the structural loads due to slamming.

SEAKEEPING HULL FORMS - SMALL WATERPLANE AREA TWIN HULLS (SWATH)

The paper is an overview of a study conducted to examine the potential of small SWATH ships for coastal and offshore patrol missions. Resistance, powering and seakeeping characteristics of 125 to 1270 metric tonne (Mg) SWATH ships were investigated together with analysis of all major weight groups. Conclusions are:

1) The maximum speed selected has a large effect on the design
2) Speeds of 20-25 kts can be easily accommodated with diesel engines. CODAG systems may be required if higher speeds are desired.
3) If speeds above 20 kts are required in conjunction with acceptable range, aluminum structures will be required. Composite and/or hybrid steel/aluminum structures appear to have few advantages.
4) Seakeeping is excellent and provides a substantial improvement over conventional ships.
5) Helicopter operations are possible on SWATH ships as small as 250 Mg, but full hanger, maintenance, etc., will require SWATH ships of 500 to 750 Mg displacement.
6) Outfit and Machinery weights for SWATH ships tend to be somewhat higher than for monohulls of the same displacement.

Points out what the author feels are the severe penalties paid by the SWATH concept in return for it’s excellent seakeeping. The problems cited are excessive power, draft, and hull area, poor arrangements, stability, maneuverability and survivability. These (potential) problems are sketched out to encourage a more realistic, objective engineering exposition of the concepts advantages and drawbacks.

Application of a multivariable controller seems to offer vast improvements in motion response over un-stabilized SWATH's and those using active fins controlled by simple feedback. The evaluation of SWATH ships without considering active control is misleading, and does not adequately represent the true performance of SWATH ships. However, it appears that the benefits of simple feedback control appear to under-predict in this paper, perhaps exaggerating the benefits of more complex control.

An attempt to "sell" the SWATH concept for the ARS mission as an alternative to the ARS-46 design (conventional monohull), which it is contended provides no increase in capability over the hulls it is to replace except increased horsepower. The SWATH concept offers high sea state operation, low motion stress, full helo operations, and some unique underwater and salvage operations capabilities un-achievable with conventional ARS designs. Conversely, the ARS mission, with it's modest speed requirements, provides an excellent opportunity to establish the design and construction techniques for moderate sized SWATHs. It should be noted that the new ARS ships are being built to the conventional design.

The seakeeping program CAT-5 previously developed for catamarans has been modified to predict the motions of SWATHS. The modifications are described, the program listing is given, and the results of the modified program for catamaran and SWATH ships are presented along with comparisons with published experimental and other results. Runs on a DEC VAX under VM, does not model active control, and appears to be fairly compact.

A companion report to Strickland, 1985. Covers the seakeeping and maneuvering portions of this series of side-by-side tests. Motions of the KAIMALINO were up to 20 times less than for the MALLOW, and maneuverability was as good or better.

SWATHGEN is a program which produces faired hull forms, performs resistance calculations and optimizes the hull form by shaping the lower hulls to minimize wave resistance. See also Salveson et al (1985).

A mathematical model developed to predict the bending moment, sideload, and vertical shear force acting on the cross structure and strut of twin-hull ships in beam waves. The program has shown good agreement with experimental data. The prominent feature of sideload and bending moment responses for SWATH ships is a sharp peak resulting from wave diffraction at an excitation wavelength roughly three to four times the overall beam of the ship. Horizontal forces are about an order of magnitude greater than vertically acting forces in regular beam seas at zero speed, the situation examined in the report.

Points out the pressing need for up-to-date hydrographic data, and discusses ways in which Small Waterplane Area Twin Hull Vessels and Multi-beam survey systems can alleviate some of the problems of present survey techniques and equipment. Particular reference to the Suave Lino.

Short ship report on the Suave Lino.

Presents full scale seakeeping trial results from tests conducted in sea state 5 at various headings at 5 kts. Control surfaces were fixed for these tests.

Fein, J., "Control Response Trials of the Stable Semi-Submerged Platform (SSP KAIMALINO)", DTNSRDC SPD 650-02, April 1976

Contains the results of full scale control response trials. This is the SSP in it's original configuration (193 ton displacement). The response in pitch and roll due to canards and flaps in calm water is documented. The yaw rate response due to rudder is also investigated.

Duplicates some of the tests report in Fein, 1976, in the new configuration (217.5 tons displacement) and explores the effectiveness of various turning strategies, such as differential thrust and inducing inboard heel during a turn, both of which reduce the turning diameter.

This paper is itself a summary of the state-of-the-art as it existed in 1982, and should be read by any interested investigator. Only a few of the perhaps less obvious points presented in the paper can be noted here.

-- Larger SWATH vessels will be proportionally less trim and heel sensitive than small SWATH's, since their waterplane area can be larger without degrading seakeeping performance. Once the natural period of the vessel gets long enough with respect to ocean waves, there is little added benefit to making it longer, and big SWATH's that are Geosims of little SWATH's will have a longer period than they need, so they can trade off waterplane area if need be.

-- The approximate seakeeping methods of Dalzell and Lee are producing cheaper predictions of seakeeping without numerical instabilities exhibited by close fit techniques.

-- The extant model test data covers only a small region of the SWATH domain.

-- Correlation between theory and experiment has hardly eliminated the need for model testing in SWATH design.

-- SWATH's for low speed steadiness need low waterplane areas and GM's, for higher speed those parameters can be relaxed. The number of struts, by itself, has little effect on motions.

-- SWATH ships can be made to turn at least as well as conventional ships of the same displacement. Since SWATH’s tend to be short, looking at turning circled in ship lengths is rather misleading.

The report concludes that the technology exists to design a SWATH ship that will exhibit outstanding operational performance with low technical risk.

A synthesis model for patrol cutters based on an earlier model by Goodwin for monohulls, and the available SWATH data of the time. Overpredicts structural weight and generator required capacity, but could be used as the basis of a new effort using the far wider database now available.

Another survey paper, introducing canted struts for improved motions, and combined with stabilizer steering, better control, longitudinal framing for cost and weight reduction, and discussing the general advantages of SWATH's, producibility, cost and weight prediction and proposed designs for Coast Guard Cutters, patrol, crew, hydrographic, oceanographic, and ocean surveillance vessels. The canted strut and stabilizer steering concepts look very promising and deserve serious consideration.

Traces the effort at NOSC to develop the SWATH concept. Their emphasis has been primarily on units capable of operations with fast-moving surface warfare groups, but they have also developed the SSP 'Kaimalino' which is used for low-speed support of underwater systems development, and has also been tested for application as a buoy tender. One of the key contentions of this paper is that SWATH’s need not cost more than conventional ships, and on a mission-equivalency basis are probably far less expensive.

Develops four SWATH concepts configured for Coast Guard WPB/WMEC missions and uses these as a foundation for examining the principal characteristics and performance of small SWATH ships. The displacements were chosen to bracket existing cutters and remained fixed during the study. For each of the concepts, the parameters of interest were Gross Geometry: Area and Volume Characteristics: Weight Group Distribution: Speed, Endurance and Range Trade-offs. See the abstract of Allen and Holcomb (1982) for some of the conclusions of this important study.

Details tests for speed/power/fuel consumption, seakeeping, maneuvering, hull stress and strain, and towing run on the SUAVE LINO, after early problems with payload capacity and trim were corrected by the addition of buoyancy blisters. The vessel reached 18.6 kts at light displacement and 17.0 kts when heavy. Seakeeping trials in rather mild conditions produced pitch, roll and accelerations much lower than expected for comparable monohulls. Directional stability was excellent, although due to poor rudder design, turning diameters were large.

Posits the anticipated size and speed of SWATH escort ships. Includes studies of several exotic propulsion systems and very high installed horsepowers. The method is useful even if the results of this particular study are somewhat irrelevant to buoy tenders. The conclusion that "Smaller ships and higher speeds are possible by using all aluminum structure, reducing crew size, or changing mission elements such as range and endurance speed" is universally applicable.

A useful series of tests including a substantial part of the matrix defined by four speeds, four headings and three drafts for the basic hull as well as for the hull with various appendages. No active controls. Deeper drafts reduced cross-structure clearance, increasing motion response due to more prevalent wave impacts.

Displays trends in design parameters predicted during the last 14 years of SWATH design. Since most of the designs examined have not been built, the results should be applied cautiously. Also, many of the relationships show their greatest change as displacement increases above 10,000 tons displacement, well above buoy tender size. It would be helpful if the same relationships could be developed limiting the displacement to about 2000 tons. The comparisons between SWATH and monohull practice are very illuminating.

King, James, "Small Waterplane Are Twin Hull (SWATH) Ship Structural Weight Parametrics Using the Structural Synthesis Design Program", DTNSRDC/SDD-78/1, NTIS Accession # AD-A051 682, September 1977.

Excellent overview on the effects of various structural modifications on SWATH Structural weight fraction. 10-20% reductions in the weight of the primary structure can be achieved relative to the baseline of the then-current SWATH Synthesis Program estimates. The parameters studied included: transverse frame spacing, materials, intermediate lateral support, and the use of longitudinal girders.

A small series test of SWATH configurations. Single strut models with long and short struts, and simple and contoured lower hulls were tested with systematic variations in breadth and draft to produce 20 variants. Comparisons are made between the experimental results and predictions based on the theory of Chapman. The character to the resistance curves were well-predicted by the theory, although the absolute values of resistance are underpredicted at high speeds and over-predicted at hump speed. Variations in resistance due to breadth and draft variations are well predicted by theory, and it is concluded that the existing theory is a good comparative tool for the ship types shown.

This paper describes a concept for an Oceanographic Ship combining SWATH with state-of-the-art Oceanographic Instrumentation to provide a stable platform for comfortable and detailed at-sea research.

Presents a useful database of performance for SWATH's and conventional vessels and some simple performance assessments for calm and rough water. Gives ranges of speed and sea states, as well as design applications where the SWATH concept offers clear advantages over conventional ships.

A theoretical approach for determining the size of stabilizing fins for SWATH ships is described. Determination of fin size is made on the basis of retaining vertical plane stability for high speeds as well as augmenting the heave and pitch damping for motion in waves. The lack of waterplane area in a SWATH ships can result in pitch instability due to the "Munk Moment" on the submerged hull which provides a destabilizing pitch moment roughly proportional to the square of the speed. Inception speed for instability is well predicted by the theory, and it is seen that there is an optimum size for stabilizer fins. Fitting fins larger than optimum may result in unstable heave modes. Fore and aft fins provide improved stability and motion damping characteristics over aft fins alone. Note that this report considers only fixed fins. Active fins are not strictly necessary to prevent pitch instability, but it seems logical that if fins are fitted, they may as well be active.

The programs still in use by DTNSRDC for SWATH analysis owe much to the theory developed by Lee in this paper.

An experimental evaluation on the cambered-hull effect on resistance and propulsion of a SWATH. This experimental evaluation was divided into six sections to investigate the affects of variation in draft, propeller diameter, correlation allowance, one propeller driving - one windmilling, change of camber from inboard to outboard, and in experimental techniques.
using free to trim and heave, free to heave, and captive modes. The effects of draft on resistance and propulsion are sizeable in the low speed range, but are not significant above a speed length ratio of 1.0. The propeller diameter doesn’t affect hull efficiency as much as varying speed does. The propulsion coefficients are not significantly changed by correlation allowance. Hull camber inward was superior for both resistance and propulsion. The powering characteristics were dependent on interference, sinkage and time effects, thus the technique for conducting the experiments is of prime importance.

Due to the rough seas around Hawaii, it is estimated that only 50% of a typical fishing vessels time on site is actually spent in operation. A SWATH fishing vessel promises much greater operational utility. This report develops the requirements, and sketches the preliminary design of such a vessel.

A very detailed description of a small SWATH demonstration craft. This vessel has been extensively tested by the Coast Guard R&D Center and by DTNSRDC.

Summarizes the development and operations of the largest fleet of operational SWATH’s. Discusses trade-offs in construction materials, propulsion, and describes the operational experience with the ‘Seagull’, a fast ferry, and the ‘Kotzaki’, a hydrographic survey vessel. The very high operability and effectiveness of SWATH ships is borne out in actual practice.

McCreight, Kathryn K., "The Effect of Longitudinal Center of Flotation and Longitudinal Metacentric Height on Responses of Low Speed SWATH Configurations", DTNSRDC/SPD-1047-01, NTIS Accession #AD-A159 069, March 1985.

An analytical study examining the effect of varying the longitudinal metacentric height and longitudinal center of flotation on the motion responses of a series of 2550 tonne SWATH ships, all with twin struts and contoured lower hulls. The predictions show that increasing GM, generally results in decreased responses to irregular seas. Locating LCF aft of the LCB in head seas reduces responses for all motions studied for low speeds, and in following seas reduced relative and absolute vertical motions at the bow for all speed.

Various designs for the AGOR 23 oceanographic vessel were tested to see if designs which were within cost constraints could also meet the Operational Requirements for seakeeping and stationkeeping.

This work preceded the previous reference. The NAVSEA baseline design was evaluated with and without active fins and was found to have excessive motions at zero speed. A modified design with larger displacement was then evaluated, and found to have better motions at zero speed, but problems with roll at the transit speed. The expected cost of this larger vessel drove the next study (see previous) to examine designs within cost constraints. Distribution of this report is limited to U.S. Government agencies and their contractors.

Presents a summary of research work conducted since 1978 at Glasgow University. Some interesting phenomena were observed during tests of a 3-column SWATH, and the results of general investigations into SWATH resistance and seakeeping are presented.

Ship report on the first commercial application of Mitsui’s SWATH research program.

ASSET/SWATH is a ship synthesis computer program that was developed by the U.S. Navy. It is the latest addition to the family of ship synthesis modules known as ASSET (Advanced Surface Ship Evaluation Tool) and is used to perform early-stage SWATH designs and to assess the whole-ship impact of applied technologies. The majority of computational modules employ analytical, rather than empirical, algorithms. An important design tool, but may be more suitable for Naval Combatants than for Coast Guard Buoy Tenders.

An excellent paper integrating the SWATH concept into a larger system. The present hydrographic survey capability is limited by numbers of assets, old and unreliable equipment and high personnel turnover. An improved capability can be achieved.
by 1) Utilizing state-of-the-art equipment for navigation, data collection and processing, 2) Utilizing much smaller SWATH survey ships which would provide the same or improved operational capabilities as present units with lower acquisition and operating costs, 3) Use remote sensing for very shallow water surveying, 4) use more reliable launches for shallow water and near-shore operations 5) Utilize larger self-sustaining Survey Launches or single hull semi-submersible drones operating in conjunction with the mother craft for survey of un-obstructed waters.

Describes a five-degree-of-freedom SWATH motions program based on the theoretical model of Lee, and earlier programs developed at DTNSRDC. Uses strip theory, includes viscous flow and the contributions of the control surfaces. Agreement is good for vertical motions, rather less so for lateral motions. Long- and short-crested irregular seaways can be specified.

A package based on SWATM2 which automates the assessment of seakeeping performance. Computes the ship motions for the entire range of sea conditions for a user-specified ocean area in the North Atlantic, applies seakeeping criteria, averages the performance parameters over all headings to obtain mean values for each sea condition and obtains averages for all sea conditions by weighting each individual sea condition by it's probability of occurrence.

Describes the analytical and experimental techniques then available for use in the design process. Presents simple relationships for use in predicting resistance and seakeeping behavior in the early stages of design.

Documents two related computer programs for determining the wave resistance and propulsive performance of Small Waterplane Area Twin Hull (SWATH) Ships. CLOSEFIT uses an integration technique based on the actual offsets to generate the coefficients of the Chebychev series used for representing the geometry of the hull and struts used in the thin-ship analysis, where SYNTHESIS uses an approximation based on the moments of the strut waterplane and body. SYNTHESIS thus saves 10 to 40 times
the computation needed to determine wave resistance, albeit doing so less accurately. SYNTHESIS also calculates SHP using wake data from propulsion experiments and Troost propeller data. This document is primarily for those who seek to modify and maintain the programs and need a thorough understanding of how it works; the User’s Manual explains input and output in sufficient detail for most users.

"RINA International Conference on SWATH Ships and Advanced Multi-Hulled Vessels", The Royal Institute of Naval Architects, 17-19 April, 1985.

A landmark conference. Research, design, development and operation of SWATH ships was discussed in nearly 30 papers by authors from all the major shipbuilding countries. Pertinent articles are referenced by author.

Describes the development of a program which enables the designer of a SWATH to include advanced hydrodynamic performance predictions in the early stages of the design process. The first module of the program generates mathematically faired SWATH hull forms (including the lowerhull/strut intersection), performs hydrostatic calculations and generates geometry descriptions needed for the hydrodynamic computations. The second module computes the total calm water resistance using a modification of the method of Chapman, and the third module seeks to optimize the hull form by contouring the lower hulls to minimize wave resistance. See also Cressy and Meinhold(1985).

Presents an overview of the technical progress in the field of tandem-strut SWATH hydrodynamics at the University of Glasgow. Frequency and time-domain seakeeping programs are being developed and comparative model tests have been run to gather resistance and wake survey data and to examine the effects of beam and draft variations. Motions control design considerations are addressed based on experiments carried out in head and following seas, and it seems that aft, fixed stabilizer fins may not be sufficient for pitch stability in following waves.

Presents experimental results of an investigation into the 'parasitic' motions (rolling in head seas, sub-harmonic rolling in beam seas) of Glasgow University’s 3 column SWATH. While the motions never led to a capsize, they shed some light on the peculiarities of this type of vessel, and the influences of heave and roll natural frequencies, and above water shape on their motions.

This paper gives a brief review of the design for a small SWATH vessel for life-science and engineering research developed at the University of Glasgow, and describes motion responses experiments run in head seas while stationary and at forward speed.

A fairly complete presentation of the preliminary design for a small (319t) SWATH Research Vessel. Design basis, requirements, equipment, group weights, preliminary scantling estimates, intact stability and a limited amount of cost data are presented, along with resistance results by theory and experiment, and motions experimental results. The ‘jump’ phenomena is explored.

Reports on a series of side-by-side trials with a SWATH and a conventional 180 ft WLB in the waters off Hawaii in order to develop comparable data on performance of ATON tasks under identical sea and weather conditions. The superior motions, maneuverability, ample deck area and lack of drift of the SSP KAIMILINO made it an attractive platform for buoy tending, in spite of its deep draft, high freeboard, weight sensitivity, heeling sensitivity and lack of adaptation in layout and hardware to ATON operations. Companion report to Coe, 1983.

The response characteristics of a systematic series of seventy-nine SWATH configurations have been investigated analytically. Three values each of waterplane area, strut length, LCB and LCF are used to define the hullforms. RMS values of heave, pitch, relative bow motion and absolute stern motions are presented for a unit wave height and a range of modal periods for head and following seas at four speeds. Performance assessments are given and trends are indicated. Small (relative to ocean waves) SWATH’s tend to be more sensitive to parametric variations than large SWATH’s (such as these), but the method and the general trends of this study are very useful in assessing variations in SWATH design variables.

A WHEC, WPB and the SSP KAIMALINO were tested side-by-side on a series of courses of Hawaii, and an extensive set of motions and human factors measurements were made. Measurements were made for three 8-hour periods at different headings relative to the waves, and an additional 36-hour trial period involving only the CAPE CORWIN and the KAIMALINO was conducted. In the relatively mild sea conditions encountered, none of the vessels was limited by ship motions, but the KAIMALINO was the most stable of the three vessels, being superior to MELLON in roll and lateral acceleration and superior to CAPE CORWIN in roll, pitch, heave, vertical acceleration and lateral acceleration.

Zarnick, Ernest E., & Hong, Young S., "Relative Bow Motion and Frequency of Slamming of SWATH Cross-Structure", DTNSRDC/SPD-1174-01, NTIS Accession #AD-A166 893, April 1986. Studies have indicated that Relative Bow Motion and related slamming are nearly always the limiting performance parameter in SWATH seakeeping assessment. A study was made of methods for improving the means of estimating the number of wave impacts per unit time of SWATH cross-structures. Two avenues were explored: 1) Improvement of relative motion estimates by adding the components of ship-generated wave and diffracted wave to the incident wave in describing the free surface; and, 2) including a limiting impact angle in the criteria defining the occurrence of a slam. The refined modeling of the free surface does not improve the correlation of the computed relative motion results with experiment, and, as expected, the limiting angle criteria reduces the estimated frequency of slamming. Additional model tests are recommended to obtain a more definitive estimate of threshold velocity and limiting impact angle for estimating SWATH cross-structure slamming.

Zarnick, Ernest E., "Vertical Plane and Roll Motion Stabilization of SWATH Ships", DTNSRDC/SPD-1199-01, NTIS Accession #AD-A172 114, September 1986. A method to assess the effects of active fins on the vertical motions (platforming and contouring modes) and/or the roll motion of a SWATH in waves. Uses Linear Quadratic Theory for Optimal control and handles fin angle and saturation non-linearities by using limiting values, permitting frequency domain calculations to be computed that are more consistent with LQT and more cost effective than time-domain approaches. An important paper and method.

PROPULSION SYSTEMS

PRIME MOVERS

"Even more Engine Efficiency with the new VTR 4A Turbocharger from BBC," Shipping World & Shipbuilder, June 1984, p 337, 339.

"MAN-B&W Claims High Efficiency for NA/TO Turbochargers."

PROPSORS

A-55

"Resiliently Mounted Transverse Thruster"

WEIGHT HANDLING SYSTEMS

Beattie, D.H. and A. Robson, "A review of cargo handling systems for dry cargo vessels", Transactions - North East Coast Institution of Engineers and Shipbuilders; 95(3); April 1979

"Buoy Tender Manual", U.S. Coast Guard, Aids to Navigation School, formerly Governors Island, New York, 1984

"Buoy Tender Myojo", Bulletin of IAISM, No. 37, July 1968

"MSC’s Crane Ships Join RRDF", Marine Engineer’s Log, February 1987, pp. 35-36

"Rauma-Repola Channel Servicing Vessel", Manufacturers literature, Rauma-Repola Shipbuilding Division, Finland, undated.

Stricker, P.A., "Active/passive motion compensating crane for handling a remote unmanned work station", OTC 78, Houston, 1978, Paper No. 3236

"The buoy tender ‘Breeveertien’" Bulletin of AISM, 1976-1

"Wilton Buoy Servicing Vessel", Ship and Boat International, November 1983, pp. 35-361

VESSEL AUTOMATION, CONTROL AND MONITORING

DYNAMIC POSITIONING

A-57

"How DP Crane Vessels Can Make Inroads on Anchors," Offshore Engineer, April 1985

"Wilton: Buoy Servicing Vessels," Ship and Boat, No. 36, 1983

GENERAL SHIP AUTOMATION

Davis, C.E. and Graham, W.C., "Reliability Analysis of Large Commercial Vessels Engine Room Automation Systems," Dovap and Assoc., Playa del Rey, CA, November 1982

Mellis, J.G., Plato, A.I., Rein, R.J., "Is Automation the Magic Potion for Manning Problems" Naval Engineers Journal, April 1982

Reeves, P., "Advanced Automation in HM Ships," North East Coast Institute of Engineers and Shipbuilders, Transactions, Vol. 94, No. 5, May 1978

NAVIGATIONAL AIDS

Rinehart, V. and Bertsche, W., "An At-Sea Comparison Analysis of Deck Officer Performance with and without Automated Information Displays," SNAME, STAR Symp., Houston, TX, April 1979

"Global Positioning - Preparing for the 1990's," MER, November 1986

END
DATE
FILMED
7-88
Dtic