MICROCOPY RESOLUTION TEST CHART
Some Learnability Results for Analogical Generalization

Clayton Lewis

CU-CS-384-88 January 1988
Some Learnability Results
for Analogical Generalization

Clayton Lewis

CU-CS-384-88 January 1988

This research was supported by the Personnel and Training Research Programs, Psychological Sciences Division, Office of Naval Research, under Contract No. N00014-85-K-0452, Contract Authority Identification No. NR 702-009. Approved for public release; distribution unlimited. Reproduction in whole or part is permitted for any purpose of the United States.

DISTRIBUTION STATEMENT A
Approved for public release
Distribution Unlimited
Some Learnability Results for Analogical Generalization

Clayton Lewis
Department of Computer Science and
Institute of Cognitive Science
Campus Box 430
University of Colorado
Boulder CO 80309
(303) 492 6657
clayton at boulder on csnet

January 13, 1988

Topic keywords: concept learning, analogical reasoning, theoretical analysis

Abstract.
Progress has been made in characterizing formally the capabilities and performance of inductive learning algorithms. Similar characterizations are needed for recently-proposed methods that produce generalizations from small numbers of analyzed examples. I consider one class of such methods, based on the analogical generalization technique in Anderson and Thompson's PUPS system. It might appear that some to-be-learned structures can be learned by analogy, while others are too chaotic or inconsistent. I show that this intuition is correct for a simple form of analogical generalization, so that there are learnable and unlearnable structures for this method. In contrast, I show that for PUPS-style generalization analogical structure can be imposed on an arbitrary system (within a broad class I call command systems.) It follows that the constraints on the PUPS-style method lie not in any structural condition on a to-be-learned system but rather in obtaining the knowledge needed to impose analogical structure.

Acknowledgments.
This research was supported by the Office of Naval Research, Contract No. N00014-85-K-0452. I am grateful to John Anderson and David Haussler for useful discussions.
Some Learnability Results for Analogical Generalization

Progress has been made in characterizing formally the capabilities and performance of inductive learning algorithms. Similar characterizations are needed for recently-proposed methods that produce generalizations from small numbers of analyzed examples.

I consider one class of such methods, based on the analogical generalization technique in Anderson and Thompson's PUPS system. It might appear that some to-be-learned structures can be learned by analogy, while others are too chaotic or inconsistent. I show that this intuition is correct for a simple form of analogical generalization, so that there are learnable and unlearnable structures for this method. In contrast, I show that for PUPS-style generalization analogical structure can be imposed on an arbitrary system (within a broad class I call command systems.) It follows that the constraints on the PUPS-style method lie not in any structural condition on a to-be-learned system but rather in obtaining the knowledge needed to impose analogical structure.

Concept learning, analogical reasoning, theoretical analysis

Progress has been made in characterizing formally the capabilities and performance of inductive learning algorithms. Similar characterizations are needed for recently-proposed methods that produce generalizations from small numbers of analyzed examples. I consider one class of such methods, based on the analogical generalization technique in Anderson and Thompson's PUPS system. It might appear that some to-be-learned structures can be learned by analogy, while others are too chaotic or inconsistent. I show that this intuition is correct for a simple form of analogical generalization, so that there are learnable and unlearnable structures for this method. In contrast, I show that for PUPS-style generalization analogical structure can be imposed on an arbitrary system (within a broad class I call command systems.) It follows that the constraints on the PUPS-style method lie not in any structural condition on a to-be-learned system but rather in obtaining the knowledge needed to impose analogical structure.
Learnability analysis and analysis-based generalization methods.

Formal analysis of inductive learning mechanisms has succeeded in determining the applicability and performance of various learning algorithms to various classes of learning tasks (Angluin and Smith 1983; Valiant 1984; Haussler 1987; Kearns, Pitt, and Valiant 1987). Such characterizations are not yet available for recently-proposed methods, including explanation-based learning (Mitchell, Keller, and Kedar-Cabelli 1986; De Jong and Mooney 1986), analogical generalization (Anderson and Thompson 1986), and synthetic generalization of procedures (Lewis 1986), which rely on having an analysis of to-be-generalized examples that includes some indication (different for different methods) of why the example belongs to the concept.

These methods, which can be called analysis-based methods (Lewis, in press), do not fit directly into the framework used to characterize inductive methods, because the input to the generalization process includes information other than the identity of the examples themselves. Further, the generalization process has access to background information not associated with individual examples, such as the domain theory used in explanation-based generalization. Nevertheless, as a start on learnability analysis for these methods one can ask whether these methods are applicable to arbitrary concepts, or whether some concepts are learnable using a given analysis-based method while others are not.

Analogy-based learning might work for some systems and not for others.

This paper aims to investigate this issue for one class of analysis-based methods: analogical generalization. Intuitively, it may appear that the nature of analogical generalization is such that it is applicable only to concepts satisfying some kind of regularity or consistency conditions.

To investigate this intuition I will consider a single kind of to-be-learned concept,
which I will call a command system. A command system consists of a collection of objects called commands, each of which has an associated object called a result. Learning a command system requires being able to supply a command which is associated with a specified result.

While I will discuss only command systems, the formal structure I describe is much more general. Any system which can be described by pairs of associated objects, for example sentences and meanings, or programs and functions they compute, can be subjected to the same analysis I give here.

To apply analogical generalization to the task of learning a command system we will attempt to generalize a single example of a command-result pair in such a way as to allow us to supply the commands that are paired with any other result. Intuitively, it appears that this approach will work for some command systems, which I will call analogical, but not for others, whose structure would be too chaotic and inconsistent. I will show that this intuition is correct for a very simple form of analogical generalization, but not for a more powerful (and plausible) form.

A general framework for modificational analogy.

Analogy can be used in more than one way to solve generalization problems. In structure mapping (Gentner 1983) the analogy \(A : B :: C : X\) is solved by determining the relevant relationships between \(A\) and \(B\) and imposing them on \(C\) and \(X\). The unknown \(X\) is determined by the requirement that it satisfy these relationships to \(C\). Anderson and Thompson's (1986) PUPS system uses a different approach, which I will call modificational analogy (Lewis, in press). Here \(X\) is constructed by modifying \(B\). The modification to apply is determined by finding a modification than transforms \(A\) into \(C\). I will use modificational analogy in this discussion.

How does one apply modificational analogy to learning a command system? If \(c_1\) is a
command, and \(r_1 \) is its result, and we wish to obtain a new result \(r_2 \), we proceed as follows. We find a modification \(m \), drawn from some specified class of functions, for which \(m(r_1) = r_2 \). We then produce \(c_2 = m(c_1) \). The system is analogical if for any pair \([c_1, r_1]\), and any new result \(r_2 \), the \(c_2 \) we construct in this way has \(r_2 \) as its result. Thus we can learn an analogical system from a single example pair.

On the face of it it appears that some command systems are analogical in this sense, and others, perhaps most, are not.

Simple substitution analogy works for some systems but not for others.

The modificational analogy scheme just described behaves differently for different classes of modification functions. Suppose commands and results are sequences of words from some vocabulary, and that the permitted modifications are simply substitutions that replace words by other words. It is easy to see that some command systems are analogical under this scheme while others are not.

Consider first a system containing the pairs \([\text{delete eggplant}, \text{remove file eggplant}]\) and \([\text{delete broccoli}, \text{remove file broccoli}]\). Given the first pair as an example, substitution analogy can correctly determine the command that has as result "remove file broccoli": the substitution that transforms "remove file eggplant" to "remove file broccoli" just replaces "eggplant" by "broccoli".

Applying this substitution to "delete eggplant" produces "delete broccoli", which is the correct command.

Now suppose the system contains the pair \([\text{delete eggplant}, \text{remove file eggplant}]\), as before, but also contains the pair \([\text{delete carrot}, \text{remove file broccoli}]\). Substitution analogy now fails to produce the correct command for the
result "remove file broccoli". The process just described gives the command "delete broccoli", as before, rather than the correct form "delete carrot". So this second command system is not analogical under substitution analogy.

Simple substitution analogy is too limited.

Simple substitution analogy fails to capture many situations in which intuitively satisfying analogies can be found. Consider a command system with the pairs [delete e, remove file eggplant], [save e, backup file eggplant], [delete b, remove file broccoli], and [save b, backup file broccoli]. Suppose that the first three of these pairs are presented as examples. It seems that the command to backup broccoli should be derivable from the others by analogy, but simple substitution is inadequate to do this.

There is more than one way to attempt to derive the correct command, but all fail in the same way. If we try to use [save e, backup file eggplant] as our base example, we find that mapping "backup file eggplant" to the desired "backup file broccoli" requires substituting "broccoli" for "eggplant". But "eggplant" does not occur in the command "save e", so the substitution cannot be carried out. Similarly, starting from the pair [delete b, remove file broccoli] leads to the vain attempt to substitute "save" for "remove" in the command "delete b".

Pupstitution extends simple substitution.

Anderson and Thompson (1986) developed an elaboration of substitution which gets over this obstacle. Their idea is that an analogy like that we have been considering requires a representation of examples that includes not simply the surface forms of objects but also an interpretation of their parts. For example the representation of the...
command "save e" could include, as a kind of annotation, the information that "e" is "the first letter of eggplant". If the substitution of "broccoli" for "eggplant" is applied to this elaborated representation, we see that "the first letter of eggplant" becomes "the first letter of broccoli". We have background knowledge that this is not "e" but "b", so we conjecture that the desired command is "save b" instead of "save e".

This extended form of substitution, which I will call pupstitution, after PUPS, Anderson and Thompson's production system that incorporates it, requires a more complicated description than simple substitution, since it requires interpretations of parts of objects, and a supply of background knowledge, in order to work. The following account is based on Anderson and Thompson's (1986) scheme but deviates from it in detail and terminology.

Pupstitutions operate not on sequences of words but rather on more complex structures, which I will call interpreted structures. An interpreted structure contains a sequence of words, but also may contain interpretations of these words, individually or in groups. Formally, an interpreted structure is a sequence of components. A component is either a sequence of words or a pair consisting of a sequence of words and an interpreted structure. For example, the command "save e" discussed above could be represented by an interpreted structure whose first component is the word "save", and whose second component is a pair consisting of the word "e" and the interpreted structure which has one component, the sequence of words "the first letter of eggplant". We can write this structure out as (save, [e, (the first letter of eggplant)]). Figure 1a shows a diagrammatic representation that may be clearer.

This definition permits interpretations or parts of them to be assigned further interpretations (though I will not need to do this in the present argument.) For
example, the interpreted structure associated with "e" in this example could instead have three components, "the", a pair consisting of "first" and "position used to abbreviate names of files", and the sequence of words "letter of eggplant". The more complex interpreted structure incorporating this further interpretation we can write as (save, [e, (the, [first, (position used to abbreviate names of files)], letter of eggplant)]). It is shown diagrammatically in Figure 1b.

The sequence of words found in the top components of an interpreted structure is called the content of the structure. The content of either example in Figure 1 is just "save e".
The transformation that a pupstitution carries out on an interpreted structure is specified by an ordinary substitution, which I will call the base substitution of the pupstitution, indicating that certain words are to be replaced by others, and by background knowledge, a collection of pairs of sequences of words. The first object in a background knowledge pair will be called an instance, and the second object will be called the interpretation. For example, background knowledge could include the pair [b, the first letter of broccoli].

A pupstitution transforms an interpreted structure into an ordinary sequence of words. It operates component by component, as follows. If the component is an ordinary sequence of words the base substitution is applied to it. If the component is a pair, the pupstitution is applied to the interpreted structure in the pair, producing a sequence of words. This sequence of words is looked up in background knowledge. If it appears in background knowledge as the interpretation of a pair, the instance of the pair replaces the original component. If no such pair is found the result of the pupstitution is undefined. (Various dispositions are possible, including leaving the original component unchanged, or, as Anderson and Thompson 1986 do, invoking analogical generalization to construct an instance of the desired interpretation. What choice is made does not affect the present argument.)

The above operations produce a sequence of words for each component in the original interpreted structure. These sequences are simply concatenated to give the result of the pupstitution.

I illustrate this process by applying a pupstitution whose base substitution replaces "eggplant" by "broccoli", and whose background knowledge includes the pair [b, the first letter of broccoli], to the structure (save, [e, the first letter of eggplant]). The component "save" is unaffected by the base substitution. Processing the component [e, the first letter of eggplant] entails applying the pupstitution
to the structure (the first letter of eggplant). Its sole component is an ordinary sequence of words, so I simply apply the base substitution, getting the sequence "the first letter of broccoli". The pair [b, the first letter of broccoli] occurs in background knowledge, so the original component [e, the first letter of eggplant] is replaced by "b". So the resulting sequence of words is "save b".

We can now use pupstitution to solve analogies in command systems. We first associate an interpreted structure with \(c_1 \) and \(r_1 \). We do this in any way we wish, as long as the content of each interpreted structure agrees with the object with which it is associated. These associations embody the analysis of the example needed to support the generalization process. We now define a pupstitution (if there is one) which will transform the structure associated with \(r_1 \) into \(r_2 \). We then apply this pupstitution to the structure associated with \(c_1 \). We propose the resulting sequence of words as \(c_2 \). Figure 2 shows the entire process applied to the "backup file broccoli" example discussed above.

\begin{align*}
\text{c1:} & \quad \text{"save e"} \\
\text{r1:} & \quad \text{"backup file eggplant"} \\
\text{r2:} & \quad \text{"backup file broccoli"} \\
\text{Interpretation of c1:} & \quad \text{(save, [e, (the first letter of eggplant)])} \\
\text{Interpretation of r1:} & \quad \text{(backup file eggplant)} \\
\text{Background knowledge for pupstitution:} & \quad [b, \text{first letter of broccoli}] \\
\text{Base substitution for pupstitution:} & \quad \text{"broccoli" for "eggplant"} \\
\text{Pupstitution carries interpretation of r1 to r2, and carries interpretation of c1 to "save b", as required.}
\end{align*}

Figure 2: Using pupstitution to construct a command.
Pupstitution analogy can always be made to work.

I now return to our central concern, determining what constraints govern the applicability of analogical generalization. For simple substitution analogy we saw that some command systems are analogical but others are not. What is the situation for analogies using pupstitution? Given appropriate interpretations of commands and results, and appropriate background knowledge, any command system whatsoever can be generalized from a single example, under pupstitution.

Let \(\{ \ldots [c_i, r_i] \ldots \} \) be any command system. Suppose we are given as an example that the result of \(c_1 \) is \(r_1 \), and we are asked to determine what command will produce any other result, say \(r_j \). For each \(i \) we select some unique key word \(k_i \), and we construct the background knowledge \(\{ \ldots [c_i, \text{command } k_i] \ldots [r_i, \text{result } k_i] \ldots \} \). We assign the interpreted structure \(([c_1, \text{command } k_1]) \) to \(c_1 \), and the structure \(([r_1, \text{result } k_1]) \) to \(r_1 \). We construct a pupstitution whose base substitution replaces \(k_1 \) with \(k_j \). This will suffice to transform our interpretation of \(r_1 \) to \(r_j \). If we now apply this pupstitution to our interpretation of \(c_1 \) we obtain \(c_j \) as we require. So this command system, about which we assumed nothing, is analogical. Figure 3 applies this method to the inconsistent "delete carrot" example which I showed was not analogical under simple substitution analogy.

This formal argument may well be unsatisfying, because the required background knowledge transparently includes complete knowledge of the command system. But similar situations can occur in realistic cases of analogy. Suppose we are confronting a desk calculator for the first time. We are shown that pressing the key marked +
c1: "delete eggplant"

r1: "remove file eggplant"

r2: "remove file broccoli"

Interpretation of c1: ([delete eggplant,(command word1)])

Interpretation of r1: ([remove file broccoli,(result word1)])

Background knowledge for pupstitution:

[delete carrot, command word2],

[remove file broccoli, result word2]

... plus other pairs ...

Base substitution for pupstitution: "word2" for "word1"

Pupstitution carries interpretation of r1 to r2, and carries

interpretation of c1 to "delete carrot", as required.

Figure 3: Application of pupstitution to inconsistent command system.

makes the calculator divide. We have background knowledge that + is the sign conventionally associated with division. We conjecture, by analogy, that the + key makes the calculator add. Lacking the background knowledge about arithmetic signs, or failing to relate this knowledge to the calculator, we would be unable to determine what key to press. With this knowledge, appropriately linked to the calculator, we can. The calculator is analogical just if we know and use the right background knowledge.

A more fanciful, but still possible, case is the following. Pat is learning to use a new command language on a computer. On being shown an example of a command and its result, Pat notes the remarkable fact that the command, and a description of its result, occurred in consecutive lines of a nursery rhyme learned years ago.
Given a new result to obtain, Pat notes that a description of this result also appears in the rhyme, and tries the command mentioned in the previous line. It works. Knowing the rhyme, and seeing its connection to the system, has allowed Pat to use an analogy to solve a novel problem.

The point of this example is that for any system whatever that Pat might wish to learn, there exists some rhyme that would allow the system to be learned in this same way. If Pat knew the rhyme, and applied it in the right way, the system would be analogical.

Constraints in analogy lie in getting and applying background knowledge. Our earlier discussion of analogy using simple substitution confirmed the intuition that some structures are analogical, that is, generalizable by analogy, while others are not. But the conclusion for pupstitution is that analogical structure can be imposed on any command system, no matter how seemingly chaotic or inconsistent. Therefore the constraints on generalization by analogy using pupstitution cannot lie in the structural requirements of analogy: under pupstitution, structures in themselves are neither analogical or not, as they are under simple substitution.

Rather, any constraints on the applicability of generalization by pupstitution must lie in the process of obtaining the needed background knowledge, and seeing its application to the system at hand. In the terms of the nursery rhyme example, how does Pat come to know the right rhyme? Given the rhyme, how can Pat reliably determine the relationship between the rhyme and the system? After all, Pat may know many rhymes, and even many rhymes in which commands and outcomes appear in different associations. The pursuit of constraints on analogical generalization must shift to these questions.
References.

generalization of procedures. *Cognitive Science*. (Earlier version available as
Technical Report CS-CCU-347-86, Department of Computer Science, University of
Colorado, Boulder CO.)

27, 1134-1142.
Dr. Phillip L. Ackerman
University of Minnesota
Department of Psychology
Minneapolis, MN 55455

Dr. Beth Adelson
Department of Computer Science
Tufts University
Medford, MA 02155

Air Force Human Resources Lab
AFHRL/MPD
Brooks AFB, TX 78235

Dr. Robert Ahlers
Code N711
Human Factors Laboratory
Naval Training Systems Center
Orlando, FL 32813

Dr. John Allen
Department of Psychology
George Mason University
4400 University Drive
Fairfax, VA 22030

Dr. Earl A. Alluisi
HQ, AFHRL (AFSC)
Brooks AFB, TX 78235

Dr. John R. Anderson
Department of Psychology
Carnegie-Mellon University
Pittsburgh, PA 15213

Dr. Nancy S. Anderson
Department of Psychology
University of Maryland
College Park, MD 20742

Dr. Steve Andriole
George Mason University
School of Information Technology & Engineering
4400 University Drive
Fairfax, VA 22030

Technical Director, ARI
5001 Eisenhower Avenue
Alexandria, VA 22333

Dr. Patricia Baggett
University of Colorado
Department of Psychology
Box 345
Boulder, CO 80309

Dr. Meryl S. Baker
Navy Personnel R&D Center
San Diego, CA 92152-6800

prof. dott. Bruno G. Bara
Unita di ricerca di intelligenza artificiale
Università di Milano
20122 Milano - via F. Sforza 1
ITALY

Dr. Gautam Biswas
Department of Computer Science
University of South Carolina
Columbia, SC 29208

Dr. R. Darrell Bock
University of Chicago
NORC
6030 South Ellis
Chicago, IL 60637

Dr. Deborah A. Boehm-Davis
Department of Psychology
George Mason University
4400 University Drive
Fairfax, VA 22030

Dr. Jeff Bonar
Learning R&D Center
University of Pittsburgh
Pittsburgh, PA 15260

Dr. Gordon H. Bower
Department of Psychology
Stanford University
Stanford, CA 94306

Dr. Robert Breaux
Code N-095R
Naval Training Systems Center
Orlando, FL 32813
Dr. Ann Brown
Center for the Study of Reading
University of Illinois
51 Gerty Drive
Champaign, IL 61820

Dr. John M. Carroll
IBM Watson Research Center
User Interface Institute
P.O. Box 218
Yorktown Heights, NY 10598

Dr. John S. Brown
XEROX Palo Alto Research Center
3333 Coyote Road
Palo Alto, CA 94304

Chair, Department of Computer Science
College of Arts and Sciences
Catholic University of America
Washington, DC 20064

Dr. Bruce Buchanan
Computer Science Department
Stanford University
Stanford, CA 94305

Chair, Department of Psychology
College of Arts and Sciences
Catholic University of America
Washington, DC 20064

Maj. Hugh Burns
AFHRL/IDE
Lowry AFB, CO 80230-5000

Dr. Fred Chang
Navy Personnel R&D Center
Code 51
San Diego, CA 92152-5300

Dr. Patricia A. Butler
OERI
555 New Jersey Ave., NW
Washington, DC 20208

Dr. David W. Charney
English Department
Penn State University
University Park, PA 16802

Dr. Joseph C. Campione
Center for the Study of Reading
University of Illinois
51 Gerty Drive
Champaign, IL 61820

Dr. Eugene Charniak
Brown University
Computer Science Department
Providence, RI 02912

Joanne Capper
Center for Research into Practice
1718 Connecticut Ave., N.W.
Washington, DC 20009

Dr. Michelene Chi
Learning R & D Center
University of Pittsburgh
3939 O'Hara Street
Pittsburgh, PA 15213

Dr. Jaime Carbonell
Carnegie-Mellon University
Department of Psychology
Pittsburgh, PA 15213

Dr. Pat Carpenter
Carnegie-Mellon University
Department of Psychology
Pittsburgh, PA 15213

Dr. Susan Carey
Harvard Graduate School of Education
337 Gutman Library
Appian Way
Cambridge, MA 02138

Dr. L. J. Chmura
Computer Science and Systems Branch
Naval Research Laboratory
Washington, DC 20375-5000

Dr. William Clancey
Stanford University
Knowledge Systems Laboratory
701 Welch Road, Bldg. C
Palo Alto, CA 94304
Distribution List [Colorado/Lewis] NR 702-009

Dr. Charles Clifton
Tobin Hall
Department of Psychology
University of Massachusetts
Amherst, MA 01003

Dr. Allan M. Collins
Bolt Beranek & Newman, Inc.
50 Moulton Street
Cambridge, MA 02138

Dr. Stanley Collyer
Office of Naval Technology
Code 222
800 N. Quincy Street
Arlington, VA 22217-5000

Dr. Natalie Dehn
Department of Computer and Information Science
University of Oregon
Eugene, OR 97403

Dr. Gerald F. DeJong
Artificial Intelligence Group
Coordinated Science Laboratory
University of Illinois
Urbana, IL 61801

Dr. Denise Dellarosa
Dept. of Psychology
University of Colorado
Boulder, CO 80309

Dr. Andrea di Sessa
University of California
School of Education
Tolman Hall
Berkeley, CA 94720

Dr. Stephanie Doan
Code 6021
Naval Air Development Center
Warminster, PA 18974-5000

Dr. Emanuel Donchin
University of Illinois
Department of Psychology
Champaign, IL 61820

Defense Technical
Information Center
Cameron Station, Blg 5
Alexandria, VA 22314
Attn: TC
(12 Copies)

Dr. Thomas M. Duffy
Communications Design Center
Carnegie-Mellon University
Schenley Park
Pittsburgh, PA 15213

Dr. Richard Duran
University of California
Santa Barbara, CA 93106

Dr. John Ellis
Navy Personnel R&D Center
San Diego, CA 92252

Dr. Jeffrey Elman
University of California, San Diego
Department of Linguistics, C-6
La Jolla, CA 92038

Dr. Susan Embretson
University of Kansas
Psychology Department
426 Fraser
Lawrence, KS 66045

ERIC Facility-Acquisitions
4833 Rugby Avenue
Bethesda, MD 20014

Dr. K. Anders Ericsson
University of Colorado
Department of Psychology
Boulder, CO 80309

Dr. Jean Claude Falmagne
Department of Psychology
New York University
New York, NY 10003

Dr. Beatrice J. Farr
Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333
Dr. Pat Federico
Code 511
NPRDC
San Diego, CA 92152-6800

Dr. Paul Feltoich
Southern Illinois University
School of Medicine
Medical Education Department
P.O. Box 3926
Springfield, IL 62708

Mr. Wallace Feurzeig
Educational Technology
Bolt Beranek & Newman
10 Moulton St.
Cambridge, MA 02238

Dr. Gerhard Fischer
University of Colorado
Department of Computer Science
Boulder, CO 80309

J. D. Fletcher
9931 Corsica Street
Vienna VA 22180

Dr. Linda Flower
Carnegie-Mellon University
Department of English
Pittsburgh, PA 15213

Dr. Kenneth D. Forbus
University of Illinois
Department of Computer Science
1304 West Springfield Avenue
Urbana, IL 61801

Dr. Barbara A. Fox
University of Colorado
Department of Linguistics
Boulder, CO 80309

Dr. Carl H. Frederiksen
McGill University
3700 McTavish Street
Montreal, Quebec H3A 1Y2
CANADA

Dr. John R. Frederiksen
Bolt Beranek & Newman
50 Moulton Street
Cambridge, MA 02138

Dr. Alfred R. Fregly
AFOSR/NL
Bolling AFB, DC 20332

Dr. Michael Friendly
Psychology Department
York University
Toronto ONT
CANADA M3J 1P3

Dr. R. Edward Geiselman
Department of Psychology
University of California
Los Angeles, CA 90024

Dr. Michael Genesereth
Stanford University
Computer Science Department
Stanford, CA 94305

Dr. Dedre Gentner
University of Illinois
Department of Psychology
603 E. Daniel St.
Champaign, IL 61820

Chair, Department of
Computer Science
George Mason University
Fairfax, VA 22030

Chair, Department of
Psychology
George Mason University
Fairfax, VA 22030

Chair, Department of
Psychology
Georgetown University
Washington, DC 20057

Dr. Robert Glaser
Learning Research
& Development Center
University of Pittsburgh
3939 O'Hara Street
Pittsburgh, PA 15260

Dr. Arthur M. Glenberg
University of Wisconsin
W. J. Brogden Psychology Bldg.
1202 W. Johnson Street
Madison, WI 53706
Dr. Sam Glucksberg
Department of Psychology
Princeton University
Princeton, NJ 08540

Dr. Susan Goldman
University of California
Santa Barbara, CA 93106

Dr. Sherrie Gott
AFHRL/MODJ
Brooks AFB, TX 78235

Dr. T. Govindaraj
Georgia Institute of Technology
School of Industrial & Systems Engineering
Atlanta, GA 30332

Dr. Richard H. Granger
Department of Computer Science
University of California, Irvine
Irvine, CA 92717

Dr. Wayne Gray
Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

Dr. James G. Greeno
University of California
Berkeley, CA 94720

Dr. Dik Gregory
Behavioral Sciences Division
Admiralty Research Establishment
Teddington
Middlesex, ENGLAND

Dr. Nancy F. Halff
Halff Resources, Inc.
4918 33rd Road, North
Arlington, VA 22207

Dr. Bruce Hamill
The Johns Hopkins University
Applied Physics Laboratory
Laurel, MD 20707

Dr. Ray Hannapel
Scientific and Engineering Personnel and Education
National Science Foundation
Washington, DC 20550

Dr. Reid Hastie
Northwestern University
Department of Psychology
Evanston, IL 60201

Prof. John R. Hayes
Carnegie-Mellon University
Department of Psychology
Schenley Park
Pittsburgh, PA 15213

Dr. Barbara Hayes-Roth
Department of Computer Science
Stanford University
Stanford, CA 95305

Dr. Joan I. Heller
505 Haddon Road
Oakland, CA 94606

Dr. Jim Hollan
Intelligent Systems Group
Institute for Cognitive Science (C-015)
UCSD
La Jolla, CA 92093

Dr. Melissa Holland
Army Research Institute for the Behavioral and Social Sciences
5001 Eisenhower Avenue
Alexandria, VA 22333

Ms. Julia S. Hough
Lawrence Erlbaum Associates
6012 Greene Street
Philadelphia, PA 19144

Dr. James Howard
Dept. of Psychology
Human Performance Laboratory
Catholic University of America
Washington, DC 20064
Dr. Earl Hunt
Department of Psychology
University of Washington
Seattle, WA 98105

Dr. Ed Hutchins
Intelligent Systems Group
Institute for
Cognitive Science (C-015)
UCSD
La Jolla, CA 92039

Dr. Barbara Hutson
Virginia Tech
Graduate Center
2990 Telestar Ct.
Falls Church, VA 22042

Dr. Dillon Inouye
WICAT Education Institute
Provo, UT 84057

Dr. Alice Isen
Department of Psychology
University of Maryland
Catonville, MD 21228

Dr. Jant Jackson
Rijksuniversiteit Groningen
Biologisch Centrum, Vleugel D
Kerklaan 30, 9751 NN Haren (Gn.)
NETHERLANDS

Dr. Robert Jannarone
Department of Psychology
University of South Carolina
Columbia, SC 29208

Dr. Claude Janvier
Directeur, CIRADE
Universite' du Quebec a Montreal
P.O. Box 8888, St. "A"
Montreal, Quebec H3C 3P8
CANADA

Dr. Robin Jeffries
Hewlett-Packard Laboratories
P.O. Box 10490
Palo Alto, CA 94303-0971

Dr. Robert Jernigan
Decision Resource Systems
5595 Vantage Point Road
Columbia, MD 21044

Dr. Douglas H. Jones
Thatcher Jones Associates
P.O. Box 6640
10 Trafalgar Court
Lawrenceville, NJ 08648

Dr. Marcel Just
Carnegie-Mellon University
Institute for
Psychology
Schenley Park
Pittsburgh, PA 15213

Dr. Daniel Kahneman
The University of British Columbia
Department of Psychology
#154-2053 Main Mall
Vancouver, British Columbia
CANADA V6T 1Y7

Dr. Ruth Kanfer
University of Minnesota
Department of Psychology
Elliott Hall
75 E. River Road
Minneapolis, MN 55455

Dr. Milton S. Katz
Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

Dr. Wendy Kellogg
IBM T. J. Watson Research Ctr.
P.O. Box 218
Yorktown Heights, NY 10598

Dr. Dennis Kibler
University of California
Department of Information and Computer Science
Irvine, CA 92717

Dr. David Kieras
University of Michigan
Technical Communication
College of Engineering
1223 E. Engineering Building
Ann Arbor, MI 48109
Distribution List [Colorado/Lewis] NR 702-009

Dr. Peter Kincaid
Training Analysis & Evaluation Group
Department of the Navy
Orlando, FL 32813

Dr. Walter Kintsch
Department of Psychology
University of Colorado
Campus Box 345
Boulder, CO 80302

Dr. David Klahr
Carnegie-Mellon University
Department of Psychology
Schenley Park
Pittsburgh, PA 15213

Dr. Janet L. Kolodner
Georgia Institute of Technology
School of Information & Computer Science
Atlanta, GA 30332

Dr. Kenneth Kotovsky
Department of Psychology
Community College of Allegheny County
800 Allegheny Avenue
Pittsburgh, PA 15233

Dr. David H. Krantz
2 Washington Square Village
Apt. # 15J
New York, NY 10012

Dr. Benjamin Kuipers
University of Texas at Austin
Department of Computer Sciences
T.S. Painter Hall 3.28
Austin, Texas 78712

Dr. David R. Lambert
Naval Ocean Systems Center
Code 441T
271 Catalina Boulevard
San Diego, CA 92152-6800

Lt. M. Lambrechts
Navy Medical Service
C. H. G. - NAVCOMOST
Marinebasis
Oostende
BELGIUM

Dr. Pat Langley
University of California
Department of Information and Computer Science
Irvine, CA 92717

Dr. Jill Larkin
Carnegie-Mellon University
Department of Psychology
Pittsburgh, PA 15213

Dr. Jean Lave
School of Social Sciences
University of California
Irvine, CA 92717

Dr. Robert Lawler
Information Sciences, FRL
GTE Laboratories, Inc.
40 Sylvan Road
Waltham, MA 02254

Dr. Alan M. Lesgold
Learning R&D Center
University of Pittsburgh
Pittsburgh, PA 15260

Dr. John Levine
Learning R&D Center
University of Pittsburgh
Pittsburgh, PA 15260

Dr. Clayton Lewis
University of Colorado
Department of Computer Science
Campus Box 430
Boulder, CO 80309

Matt Lewis
Department of Psychology
Carnegie-Mellon University
Pittsburgh, PA 15213

Library
Naval War College
Newport, RI 02940
Library
Naval Training Systems Center
Orlando, FL 32813

Dr. Marcia C. Linn
Lawrence Hall of Science
University of California
Berkeley, CA 94720

Dr. Jane Malin
Mail Code SR 111
NASA Johnson Space Center
Houston, TX 77058

Dr. Sandra P. Marshall
Dept. of Psychology
San Diego State University
San Diego, CA 92182

Dr. Manton M. Matthews
Department of Computer Science
University of South Carolina
Columbia, SC 29208

Dr. Richard E. Mayer
Department of Psychology
University of California
Santa Barbara, CA 93106

Dr. James McBride
Psychological Corporation
c/o Harcourt, Brace,
36 North Hanover Street
Glasgow, Gl 2AD, Scotland

Dr. Kathleen McKeown
Columbia University
Department of Computer Science
New York, NY 10027

Dr. Joe McLachlan
Navy Personnel R&D Center
San Diego, CA 92152-6800

Dr. James McMichael
Assistant for MPT Research, Development, and Studies
OP 01B7
Washington, DC 20370

Dr. Barbara Means
Human Resources
Research Organization
1100 South Washington
Alexandria, VA 22314

Dr. Douglas L. Medin
Department of Psychology
University of Illinois
603 E. Daniel Street
Champaign, IL 61820

Dr. Jose Mestre
Department of Physics
Hasbrouck Laboratory
University of Massachusetts
Amherst, MA 01003

Dr. Al Meyrowitz
Office of Naval Research
Code 1133
800 N. Quincy
Arlington, VA 22217-5000

Dr. Ryszard S. Michalski
University of Illinois
Department of Computer Science
1304 West Springfield Avenue
Urbana, IL 61801

Prof. D. Michie
The Turing Institute
36 North Hanover Street
Glasgow Gl 2AD, Scotland
UNITED KINGDOM

Dr. George A. Miller
Department of Psychology
Green Hall
Princeton University
Princeton, NJ 08540

Dr. James R. Miller
MCC
9430 Research Blvd.
Echelon Building #1, Suite 231
Austin, TX 78759

Dr. Mark Miller
Computer*Thought Corporation
1721 West Plano Parkway
Plano, TX 75075
Distribution List [Colorado/Lewis] NR 702-009

Dr. William Montague
NPRDC Code 13
San Diego, CA 92152-6800

Dr. Allen Munro
Behavioral Technology Laboratories - USC
1845 S. Elena Ave., 4th Floor
Redondo Beach, CA 90277

Chair, Department of Computer Science
U.S. Naval Academy
Annapolis, MD 21402

Dr. Allen Newell
Department of Psychology
Carnegie-Mellon University
Schenley Park
Pittsburgh, PA 15213

Dr. T. Niblett
The Turing Institute
36 North Hanover Street
Glasgow G1 2AD, Scotland
UNITED KINGDOM

Dr. Richard E. Nisbett
University of Michigan
Institute for Social Research
Room 5261
Ann Arbor, MI 48109

Dr. Mary Jo Nissen
University of Minnesota
N218 Elliott Hall
Minneapolis, MN 55455

Dr. Donald A. Norman
Institute for Cognitive Science
University of California
La Jolla, CA 92093

Deputy Technical Director
NPRDC Code 01A
San Diego, CA 92152-6800

Director, Training Laboratory,
NPRDC (Code 05)
San Diego, CA 92152-6800

Director, Manpower and Personnel Laboratory,
NPRDC (Code 06)
San Diego, CA 92152-6800

Director, Human Factors & Organizational Systems Lab,
NPRDC (Code 07)
San Diego, CA 92152-6800

Fleet Support Office,
NPRDC (Code 301)
San Diego, CA 92152-6800

Library, NPRDC
Code P201L
San Diego, CA 92152-6800

Commanding Officer,
Naval Research Laboratory
Code 2627
Washington, DC 20390

Dr. Harold F. O'Neil, Jr.
School of Education - WPH 801
Department of Educational Psychology & Technology
University of Southern California
Los Angeles, CA 90089-0031

Dr. Michael Oberlin
Naval Training Systems Center
Code 711
Orlando, FL 32813-7100

Dr. Stellan Ohlsson
Learning R & D Center
University of Pittsburgh
3939 O'Hara Street
Pittsburgh, PA 15213

Office of Naval Research,
Code 1133
800 N. Quincy Street
Arlington, VA 22217-5000

Office of Naval Research,
Code 1142
800 N. Quincy St.
Arlington, VA 22217-5000
Distribution List [Colorado/Lewis] NR 702-009

Office of Naval Research,
Code 1142PT
800 N. Quincy Street
Arlington, VA 22217-5000
(6 Copies)

Psychologist
Office of Naval Research
Branch Office, London
Box 39
FPO New York, NY 09510

Special Assistant for Marine Corps Matters
ONR Code OOMC
800 N. Quincy St.
Arlington, VA 22217-5000

Psychologist
Office of Naval Research
Liaison Office, Far East
APO San Francisco, CA 96503

Dr. Judith Orasanu
Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

Dr. James Paulson
Department of Psychology
Portland State University
P.O. Box 751
Portland, OR 97207

Dr. Roy Pea
Bank Street College of Education
610 W. 112th Street
New York, Ny 10025

Dr. Douglas Pearse
DCIEM
Box 2000
Downsview, Ontario
CANADA

Dr. James W. Pellegrino
University of California, Santa Barbara
Department of Psychology
Santa Barbara, CA 93106

Dr. Nancy Pennington
University of Chicago
Graduate School of Business
1101 E. 58th St.
Chicago, IL 60637

Dr. David N. Perkins
Educational Technology Center
337 Gutman Library
Appian Way
Cambridge, MA 02138

Administrative Sciences Dept.
Naval Postgraduate School
Monterey, CA 93940

Department of Computer Science,
Naval Postgraduate School
Monterey, CA 93940

Department of Operations Research,
Naval Postgraduate School
Monterey, CA 93940

Dr. Steven Pinker
Department of Psychology
E10-018
M.I.T.
Cambridge, MA 02139

Dr. Tjeerd Plomp
Twente University of Technology
Department of Education
P.O. Box 217
7500 AE ENSCHEDE
THE NETHERLANDS

Dr. Martha Polson
Department of Psychology
Campus Box 346
University of Colorado
Boulder, CO 80309

Dr. Peter Polson
University of Colorado
Department of Psychology
Boulder, CO 80309

Dr. Steven E. Poltrock
MCC
9430 Research Blvd.
Echelon Bldg #1
Austin, TX 78759-6509
Dr. Mary C. Potter
Department of Psychology
MIT (E-10-032)
Cambridge, MA 02139

Dr. Joseph Psotka
ATTN: PERI-1C
Army Research Institute
5001 Eisenhower Ave.
Alexandria, VA 22333

Dr. Paul S. Rau
Code U-32
Naval Surface Weapons Center
White Oak Laboratory
Silver Spring, MD 20903
25-b Technology Park/Atlanta

Dr. Lynne Reder
Department of Psychology
Carnegie-Mellon University
Schenley Park
Pittsburgh, PA 15213

Dr. James A. Reggia
University of Maryland
School of Medicine
Department of Neurology
22 South Greene Street
Baltimore, MD 21201

Dr. Fred Reif
Physics Department
University of California
Berkeley, CA 94720

Dr. Lauren Resnick
Learning R & D Center
University of Pittsburgh
3939 O'Hara Street
Pittsburgh, PA 15213

Dr. Gil Ricard
Mail Stop C04-14
Grumman Aerospace Corp.
Bethpage, NY 11714

Mark Richer
1041 Lake Street
San Francisco, CA 94118

Dr. Mary S. Riley
Program in Cognitive Science
Center for Human Information Processing
University of California
La Jolla, CA 92039

Dr. Linda G. Roberts
Science, Education, and Transportation Program
Office of Technology Assessment
Congress of the United States
Washington, DC 20510

Dr. William B. Rouse
Search Technology, Inc.
Norcross, GA 30092

Dr. David Rumelhart
Center for Human Information Processing
Univ. of California
La Jolla, CA 92039

Dr. Roger Schank
Yale University
Computer Science Department
P.O. Box 2158
New Haven, CT 06520

Dr. Walter Schneider
Learning R&D Center
University of Pittsburgh
3939 O'Hara Street
Pittsburgh, PA 15260

Dr. Alan H. Schoenfeld
University of California
Department of Education
Berkeley, CA 94720

Dr. Janet Schofield
Learning R&D Center
University of Pittsburgh
Pittsburgh, PA 15260

Karen A. Schriver
Department of English
Carnegie-Mellon University
Pittsburgh, PA 15213
Dr. Miriam Schustack
Code 51
Navy Personnel R & D Center
San Diego, CA 92152-6800

Dr. Marc Sebrechts
Department of Psychology
Wesleyan University
Middletown, CT 06475

Dr. Judith Segal
OERI
555 New Jersey Ave., NW
Washington, DC 20208

Dr. Robert J. Seidel
US Army Research Institute
5001 Eisenhower Ave.
Alexandria, VA 22333

Dr. Ramsay W. Selden
Assessment Center
CCSSO
Suite 379
400 N. Capitol, NW
Washington, DC 20001

Dr. Sylvia A. S. Shafto
Department of
Computer Science
Towson State University
Towson, MD 21204

Dr. T. B. Sheridan
Dept. of Mechanical Engineering
MIT
Cambridge, MA 02139

Dr. Ben Shneiderman
Dept. of Computer Science
University of Maryland
College Park, MD 20742

Dr. Randall Shumaker
Naval Research Laboratory
Code 7510
4555 Overlook Avenue, S.W.
Washington, DC 20375-5000

LTCOL Robert Simpson
Defense Advanced Research
Projects Administration
1400 Wilson Blvd.
Arlington, VA 22209

Dr. Derek Sleeman
Stanford University
School of Education
Stanford, CA 94305

Dr. Richard E. Snow
Department of Psychology
Stanford University
Stanford, CA 94306

Dr. Elliot Soloway
Yale University
Computer Science Department
P.O. Box 2158
New Haven, CT 06520

Dr. Richard Sorensen
Navy Personnel R&D Center
San Diego, CA 92152-6800

Dr. Kathryn T. Spoehr
Brown University
Department of Psychology
Providence, RI 02912

James J. Staszewski
Research Associate
Carnegie-Mellon University
Department of Psychology
Schenley Park
Pittsburgh, PA 15213

Dr. Robert Sternberg
Department of Psychology
Yale University
Box 11A, Yale Station
New Haven, CT 06520

Dr. Kurt Steuck
AFHRL/MOD
Brooks AFB
San Antonio, TX 78235

Dr. John Tangney
AFOSR/NL
Bolling AFB, DC 20332
Distribution List [Colorado/Lewis] NR 702-009

Dr. Kikumi Tatsuoka
CERL
252 Engineering Research Laboratory
Urbana, IL 61801

Dr. Perry W. Thorndyke
FMC Corporation
Central Engineering Labs
1185 Coleman Avenue, Box 580
Santa Clara, CA 95052

Dr. Douglas Towne
Behavioral Technology Labs
1845 S. Elena Ave.
Redondo Beach, CA 90277

Chair, Department of Computer Science
Towson State University
Towson, MD 21204

Chair, Department of Psychology
Towson State University
Towson, MD 21204

Dr. Amos Tversky
Stanford University
Dept. of Psychology
Stanford, CA 94305

Chair, Department of Computer Science
University of Maryland,
College Park, MD 20742

Chair, Department of Psychology
University of Maryland,
College Park, MD 20742

Dr. Kurt Van Lehn
Department of Psychology
Carnegie-Mellon University
Schenley Park
Pittsburgh, PA 15213

Dr. Ralph Wachter
JHU-APL
Johns Hopkins Road
Laurel, MD 20707

Dr. Beth Warren
Bolt Beranek & Newman, Inc.
50 Moulton Street
Cambridge, MA 02138

Dr. Ronald A. Weitzman
NPS, Code 54Wz
Monterey, CA 92152-6800

Dr. Keith T. Wescourt
FMC Corporation

Central Engineering Labs
1185 Coleman Ave., Box 580
Santa Clara, CA 95052

Dr. Barbara White
Bolt Beranek & Newman, Inc.
10 Moulton Street
Cambridge, MA 02238

Dr. Heather Wild
Naval Air Development Center
Code 6021
Warminster, PA 18974-5000

Dr. Michael Williams
IntelliCorp
1975 El Camino Real West
Mountain View, CA 94040-2216

Dr. Robert A. Wisher
U.S. Army Institute for the Behavioral and Social Sciences
5001 Eisenhower Avenue
Alexandria, VA 22333

Dr. Martin F. Wiskoff
Navy Personnel R & D Center
San Diego, CA 92152-6800
Dr. Wallace Wulfeck, III
Navy Personnel R&D Center
San Diego, CA 92152-6800
AFHRL/LRT
Lowry AFB, CO 80230

Dr. Masoud Yazdani
Dept. of Computer Science
University of Exeter
Exeter EX4 4QL
Devon, ENGLAND

Dr. Joseph L. Young
Memory & Cognitive Processes
National Science Foundation
Washington, DC 20550