AN ELECTROCHEMICAL AND RAMAN SPECTROELECTROCHEMICAL INVESTIGATION OF
SALT LAKE CITY DEPT OF CHEMISTRY SPONS ET AL.
39 JUL 86 TR-79-14-83-578 UNCLASSIFIED

FIG 7/2 NL
An Electrochemical and Raman Spectroelectrochemical Investigation of Underpotentially Deposited Silver on a Gold Substrate.

By

Stanley Pons. J. Li, J. Liang

Prepared for Publication in
Langmuir

University of Utah
Department of Chemistry
Salt Lake City, Utah 84112

July 30, 1986

Reproduction in whole or in part is permitted for any purpose of the United States Government.

This document has been approved for public release and sale; its distribution is unlimited.
An Electrochemical and Raman Spectroelectrochemical Investigation of Underpotentially Deposited Silver on a Gold Substrate

Electrochemical and spectroelectrochemical data indicate that underpotentially deposited silver adatoms on gold substrates are photolyzed to form silver metal clusters.
AN ELECTROCHEMICAL AND RAMAN SPECTROELECTROCHEMICAL INVESTIGATION OF UNDERPOTENTIALLY DEPOSITED SILVER ON A GOLD SUBSTRATE

Jianguo Li, Jim Liang, and Stanley Pons*

Department of Chemistry
The University of Utah
Salt Lake City, UT, 84112

*To whom correspondence should be addressed.
ABSTRACT

Electrochemical and spectroelectrochemical data indicate that underpotentially deposited silver adatoms on gold substrates are photolyzed to form silver metal clusters. The surface gold-gold stretch and gold-silver stretch bands are observed, as well as the surface chloride complex stretch. The chloride complex interacts with ions in the solution phase giving rise to shifts in the metal-chloride stretching vibrational frequency as a function of the applied electrode potential. However, the metal-metal bands are more dependent on the electric field at the electrode surface.
INTRODUCTION

The study of the interaction of adsorbates and surface complexes with the electric field at the electrode surface and with the solvent/electrolyte in the electrical double layer is central to the understanding of the structure and character of the electrode solution interface. In situ spectroelectrochemical techniques coupled to conventional electrochemical methods provide much information about the structure and energetics of this interface. Surface infrared and surface enhanced Raman studies are now well established techniques in those investigations. Many workers now feel that the nature of the SERS phenomenon does not cloud the chemical interpretation of the spectra, at least to a first approximation; DSERS (diminished surface enhanced Raman scattering) and SUERS (surface unenhanced Raman scattering) apparently yield the same results (in terms of frequency and relative intensities) as does SERS; the major differences being simply the decreased intensities these latter techniques. It is also important to now compare directly the results of Raman and surface infrared spectroscopy, since the two methods are governed by different sets of selection rules, and must therefore provide complementary information of the vibrational structure of the interfacial region.

Studies of surface interactions are facilitated when the surface coverage of the adsorbate is carefully controlled. One way to accomplish this is the relatively simple technique of underpotential deposition of a metal on the electrode surface. A commonly studied system is silver underpotential deposition on gold substrates. In this work, we investigate the effects of surface pretreatment on the adsorption of, and the role of the photolytic excitation frequency on the surface chemistry of silver adatoms on gold.
EXPERIMENTAL

Silver nitrate (certified reagent) and perchloric acid (70% reagent) were obtained from Fisher Scientific and were used as received. Potassium chloride (AR, Mallinckrodt) and acetonitrile (HPLC Distilled in Glass, Burdick and Jackson) were used as received. Lithium perchlorate (anhydrous reagent, Aldrich Chemical) was dried in vacuo at 150°C for 24 hours, and stored in vacuo prior to use. Water was triply distilled.

The reference electrode for the experiments in acetonitrile was a silver/silver ion type (0.01M silver nitrate and 0.10M tetrabutylammonium fluoroborate in acetonitrile). It was isolated from the working solution by a compartment which was terminated by a Luggin capillary tip which was located close to the working electrode. The reference electrode for the measurements in aqueous solution was a standard calomel (SCE) type which was similarly isolated.

A 3.5mm diameter gold disk electrode was used for all electrochemical measurements, and a 10mm gold disk was used for all spectroelectrochemical experiments. The electrodes were mounted in a Teflon housing. The electrochemical cell was a three compartment type designed such that all three electrodes were isolated. The spectroelectrochemical cell was of a type standard for reflection SERS or reflection infrared measurements. The position of the electrode with respect to the optical window or the Luggin capillary could be adjusted. The cells were cleaned in boiling sulfuric/nitric acid, rinsed, and steamed with boiling triply distilled water before use.

The gold electrodes were mechanically polished successively with 1.0-, 0.3-, and 0.05 μm alumina on a balsa wood base to a mirror finish. They were then cleaned in an ultrasonic bath containing triply distilled water. Prior to
some measurements, the electrodes were then activated, by cycling them in an aqueous solution of 1M potassium perchlorate from -1.0 to +1.1V vs. SCE. The electrodes were electrochemically roughened in some experiments by the method of Gao et al (1) by voltammetry for 30 cycles from -0.1 to +1.1 V vs. SCE in a solution of 0.1M potassium chloride at 100 mV s⁻¹ potential sweep rate. After this roughening treatment, the surface had a matte, nonuniform brownish appearance. The electrodes were finally rinsed with triply distilled water (and dried in a vacuum oven prior to use in the anhydrous acetonitrile solutions).

When making spectroelectrochemical measurements, the cell was fitted with a quartz window. The cell was mounted on a three dimensional and two rotational micromanipulator stages. The laser incidence angle could be varied, and the laser spot could be scanned across the electrode surface. The incidence angle was maintained at 57° so that the beam reflected from the surfaces of the cell window and the electrode surface could be excluded from the spectrometer collection optics.

The Raman system for the surface enhanced scattering experiments consisted of a Spex 1401 double monochromator. The instrument had an 1800 lines mm⁻¹ holographic gratings. The spectrometer and detector were interfaced to a Nicolet 1180 computer system for spectrometer control, data acquisition, analysis, and graphic plotting. Laser excitation was provided by a Coherent Radiation Innova 90 krypton ion laser, and a Spectra Physics 165 argon ion laser. In this work, the excitation wavelengths used were 647.1, 568.2, 514.5, and 488.0 nm. Laser power was typically between 60 and 140 mW. The spectral bandpasses were 4cm⁻¹ for the 647.1 and 568.2 nm excitations and 5cm⁻¹ for the 514.5 and 488.0 nm excitations. Detection was by a Ga-As photocathode C31034 photomultiplier tube which was cooled by a thermoelectric refrigerator (Products
for Research, Inc.). Scattering data was acquired at 2 cm\(^{-1}\) intervals with a 0.5 s integration interval. Spectra were finally obtained by recovery from the computer. The spectrometer was calibrated with carbon tetrachloride using the 647.1 and 568.2 nm excitation wavelengths. There were less than 1 cm\(^{-1}\) errors at each excitation for the characteristic bands for carbon tetrachloride.

RESULTS AND DISCUSSION

The activated smooth and roughened gold electrode surface.

The electrochemical behavior of the roughened gold surface is very similar to that of the activated, smoothly polished gold surface, although its appearance is different in terms of color and reflectivity. Comparisons of the cyclic voltammetry and differential capacity curves measured in aqueous 0.1 M potassium chloride and 1 M perchloric acid, and 1 M lithium perchlorate acetonitrile solution show no significant differences for each electrode. The roughness factors are also apparently similar from estimates made from the differential capacitance data. As we shall see, however, the SERS intensity from on the roughened gold surface is 3-5 times larger than on the polished mirror surface.

Silver underpotential deposition on gold from aqueous solution

The cyclic voltammetry for silver underpotential deposition on a polished gold electrode from a 0.01 M silver nitrate solution in 1 M perchloric acid (Figure 1) is similar to those reported by Schmidt and Stuki for silver underpotential
deposition from a 2.6 \times 10$^{-5}$M silver ion solution in 0.5M sulfuric acid [2] and
by Lorenz et al [3] for silver underpotential deposition from 3.2 \times 10$^{-4}$M silver
nitrate in 1M perchloric acid. Lorenz reported two deposition peaks at 0.83 and
1.2V vs. the SCE, with a bulk deposition potential at 0.578V. In this work, the
underpotential deposition peak was observed at 0.67V, and the stripping peak at
0.69V. The underpotential deposition current and the stripping current are
proportional to the voltammetric potential sweep rate. The bulk silver
deposition potential was observed to begin at 0.55V. On an anodic sweep, a wave
is observed starting at +0.95V due to oxidation of the gold surface. For
comparison, all of the experiments were run in the absence of silver ion. No
peaks were observed over the same range of potentials. The deposition isotherm
(Figure 2) shows a dip at around 0.7V. The charge under the underpotential
deposition peaks corresponds to 235 μC/cm2 at 100% monolayer coverage. Results
for the roughened gold surface were virtually identical.

Results of the Raman experiments in the aqueous system

Roughened gold electrodes with underpotentially deposited silver

Red (647.1 nm) excitation

The Raman scattering was measured on the gold electrode system in the
absence of and in the presence of silver ion (Figure 3). In the absence of
silver ion, bands were observed at 165 and 245cm$^{-1}$. When silver adatoms had been
underpotentially deposited onto the gold electrode, an additional band was
observed at 90cm$^{-1}$. The band could be resolved from the background scattering
when the electrode potentials were made more negative than about 0.9V. The band,
once resolved, has a virtually constant magnitude as the potential is made more
negative. The intensity of and the frequency of the band at 165\textsuperscript{cm\text{-1}} was independent of the electrode potential. This band is also observed on the dry activated smooth or roughened gold electrode measured \textit{ex situ} to the cell. The band at 245\textsuperscript{cm\text{-1}} is dependent on the electrode potential (Figure 4).

\textbf{Yellow (568.2 nm) excitation}

When in potential regions where silver deposition occurs, a band at 128\textsuperscript{cm\text{-1}} is observed in solutions containing silver ion (Figure 5). This band cannot be detected if silver ion is absent. Compared to the result with the 647.1nm excitation, the intensity of the Au-Cl stretch band is very small. A band at 233\textsuperscript{cm\text{-1}} can also be detected with this excitation at the electrode in both solutions containing and not containing silver. In addition, this band is present at the dry roughened gold surface, but not at the dry polished gold surface.

\textbf{Green (514.5nm) and blue (488nm) excitations}

A very broad weak band at about 185\textsuperscript{cm\text{-1}}, which is likely scattered light from the window, is observed with the 514.4nm excitation on the electrodes. No bands at all are observed from the electrodes with 488nm excitation.

\textbf{Raman results for silver underpotentially deposited on the activated Smooth gold electrodes}

The results for the visibly smooth gold electrode were essentially identical to
those for the roughened surface, except that the scattering intensities were at least an order of magnitude smaller.

Discussion of the aqueous system.

The spectroelectrochemically determined assignments for the 90cm^{-1} band has not previously been made. An estimate of the Au-Ag stretch can be estimated from the value of the spectroelectrochemically determined Pt-H stretching frequency, which has been observed experimentally by the SNIFTIRS method (4) and by others ((5), at 700K) at 950cm^{-1}. The gas phase ground state vibrational frequencies for Pt-H and Au-H are similar to each other due to the similarity in the large mass of the two systems:

$$x(^2\Delta)_{5/2}\text{ Pt-H} = 2294.7\text{cm}^{-1}; \quad x(^1\Sigma^+)\text{ Au-H} = 2305.1\text{cm}^{-1};$$

We assume that the electrode hydrogen atom adsorption stretch frequency on gold would then be similar (this has not been observed experimentally) to that of platinum-hydrogen. Under this assumption, we can make a simple mass-frequency assumption:

$$\frac{\nu_{\text{Au-Ag}}}{\nu_{\text{Au-H}}} = \left(\frac{M(\text{H})}{M(\text{Ag})}\right)^{0.5}$$

This give a value for the gold-silver stretch frequency of 91cm^{-1}, in excellent agreement with the value that we have observed in this work.

Matrix isolated silver atoms have been investigated (6). The Ag-Ag stretching frequency for the dimer has been determined in those studies to be
194 cm$^{-1}$. We have not been able to observe this band in this work, presumably because it is most likely buried beneath the strong Au-Au 165 cm$^{-1}$ band. Bulk Ag-Ag phase would be very close to the Au-Au band; gas phase metal stretch frequencies for gold and silver are 200 and 198 cm$^{-1}$ respectively.

We have previously observed (7) that a 145 cm$^{-1}$ band is due to the surface atom Au-Au stretch. In that work the system was investigated using the SNIFTIRS infrared spectroelectrochemical method. The observed potential dependency of that band in both experiments is similar. The two experiments differed in the respect that the infrared work was performed in non-aqueous conditions in a potential region some 2 V more negative. In the previous work, it was observed that the intensity of the Au-Au band decreased in magnitude as lithium was deposited on the surface of the gold. Silver deposition on gold in the Raman experiment did not show such a marked decrease in intensity: this effect has been observed many times in surface Raman experiments. We conclude that the band at 165 cm$^{-1}$ reported in this work is of the same origin.

The Au-Cl stretch band was reported by Gao et al (1) to be centered 265 cm$^{-1}$. The SERS electrodes in this work were roughened in KCl solution, and then returned to perchlorate solutions for the underpotential deposition solutions. We have undoubtedly transferred the gold-chloride complex to the Raman cell in this operation. The interaction of specifically adsorbed hydrogen cation with the surface chloride would be expected to decrease the vibrational frequency of the surface complex by decreasing the local electron density of the Au-Cl bond. The 245 cm$^{-1}$ band observed in this work is also seen in chloride solutions containing no perchlorate. The roughened SERS gold electrode in potassium chloride solution showed a band at 250 cm$^{-1}$; we assign the 245 cm$^{-1}$ band to be the Au-Cl surface complex stretch mode.
The intensity of the 245 cm\(^{-1}\) band was observed to decrease as underpotential deposition of silver was in progress. This observation is in agreement with the data of Guy et al (8) who observed a decrease in the Raman intensity as Pb was underpotentially deposited on silver, and Kester (9) who observed a similar result when depositing thallium on silver.

The bands observed with red excitation, eg 165 and 245 cm\(^{-1}\) cannot be clearly detected with excitation radiation of shorter wavelengths due to the absorption of the excitation radiation by the gold electrode (10). Reflectance data show that the onset of absorbance by gold is at 2.1eV (590nm). SERS data (11) show that the Raman scattering intensity from pure gold under 514.5 and 488nm excitations are very small. It is therefore reasonable to assume that we could not detect the surface complexes easily with the short wavelength excitations.

The band at 128 cm\(^{-1}\) results most likely from the photolysis of silver adatoms on the gold surface. Takamura (11) has previously reported degradation of the electroreflectance signal for deposits of silver on gold. Silver atom aggregation initiated by photolysis has been reported in other experiments (6,12). It is possible that silver adatoms on the gold surface aggregate under the yellow light illumination to Ag\(_n\), with n>2.
Silver underpotential deposition on gold from acetonitrile solutions

The cyclic voltammetry for a gold electrode in 0.01M silver nitrate and 1M lithium perchlorate in acetonitrile solution shows three cathodic peaks (0.59, 0.42, and 0.22V vs the silver/silver ion reference), and on the reverse sweep, four anodic peaks (0.25, 0.42, 0.60, and 0.70V, Figure 6). The peak currents of all of these peaks are proportional to the sweep rate indicating adsorption/desorption phenomena. Kolb et al [13] have reported the underpotential deposition of silver adatoms on gold, but did not publish the voltammetry or the adsorption isotherms. We observe that the isotherm for silver underpotential deposition on gold from acetonitrile is approximately linear with the electrode potential (Figure 7). The charge at full coverage is 200\(\mu\)C cm\(^{-2}\). The underpotential deposition characteristics of the roughened gold electrode are virtually identical to the activated smooth gold electrode.

Results of the Raman experiments in the acetonitrile system

The surface enhanced Raman scattering spectra were recorded for the activated smooth and roughened gold electrodes as a function of laser excitation frequency and electrode potential. The spectra were again recorded in the presence of and in the absence of silver. The results for both electrodes were the same as those in the aqueous solutions (vide supra), except that the 245cm\(^{-1}\) band (Au-Cl) on the roughened electrode was much weaker and was not significantly dependent on the magnitude of the electrode potential. The silver cluster band (128cm\(^{-1}\)) is resolved from Au-Au stretch band (165cm\(^{-1}\)). Again, the 165cm\(^{-1}\) band is most likely buried in the tail of the 128 and 135cm\(^{-1}\) bands.
Discussion of the acetonitrile system

The results imply that the chemistry and energetics of the surface adatoms is essentially the same in both solvent systems. The interactions of ions and solvent molecules in the electrical double layer with the adatoms are thus probably small, and the shift in frequency of the metal Au-Ag stretch is most likely due to a field effect. The Au-Cl stretch, however, is not observed to shift with potential in the acetonitrile solvent as it does in the aqueous system. This is the expected result if the shift were due to a chemical effect involving the activity of hydrogen in the electrical double layer. In fact, the double layer in this solvent is known to be diffuse (14), so that the activity of the perchlorate at the plane of the chloride complex will be smaller than it is in the aqueous solution.
ACKNOWLEDGEMENTS

The authors thank the Office of Naval Research for support of this work.
REFERENCES

4. J. Li and S. Pons, unpublished results.

FIGURE LEGENDS

1. Voltammetric response for the aqueous 10^{-2}M silver nitrate, 1M perchloric acid solution at a gold electrode. The electrode was pretreated by cycling from +1.7 to -0.5V for 5 minutes at 100mV s$^{-1}$ in the absence of silver ion.

2. Isotherm for silver under potential deposition on a roughened polycrystalline gold electrode in 10^{-2}M aqueous silver nitrate in 1M lithium perchlorate solution. The data is corrected for double layer charging. The maximum capacitance is 235μC cm$^{-2}$ at a surface coverage of unity.

3. SERS spectra for the gold electrode in 1M aqueous perchloric acid solution (left) in the presence of 10^{-2}M silver ion, and (right) in the absence of silver ion. The laser excitation frequency was 647.1nm, and the power was 80mW. Other experimental conditions were identical in the two experiments.

4. (a) Au-Cl frequency shift with electrode potential at a roughened gold electrode in 1M aqueous perchloric acid solution. The circles indicate the result when 10^{-2}M silver nitrate is present, and the crosses are the result in the absence of silver ion. The arrow shows the result at the rest potential in 1M potassium chloride solution. (b) Au-Cl band intensity variation with electrode potential for the same system as above.

5. SERS spectra for the gold electrode in 1M aqueous perchloric acid solution in the presence of 10^{-2}M silver ion. The laser excitation frequency was 568.2nm, and the power was 80mW.

6. Voltammetric response for the acetonitrile 10^{-2}M silver nitrate, 1M lithium perchlorate solution at a gold electrode.

7. Isotherm for silver under potential deposition on a gold electrode in 10^{-2}M silver nitrate in 1M lithium perchlorate/ acetonitrile solution. The data is corrected for double layer charging. The capacitance is 200μC cm$^{-2}$ at a surface coverage of unity.
1.0 0 0 0
0.8
NO SILVER PRESENT
0.6
0
0.4
>-
0,4
:1:
0.6
0.2.
0.0
0.01M SILVER ION
0.2.
0.0
1.0 0.8
0.6
0.4
0.2
E / V vs. SCE
NORMALIZED INTENSITY
0.0
0.2
0.4
0.6
0.8
1.0
NO SILVER PRESENT
0.01M SILVER ION
POTENTIAL / V vs. Ag/Ag+

FRACTIONAL COVERAGE
<table>
<thead>
<tr>
<th>Office of Naval Research</th>
<th>2</th>
<th>Dr. David Young</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attn: Code 413</td>
<td></td>
<td>Code 334</td>
</tr>
<tr>
<td>800 N. Quincy Street</td>
<td></td>
<td>NORDA</td>
</tr>
<tr>
<td>Arlington, Virginia 22217</td>
<td></td>
<td>NSTL, Mississippi 39529</td>
</tr>
<tr>
<td>Dr. Bernard Doua</td>
<td>1</td>
<td>Naval Weapons Center</td>
</tr>
<tr>
<td>Naval Weapons Support Center</td>
<td></td>
<td>Attn: Dr. Ron Atkins</td>
</tr>
<tr>
<td>Code 5042</td>
<td></td>
<td>Chemistry Division</td>
</tr>
<tr>
<td>Crane, Indiana 47522</td>
<td></td>
<td>China Lake, California 93555</td>
</tr>
<tr>
<td>Commander, Naval Air Systems Command</td>
<td>1</td>
<td>Scientific Advisor</td>
</tr>
<tr>
<td>Attn: Code 310C (H. Rosenwasser)</td>
<td></td>
<td>Commandant of the Marine Corps</td>
</tr>
<tr>
<td>Washington, D.C. 20360</td>
<td></td>
<td>Code RD-1</td>
</tr>
<tr>
<td>Naval Civil Engineering Laboratory</td>
<td>1</td>
<td>U.S. Army Research Office</td>
</tr>
<tr>
<td>Attn: Dr. R. W. Drisko</td>
<td></td>
<td>Attn: CRD-AA-IP</td>
</tr>
<tr>
<td>Port Hueneme, California 93401</td>
<td></td>
<td>P.O. Box 12211</td>
</tr>
<tr>
<td>Defense Technical Information Center</td>
<td>12</td>
<td>Research Triangle Park, NC 27709</td>
</tr>
<tr>
<td>Building 5, Cameron Station</td>
<td></td>
<td>Mr. John Boyle</td>
</tr>
<tr>
<td>Alexandria, Virginia 22314</td>
<td>1</td>
<td>Materials Branch</td>
</tr>
<tr>
<td>DTNSRDC</td>
<td>1</td>
<td>Naval Ship Engineering Center</td>
</tr>
<tr>
<td>Attn: Dr. G. Bosmajian</td>
<td></td>
<td>Philadelphia, Pennsylvania 19112</td>
</tr>
<tr>
<td>Applied Chemistry Division</td>
<td></td>
<td>Naval Ocean Systems Center</td>
</tr>
<tr>
<td>Annapolis, Maryland 21401</td>
<td></td>
<td>Attn: Dr. S. Yamamoto</td>
</tr>
<tr>
<td>Dr. William Tolles</td>
<td>1</td>
<td>Marine Sciences Division</td>
</tr>
<tr>
<td>Superintendent</td>
<td></td>
<td>San Diego, California 92132</td>
</tr>
<tr>
<td>Chemistry Division, Code 6100</td>
<td></td>
<td>Naval Research Laboratory</td>
</tr>
<tr>
<td>Naval Research Laboratory</td>
<td></td>
<td>Washington, D.C. 20375</td>
</tr>
</tbody>
</table>
ABSTRACTS DISTRIBUTION LIST, 359/627

Dr. Paul Delahay
Department of Chemistry
New York University
New York, New York 10003

Dr. P. J. Hendra
Department of Chemistry
University of Southampton
Southampton 509 5NH
United Kingdom

Dr. J. Driscoll
Lockheed Palo Alto Research Laboratory
3251 Hanover Street
Palo Alto, California 94304

Dr. D. N. Bennion
Department of Chemical Engineering
Brigham Young University
Provo, Utah 84602

Dr. R. A. Marcus
Department of Chemistry
California Institute of Technology
Pasadena, California 91125

Dr. J. J. Auborn
Bell Laboratories
Murray Hill, New Jersey 07974

Dr. Joseph Singer, Code 302-1
NASA-Lewis
21000 Brookpark Road
Cleveland, Ohio 44135

Dr. P. P. Schmidt
Department of Chemistry
Oakland University
Rochester, Michigan 48063

Dr. Manfred Breiter
Institut fur Technische Elektrochemie
Technischen Universität Wien
9 Getreidemarkt, 1160 Wien
AUSTRIA

Dr. E. Yeager
Department of Chemistry
Case Western Reserve University
Cleveland, Ohio 44106

Dr. C. E. Mueller
The Electrochemistry Branch
Naval Surface Weapons Center
White Oak Laboratory
Silver Spring, Maryland 20910

Dr. Sam Perone
Chemistry & Materials Science Department
Lawrence Livermore National Laboratory
Livermore, California 94550

Dr. Royce W. Murray
Department of Chemistry
University of North Carolina
Chapel Hill, North Carolina 27514

Dr. B. Brummer
EIC Incorporated
111 Downey Street
Norwood, Massachusetts 02062

Dr. Adam Heller
Bell Laboratories
Murray Hill, New Jersey 07974

Dr. A. B. Ellis
Chemistry Department
University of Wisconsin
Madison, Wisconsin 53706

Library
Duracell, Inc.
Burlington, Massachusetts 01803

Electrochimica Corporation
20 Kelly Court
Menlo Park, California 94025-1418
ABSTRACTS DISTRIBUTION LIST, 359/627

Dr. M. Wrighton
Chemistry Department
Massachusetts Institute
of Technology
Cambridge, Massachusetts 02139

Dr. R. Stanley Pons
Department of Chemistry
University of Utah
Salt Lake City, Utah 84112

Donald E. Mains
Naval Weapons Support Center
Electrochemical Power Sources Division
Crane, Indiana 47522

S. Ruby
DOE (STOR)
Room 5E036 Forrestal Bldg., CE-14
Washington, D.C. 20595

Dr. A. J. Bard
Department of Chemistry
University of Texas
Austin, Texas 78712

Dr. Janet Osteryoung
Department of Chemistry
State University of New York
Buffalo, New York 14214

Dr. Donald W. Ernst
Naval Surface Weapons Center
Code R-33
White Oak Laboratory
Silver Spring, Maryland 20910

Mr. James R. Moden
Naval Underwater Systems Center
Code 3632
Newport, Rhode Island 02840

Dr. Bernard Spielvogel
U.S. Army Research Office
P.O. Box 12211
Research Triangle Park, NC 27709

Dr. Aaron Fletcher
Naval Weapons Center
Code 3852
China Lake, California 93555

Dr. M. M. Nicholson
Electronics Research Center
Rockwell International
3370 Miraloma Avenue
Anaheim, California

Dr. Michael J. Weaver
Department of Chemistry
Purdue University
West Lafayette, Indiana 47907

Dr. R. David Rauh
EIC Laboratories, Inc.
111 Downey Street
Norwood, Massachusetts 02062

Dr. Aaron Wold
Department of Chemistry
Brown University
Providence, Rhode Island 02192

Dr. Martin Fleischmann
Department of Chemistry
University of Southampton
Southampton S09 5NH ENGLAND

Dr. R. A. Osteryoung
Department of Chemistry
State University of New York
Buffalo, New York 14214

Dr. John Wilkes
Air Force Office of Scientific Research
Bolling AFB
Washington, D.C. 20332

Dr. R. Nowak
Naval Research Laboratory
Code 6171
Washington, D.C. 20375

Dr. D. F. Shriver
Department of Chemistry
Northwestern University
Evanston, Illinois 60201
ABSTRACTS DISTRIBUTION LIST, 359/627

Dr. Hector D. Abruna
Department of Chemistry
Cornell University
Ithaca, New York 14853

Dr. A. B. P. Lever
Chemistry Department
York University
Downsview, Ontario M3J1P3

Dr. Stanislaw Szpak
Naval Ocean Systems Center
Code 633, Bayside
San Diego, California 95152

Dr. Gregory Farrington
Department of Materials Science and Engineering
University of Pennsylvania
Philadelphia, Pennsylvania 19104

M. L. Robertson
Manager, Electrochemical and Power Sources Division
Naval Weapons Support Center
Crane, Indiana 47522

Dr. T. Marks
Department of Chemistry
Northwestern University
Evanston, Illinois 60201

Dr. Micha Tomkiewicz
Department of Physics
Brooklyn College
Brooklyn, New York 11210

Dr. Lesser Blum
Department of Physics
University of Puerto Rico
Rio Piedras, Puerto Rico 00931

Dr. Joseph Gordon, II
IBM Corporation
5600 Cottle Road
San Jose, California 95193

Dr. Nathan Lewis
Department of Chemistry
Stanford University
Stanford, California 94305

Dr. D. H. Whitmore
Department of Materials Science
Northwestern University
Evanston, Illinois 60201

Dr. Alan Bewick
Department of Chemistry
The University of Southampton
Southampton, S09 5NH ENGLAND

Dr. E. Anderson
NAVSEA-56Z33 NC #4
2541 Jefferson Davis Highway
Arlington, Virginia 20362

Dr. Bruce Dunn
Department of Engineering & Applied Science
University of California
Los Angeles, California 90024

Dr. Elton Cairns
Energy & Environment Division
Lawrence Berkeley Laboratory
University of California
Berkeley, California 94720

Dr. Richard Pollard
Department of Chemical Engineering
University of Houston
Houston, Texas 77004

Dr. M. Philpott
IBM Corporation
5600 Cottle Road
San Jose, California 95193

Dr. Donald Sandstrom
Boeing Aerospace Co.
P.O. Box 3999
Seattle, Washington 98124

Dr. Carl Kannewurf
Department of Electrical Engineering and Computer Science
Northwestern University
Evanston, Illinois 60201

Dr. Joel Harris
Department of Chemistry
University of Utah
Salt Lake City, Utah 84112
<table>
<thead>
<tr>
<th>Name</th>
<th>Organization</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Robert Somoano</td>
<td>Jet Propulsion Laboratory</td>
<td>California Institute of Technology Pasadena, California 91103</td>
</tr>
<tr>
<td>Dr. Johann A. Joebstl</td>
<td>USA Mobility Equipment R&D Command</td>
<td>DRDME-EC Fort Belvoir, Virginia 22060</td>
</tr>
<tr>
<td>Dr. Judith H. Ambrus</td>
<td>NASA Headquarters</td>
<td>M.S. RTS-6 Washington, D.C. 20546</td>
</tr>
<tr>
<td>Dr. Albert R. Landgrebe</td>
<td>U.S. Department of Energy</td>
<td>M.S. 68025 Forrestal Building Washington, D.C. 20595</td>
</tr>
<tr>
<td>Dr. J. J. Brophy</td>
<td>Department of Physics</td>
<td>University of Utah Salt Lake City, Utah 84112</td>
</tr>
<tr>
<td>Dr. Charles Martin</td>
<td>Department of Chemistry</td>
<td>Texas A&M University College Station, Texas 77843</td>
</tr>
<tr>
<td>Dr. H. Tachikawa</td>
<td>Department of Chemistry</td>
<td>Jackson State University Jackson, Mississippi 39217</td>
</tr>
<tr>
<td>Dr. Theodore Beck</td>
<td>Electrochemical Technology Corp.</td>
<td>3935 Leary Way N.W. Seattle, Washington 98107</td>
</tr>
<tr>
<td>Dr. Farrell Lytle</td>
<td>Boeing Engineering and Construction Engineers</td>
<td>P.O. Box 3707 Seattle, Washington 98124</td>
</tr>
<tr>
<td>Dr. Edward Fletcher</td>
<td>Department of Mechanical Engineering</td>
<td>University of Minnesota Minneapolis, Minnesota 55455</td>
</tr>
<tr>
<td>Dr. John Fontanella</td>
<td>Department of Physics</td>
<td>U.S. Naval Academy Annapolis, Maryland 21402</td>
</tr>
<tr>
<td>Dr. Martha Greenblatt</td>
<td>Department of Chemistry</td>
<td>Rutgers University New Brunswick, New Jersey 08903</td>
</tr>
<tr>
<td>Dr. John Wasson</td>
<td>Syntheco, Inc.</td>
<td>Rte 6 - Industrial Pike Road Gastonia, North Carolina 28052</td>
</tr>
<tr>
<td>Dr. Walter Roth</td>
<td>Department of Physics</td>
<td>State University of New York Albany, New York 12222</td>
</tr>
<tr>
<td>Dr. Anthony Sammells</td>
<td>Eltron Research Inc.</td>
<td>4260 Westbrook Drive, Suite 111 Aurora, Illinois 60505</td>
</tr>
<tr>
<td>Dr. C. A. Angell</td>
<td>Department of Chemistry</td>
<td>Purdue University West Lafayette, Indiana 47907</td>
</tr>
<tr>
<td>Dr. Thomas Davis</td>
<td>Polymer Science and Standards Division</td>
<td>National Bureau of Standards Washington, D.C. 20234</td>
</tr>
<tr>
<td>Ms. Wendy Parkhurst</td>
<td>Naval Surface Weapons Center R-33</td>
<td>R-33 Silver Spring, Maryland 20910</td>
</tr>
</tbody>
</table>
Dr. John Owen
Department of Chemistry and
Applied Chemistry
University of Salford
Salford MS 4WT ENGLAND

Dr. Boone Owens
Department of Chemical Engineering
and Materials Science
University of Minnesota
Minneapolis, Minnesota 55455

Dr. J. O. Thomas
University of Uppsala
Institute of Chemistry
Box 531
S-751 21 Uppsala, Sweden

Dr. O. Stafsudd
Department of Electrical Engineering
University of California
Los Angeles, California 90024

Dr. S. G. Greenbaum
Department of Physics
Hunter College of CUNY
New York, New York 10021

Dr. Menahem Anderman
W.R. Grace & Co.
Columbia, Maryland 20144
END
DATE
FILMED
DTIC
July 88