ON A CLASS OF FUNCTIONALS INVARIANT UNDER A ZN ACTION 1/1
(U) WISCONSIN UNIV-MADISON CENTER FOR MATHEMATICAL SCIENCES P H RABINOWITZ AUG 87 CMS-TSR-87-1
UNCLASSIFIED DAAAL03-87-K-0043 F/G 12/1 NL
CMS Technical Summary Report #88-1

ON A CLASS OF FUNCTIONALS INVARIANT UNDER A Z^n ACTION

Paul H. Rabinowitz

Center for the Mathematical Sciences
University of Wisconsin—Madison
610 Walnut Street
Madison, Wisconsin 53705

August 1987

(Received August 4, 1987)

Approved for public release
Distribution unlimited

Sponsored by

U. S. Army Research Office
P. O. Box 12211
Research Triangle Park
North Carolina 27709

Air Force Office of Scientific Research
Bolling AFB
Washington, DC 20332

National Science Foundation
1800 G Street, N.W.
Washington, DC 20550
ON A CLASS OF FUNCTIONALS INVARIANT UNDER A \(Z^n \) ACTION

Paul H. Rabinowitz

CMS Technical Summary Report #88-1
August 1987

ABSTRACT

Consider a system of ordinary differential equations of the form

\[
q + \frac{d}{dt}(q) = f(t)
\]

where \(f \) and \(V \) are periodic in \(t \), \(V \) is periodic in the components of \(q = (q_1, \ldots, q_n) \), and the mean value of \(f \) vanishes. By showing that a corresponding functional is invariant under a natural \(Z^n \) action, a simple variational argument yields at least \(n + 1 \) distinct periodic solutions of (*). More general versions of (*) are also treated as is a class of Neumann problems for semilinear elliptic partial differential equations.

AMS (MOS) Subject Classifications: 34C25, 35J60, 58E05, 58F05, 58F22

Key Words: \(Z^n \) action periodic solution, critical point, minimax argument, Lusternik-Schnirelmann category, Neumann problem

*Mathematics Department, University of Wisconsin-Madison, Madison, WI 53706.

This research was supported in part by the United States Army under Contract No. DAAL03-87-K-0043, the Air Force Office of Scientific Research under Grant No. AFOSR-87-0202 and the National Science Foundation under Grant No. MCS-8110556.
ON A CLASS OF FUNCTIONALS INVARIANT UNDER A \mathbb{Z}^n ACTION

Paul H. Rabinowitz

Introduction

Consider the system of ordinary differential equations

\[(0.1) \quad \dot{q} + V_q(t, q) = f(t)\]

where $q = (q_1, \ldots, q_n) \in \mathbb{R}^n$ and V satisfies

\[(V_1) \quad V \in C^1(\mathbb{R} \times \mathbb{R}^n, \mathbb{R}) \text{ and is } T \text{ periodic in } t \text{ and } T_1 \text{ periodic in } q_i, \quad 1 \leq i \leq n.\]

Suppose further that f satisfies

\[(f_1) \quad f \in C(\mathbb{R}, \mathbb{R}^n) \text{ and is } T \text{ periodic in } t \]

and

\[(f_2) \quad [f] = \frac{1}{T} \int_0^T f(t) dt = 0.\]

Note that if $q(t)$ is a solution of (0.1), so is $q(t) + (k_1 T_1, \ldots, k_n T_n)$ for all $k = (k_1, \ldots, k_n) \in \mathbb{Z}^n$. It was shown by Mawhin and Willem [1], Serrin and Pucci [2-3], Li [4], and Franks [5] that if $n = 1$ and V is independent of t, (0.1) possesses at least two T periodic solutions which do not differ by a multiple of T_1. In [5], the proof relies on a generalized version of the Poincaré-Birkhoff Theorem while [1-4] use variational arguments. Part of the difficulty in treating (0.1) in [1-4] is caused by the fact that the corresponding functional:

Mathematics Department, University of Wisconsin-Madison, Madison, WI 53706.

This research was supported in part by the United States Army under Contract No. DAAL03-87-K-0043, the Air Force Office of Scientific Research under Grant No. AFOSR-87-0202 and the National Science Foundation under Grant No. MCS-8110556.
Theorem 0.3: Under the above hypotheses on \(V \) and \(f \), (0.1) possesses at least \(n + 1 \) "distinct" solutions.

What is meant by distinct will be explained in §1. Theorem 0.3 will be obtained from a more general result involving a Lagrangian of the form

\[
L(q, \dot{q}) = \frac{1}{2} L(t,q) \dot{q} \cdot \dot{q} - V(t,q) + f(t) \cdot q
\]

where \(L(t,q) \) is a symmetric positive definite matrix possessing the same periodicity properties as does \(V \). Actually as will be shown in §1, when \(L \) is independent of \(t \) and \(q \) and \(f = 0 \), this more general result can be obtained from a theorem of Conley and Zehnder [6, Theorem 3]. They were mainly interested in the much more difficult case of indefinite \(L \).

In §1, the generalizations of Theorem 0.3 will be carried out. Some of the technical details will be given in §2. The ideas used in §1 and 2 can also be applied to a class of Neumann problems for semilinear elliptic partial differential equations. Consider

\[
(0.4) \quad -\Delta u = p(x,u) + h(x), \quad x \in \Omega, \\
\frac{\partial u}{\partial v} = 0, \quad x \in \partial \Omega.
\]

Here \(\Omega \) denotes a bounded domain in \(\mathbb{R}^n \) with a smooth boundary and outward pointing normal \(\nu(x) \) and \(\frac{\partial u}{\partial \nu} = \nu(x) \cdot \nabla u \). Suppose \(p(x,\xi) = \frac{\partial F(x,\xi)}{\partial \xi} \) and \(|\Omega| \) denotes the volume of \(\Omega \). Then we have
Theorem 0.5: Suppose \(P \) satisfies

\[(P_1) \quad P \in C^2(\bar{\Omega} \times \mathbb{R}, \mathbb{R}) \quad \text{and} \quad P(x, \xi + r) = P(x, \xi) \quad \text{for all} \quad (x, \xi) \in \bar{\Omega} \times \mathbb{R} \]

and \(h \) satisfies

\[(h_1) \quad h \in C^1(\Omega, \mathbb{R}), \]

and

\[(h_2) \quad [h] = \frac{1}{|\Omega|} \int_{\Omega} h(x) dx = 0. \]

Then (0.4) possesses at least two classical solutions which do not differ by a multiple of \(r \).

The proof of Theorem 0.5 will be carried out in §3. We thank Ed Fadell and Sufian Husseini for helpful conversations.
§1. A generalized version of Theorem 0.3

Let $E = W^{1,2}_T(R, R^n)$ denote the Sobolev space of T periodic functions with values in R^n under the norm

$$|q| = \left(\int_0^T |\dot{q}|^2 + [q]^2 \right)^{1/2}.$$

Suppose L satisfies

1. $L \in C^1(R \times R^n, R^{n^2})$ is a symmetric matrix with $L(t, q)$ being T periodic in t and T^i periodic in q_i, $1 < i < n$

and

2. there is an $a > 0$ such that $L(t, q) \xi \cdot \xi > a|\xi|^2$ for all $t \in R$ and $q, \xi \in R^n$.

Suppose V and f satisfy (V_1) and $(f_1)-(f_2)$ respectively. Let $q \in E$.

Then

$$(1.1) \quad I(q) = \frac{1}{2} \int_0^T L(t, q) \dot{q} \cdot \dot{q} - V(t, q) + f \cdot q \, dt$$

is well defined and the argument of [7, Prop. B10] shows that $I \in C^1(E, R)$ and critical points of I are classical solutions of

$$(1.2) \quad \frac{d}{dt} (L(t, q) \dot{q}) - \frac{1}{2} \frac{\partial L}{\partial q} (t, q) \dot{q} \cdot \dot{q} + V_q(t, q) = f(t).$$

Suppose $Q, q \in E$ and

$$(1.3) \quad Q - q = (k_1T, \ldots, k_nT)$$

where $k = (k_1, \ldots, k_n) \in Z^n$. The properties of $L, V,$ and f then imply

$$(1.4) \quad I(Q) = I(q).$$

A functional J on E satisfies (PS) if any sequence q_m such that $I(q_m)$ is bounded and $I'(q_m) + 0$ possesses a convergent subsequence. Equation (1.4) shows that I does not satisfy (PS) on E. However, (1.4) implies I possesses a free Z^n action on E and this will provide the topological
basis for an existence result for (1.2). Before stating it some further preliminaries are required.

We introduce an equivalence relation \sim on E via $Q \sim q$ if (1.3) holds for some $k \in \mathbb{Z}^n$. Let $E = E/\sim$ with the corresponding quotient topology. One could now consider I on E. However, we find it more convenient technically to work on E itself and proceed as follows. For $k \in \mathbb{Z}^n$, set $\theta_k = (k_1T_1, \ldots, k_nT_n)$. For $q \in \mathbb{R}^n$, let $g_k(q) = q + \theta_k$. Then $G = \{g_k | k \in \mathbb{Z}^n\}$ is a group of mappings of E onto E and I is invariant under G, i.e. $I(g(q)) = I(q)$ for all $q \in E$ and $g \in G$. A set $A \subset E$ is called invariant (with respect to G) if $g(A) \subset A$ for all $g \in G$. A is an invariant set if and only if there is a set $\tilde{A} \subset E$ such that $A/\sim = \tilde{A}$.

With the aid of the above notions, a generalized version of Theorem 0.3 can be stated.

Theorem 1.5: Let V satisfy (V_1), f satisfy $(f_1)-(f_2)$ and L satisfy $(L_1)-(L_2)$. Then equation (1.2) at least $n + 1$ distinct solutions Q_1, \ldots, Q_{n+1}, i.e. for $i \neq j$, $Q_i \neq g(Q_j)$ for all $g \in G$.

These solutions will be determined as critical points of I by means of a minimax argument. To characterize the corresponding critical values of I, let $A \subset E$ be closed and define

$$(1.6) \quad \Gamma_k = \{A \subset E | A \text{ is invariant and } \text{cat}_E A > k\}.$$

In (1.6), $\text{cat}_E A$ denotes the Lusternik-Schnirelmann category of the closed set A in the topological space E. (See e.g. [8].)

Lemma 1.7: $\Gamma_k \neq \emptyset$, $1 \leq k < n + 1$.

Proof: It suffices to show $\Gamma_{n+1} \neq \emptyset$. Let $A = \{q \in E | q = [q]\}$. Then A is isomorphic to \mathbb{R}^n and A/\sim to T^n. Therefore $E/\sim = T^n \circ F$ where $F = A^\perp$, the orthogonal complement of A. Since F is a linear space, it is contractible to a point in itself. Therefore by standard results on
Ljusternik-Schnirelmann category - see p. 459-460 of [9]

\[\text{cat}_E^p = \text{cat}_E^n \oplus \{0\} = \text{cat}_E^n = n + 1. \]

(1.8)

Now \(n + 1 \) critical values \(c_k \) of \(I \) can be defined as

\[c_k = \inf_{B \ni \Gamma_k} \max_{q \in B} I(q), \quad 1 \leq k \leq n + 1. \]

(1.9)

To prove Theorem 1.5, it will be shown that each of the numbers \(c_k \) is a critical value of \(I \) and there are at least \(n + 1 \) corresponding critical points. To carry out the proof some further preliminaries are required. A mapping \(\psi : E \to E \) is called equivariant with respect to \(G \) if

\[\psi \circ g = g \circ \psi \quad \text{for all} \quad g \in G. \]

For \(s \in \mathbb{R} \), let \(A_s = \{ q \in E \mid I(q) < s \} \) and \(K_s = \{ q \in E \mid I(q) = s \quad \text{and} \quad I'(q) = 0 \} \). The following version of a standard "Deformation Theorem" is needed:

Proposition 1.10: For any \(c \in \mathbb{R} \) and invariant neighborhood \(0 \) of \(K_c \), there is an \(\varepsilon > 0 \) and \(\eta \in C([0,1] \times E,E) \) such that

1. \(\eta(0,q) = q \) for all \(q \in E \)
2. \(\eta(t,q) \) is equivariant for each \(t \in [0,1] \)
3. \(\eta(q, A_{c+\varepsilon}) \subset A_{c-\varepsilon} \)
4. If \(K_c \neq \emptyset \), \(\eta(1, A_{c+\varepsilon}) \subset A_{c-\varepsilon} \).

The proof of Proposition 1.10 will be given in §2.

Completion of proof of Theorem 1.5: By 1° and 2° of Proposition 1.10, \(\eta(1,\ast) \) is homotopic to the identity map and is equivariant. Hence by Lemma 5.3 of [8], \(\eta(1,\ast) : \Gamma_k + \Gamma_{k'}, 1 \leq k \leq n + 1 \). Now the conclusions of Theorem 1.5 follow in a standard way: suppose \(c_k = \cdots = c_{k+p} = c \). Then

\[\text{cat}_E^p > p + 1. \]

(1.11)

for if not, by the proof of Proposition 1.10 and Lemma 5.6 of [8], we can find a uniform neighborhood \(0 \) of \(K_c \) such that \(\text{cat}_E^p < p + 1 \). Choose

-6-
\(B \in \Gamma_{k+p} \) such that

\[
\max_{B \in E} I < c + \varepsilon .
\]

By the subadditivity property of category \([8, \text{Lemma 5.3}]\), \(\text{cat}_E \overline{B \cup} > k + p - p = k \) so \(\overline{B \cup} \in \Gamma_k \) as is \(\overline{\eta(1, B \cup)} \equiv B_1 \). But by (1.12) and \(3^\circ \) (or if \(p = 0, \ 4^\circ \)) of Proposition 1.10,

\[
\max_{B_1} I < c - \varepsilon ,
\]

contrary to the definition of \(c = c_k \). Finally, if \(p > 1 \), the definition of category implies \(\tilde{\mathcal{K}}_c \) contains infinitely many distinct points completing the proof.

Remark 1.14: In [4], Li proved an abstract theorem about critical points of periodic functionals which the above arguments can be used to generalize and put in a more natural form.

Remark 1.15: If e.g. \(L \) and \(V \) are independent of \(t \) and \(f = 0 \), the hypotheses and therefore conclusions of Theorem 1.5 hold for all \(T \in \mathbb{R} \).

However, by the periodicity properties of \(V \), it belongs to \(C^1(T^n, \mathbb{R}) \).

Therefore \(V \) possesses at least \(\text{cat}_{T^n} T^n = n + 1 \) distinct critical points which will be equilibrium solutions of (1.2). Thus it is not clear that there need exist any time dependent solutions for this special case without more structure for \(V \). In this regard, see Theorem 5.2 of [4] when \(L = \text{id} \) and \(n = 1 \).

Remark 1.16: In [6], Conley and Zehnder proved that if (i) \(H(t, p, q) \in C^2(\mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^n, \mathbb{R}) \) where \(H \) is 1-periodic in \(t \) and the components of \(q \), and (ii) there is an \(R > 0 \) such that for \(|p| > R \),

\[
H(t, p, q) = \frac{1}{2} M_p \cdot p + a \cdot p
\]

where \(a \in \mathbb{R}^n \) and \(M \) is a symmetric nonsingular time independent matrix, then the corresponding Hamiltonian system possesses at least \(n + 1 \) distinct
periodic solutions. This theorem applies to a subclass of the problems treated here including Theorem 0.3. Note however, that the Conley-Zehnder result permits indefinite matrices \(M \). Assuming for the moment its applicability here to Hamiltonians of the form

\[
H = \frac{1}{2} M \dot{p} \cdot p + V(t, q),
\]

observe that the corresponding Hamiltonian system is

\[
\dot{\mathbf{r}} = -\mathbf{V}_q, \quad \dot{q} = M \mathbf{p}.
\]

Therefore

\[
\dot{\mathbf{r}} = \frac{d}{dt} M^{-1} \mathbf{q} = -\mathbf{V}_q.
\]

Choosing \(M = L^{-1} \), (1.19) now gives (1.2).

To applicability of the Conley-Zehnder result is not quite immediate here since (1.17) does not satisfy condition (ii). However, using a trick, a modified Hamiltonian can be constructed which satisfies (ii) and whose solutions satisfy (1.2). For simplicity we will just verify this for (0.3) where \(M = \text{id} \). For this case by (1.2) or (0.1), if \(q \) is a \(T \) periodic solution,

\[
|q| < \max_{t \in \mathbb{R}, \xi \in \mathbb{R}^n} |V_q(t, \xi)| \equiv K + \max_{t \in \mathbb{R}, \xi \in \mathbb{R}^n} |V(t, \xi)| \equiv K.
\]

Simple estimates then show

\[
|q| < 2TK.
\]

Let \(\varphi \in C^\infty(\mathbb{R}, \mathbb{R}) \) such that \(\varphi(s) = 1 \) if \(s \in (1 + T)K \equiv K_2 \), \(\varphi(s) = 0 \) if \(s > 2K_2 \), and \(-1 < \varphi'(s) < 0 \) if \(s \in (K_2, 2K_2) \). The Hamiltonian

\[
\hat{H}(t, p, q) = \frac{1}{2} |p|^2 + \varphi(|p|) V(t, q)
\]

satisfies (i) and (ii). The corresponding Hamiltonian system is

\[
\dot{\mathbf{r}} = -\mathbf{V}_q \varphi, \quad \dot{q} = \mathbf{p} + V \varphi_p.
\]

If \((p, q) \) is a \(T \)-periodic solution of (1.23), the second equation implies
(1.24) \[[p] = -[\nabla \phi_p] . \]

By the definition of \(K_2 \), \(|\phi_p| < 1 \) and therefore

(1.25) \[|[p]| < K. \]

Since

(1.26) \[p(t) = [p] + \frac{1}{T} \int_0^T (\int_0^t \dot{p}(s)ds)dt, \]

(1.26), (1.23), and (1.25) imply

(1.27) \[\|p\|_\infty < K + TK < K_2 . \]

Consequently \(\phi(|p|) = 1, \phi_p(|p|) = 0 \), and any \(T \)-periodic solution of the modified equation satisfies (0.3).
§2. The proof of Proposition 1.10

A mapping $\eta \in C([0,1] \times E,E)$ and $\epsilon > 0$ must be found satisfying $1^\circ - 4^\circ$ of Proposition 1.10. Much of this construction is standard and therefore we will only indicate the modifications that must be made in the proof the "usual case" that can be found in [7, Appendix A].

The mapping η is determined as the solution of an ordinary differential equation of the form

$$\frac{d\eta}{dt} = \omega(\eta)\psi(\eta)$$

where ω is a cut-off function with $0 < \omega < 1$ and ψ is a pseudogradient vector field for I'. In [7], the choice of ϵ and construction of ω depend on the fact that I satisfies (PS). As was already noted, this is not the case here. Therefore we must show that because of the invariance of I under G, the proof works nevertheless. Heuristically, we will show that $I_{\mid E}$ satisfies (PS). First the form of I' must be studied. Let D denote the duality map from E to E^*.

Proposition 2.2: Under the hypotheses of Theorem 1.5,

$$I'(q) = D(P_1(q) + P(q))$$

where P is compact and

$$\frac{d}{dt} P_1(q) = L(t,q) \dot{q} - [L(t,q) \dot{q}] .$$

Proof: By (1.1),

$$I'(q) = \int_0^T \left[L \dot{q} \cdot q + \frac{1}{2} \sum_{i=1}^n \left(L_{q_i} \dot{q} \cdot \dot{q}_i - V_q \cdot q + f \cdot q \right) dt .$$

Let

$$I_1(q) \equiv \int_0^T L \dot{q} \cdot \dot{q} dt,$$

$$I_2(q) \equiv \frac{1}{2} \sum_{i=1}^n \int_0^T L_{q_i} \dot{q} \cdot \dot{q}_i dt,$$

$$I_3(q) \equiv \int_0^T (-V_q + f) \cdot q dt .$$
By the argument of Proposition B.10 of [7], \(I_3(q) = DP_3(q) \) where \(P_3 \) is compact. Next consider \(I_2(q)\). It has the form

\[
(2.5) \quad I_2(q) = \int_0^T b \cdot \varphi dt
\]

where \(b = b(t, q, \dot{q}) \in L^1 \). Since \(I_2(q) \in E^* \), there is a unique \(x = \xi + y \in R^3 \otimes F \) such that

\[
(2.6) \quad I_2(q) = \int_0^T \dot{y} \cdot \varphi dt + \xi \cdot \varphi.
\]

Comparing (2.5)-(2.6) shows \(y \) is a weak solution of

\[
(2.7) \quad -y = b - [b].
\]

Hence \(y \in \dot{W}^{2,1} \) and

\[
(2.8) \quad \|y\|_{\dot{W}^{2,1}} < 2\|b\|_{L^1}.
\]

Similarly \(\xi = T[b] \) and

\[
(2.9) \quad |\xi| < T\|b\|_{L^1}.
\]

Let \(P_2(q) = y(q) + \xi(q) \). The form of \(b \) shows that for \(q \) belonging to a bounded set in \(E \), \(P_2(q) \) will be bounded in \(\dot{W}^{2,1} \). Hence \(P_2(q) \) and \(I_2(q) = DP_2 \) are compact on \(E \).

Finally, consider \(I_1(q)\). As was the case with \(I_2(q) \),

\[
(2.10) \quad I_1(q) = \int_0^T w \cdot \varphi dt
\]

where \(w \in F \) and there is no mean value term due to the form of \(I_1(q) \).

Comparing with (2.4) yields

\[
(2.11) \quad \dot{w} = L_4 - [L_4].
\]

Now (2.11) together with \([w] = 0\) determines \(w = P_1(q) \). Setting \(P = P_1 + P_2 \), the result follows.

Lemma 2.12: Let \(\hat{K}_C = \{ q \in K_C | 0 < [q_i] < T_i, 1 \leq i \leq n \} \). Then \(\hat{K}_C \) is compact.
Proof: Suppose \((Q_m) \subseteq \mathring{K}_c\). Let \(Q_m = \xi_m + Y_m\) where \(\xi_m \in \mathbb{R}^n\) and \(Y_m \in F\).

The form of \(I\) and \((L_2)\) imply that \((Y_m)\) is bounded and the definition of \(\mathring{K}_c\) shows that \((\xi_m)\) is bounded. Since \((Q_m)\) is bounded, along a subsequence, \(Q_m\) converges weakly in \(E\) and strongly in \(L^\infty\) to \(Q\) and \(P(Q_m)\) converges in \(E\). Therefore from Proposition 2.2,

\[(2.13) \quad \dot{Q}_m = L^{-1}(t, Q_m)\left[T^{-1} \int_0^T L(t, Q_m) \dot{Q}_m \, dt - \frac{d}{dt} P(Q_m) \right].\]

Now equation (2.13) shows that along this subsequence \(\dot{Q}_m\) converges in \(L^2\) and \(Q_m\) converges in \(E\) and \(I'(Q) = 0\). Hence \(Q \in \mathring{K}_c\).

Completion of the proof of Proposition 1.10: In the proof of the version of Proposition 1.10 given in [7], \((PS)\) is used in two places. The first is in showing that \(K_c\) is compact and therefore for any neighborhood \(0\) of \(K_c\), there exists a uniform neighborhood \(N_\delta \equiv N_\delta(K_c) = \{q \in E | q - K_c | < \delta\} \subseteq 0\).

For the current setting, if \(0\) is an invariant neighborhood of \(K_c\), since \(\mathring{K}_c \subseteq K_c\) and is compact, there is a \(\delta > 0\) such that \(0 \supset N_\delta(K_c)\). Therefore by the invariance of \(0\),

\[(2.14) \quad 0 \supset \bigcup_{g \in G} g(N_\delta(\mathring{K}_c)) = N_\delta(K_c).\]

The second place at which \((PS)\) is required in [7] is in showing that there exists constants \(b, \hat{c} > 0\) such that if \(q \in A \equiv A \setminus \left(A \cup N_\delta/G\right)\),

\[(2.15) \quad ||I'(q)|| > b.\]

Arguing indirectly, (2.15) follows for the subclass of \(q \in A\) such that \(0 < [q_i, T_i, 1 < i < n]\) by an argument paralleling the proof of Lemma 2.12 which will be omitted. Since \(A_\delta\) and \(N_\delta/G\) are invariant sets, (2.15) then holds for all \(q \in A\).

Given (2.14)-(2.15), the argument of Theorem A.4 of [7] yields \(1^o, 3^o-4^o\) of Proposition 1.10. It remains only to show that by an appropriate construction of \(\eta(t, \cdot)\), \(2^o\) also holds. Since \(I\) is invariant under \(G\),
\[\text{i.e. } I(g_k) = I(q + \theta_k) = I(q) \text{ for all } g_k \in G, \]

\[(2.16) \quad I'(q + \theta_k) = I'(q) = I'(g_k q) \]

for all \(g_k \in G \). The invariance of \(I' \) under \(G \) allows us to slightly modify the construction of Lemma A.2 of [7] to obtain a pseudogradient vector field \(\gamma \) for \(I' \) which is also invariant under \(G \). Also the definition of \(\omega \) in [7] shows that if \(I \) is invariant under \(G \), so is \(\omega \). Thus the right-hand side of (2.1) is invariant under \(G \). We claim \(\eta(t,*) \) satisfies 2°, i.e. \(\eta(t,gq) = g\eta(t,q) \) for all \(t \in [0,1], g \in G, q \in E \). Indeed set \(w = g\eta(t,q) \). Then \(w = \eta(t,q) + \theta_k \) for some \(k \in \mathbb{Z}^n \) and

\[
\begin{align*}
\frac{dw}{dt} &= \frac{d\eta}{dt} = \omega(\eta) \gamma(\eta) = \omega(g\eta) \gamma(g\eta) = \omega(w) \gamma(w) \\
\end{align*}
\]

(2.17)

Therefore \(w(t,q) = \eta(t,gq) = g\eta(t,q) \) so 2° holds. The proof is complete.
§3. The Neumann Problem

In this section, the Neumann problem

\begin{align*}
-\Delta u &= p(x,u) + h(x), \quad x \in \Omega \\
 u &= 0, \quad x \in \partial \Omega
\end{align*}

will be studied and Theorem 0.5 will be proved. The ideas used here are so close to those of §1-2 that we will be sketchy.

Let \(E = W^{1,2}(\Omega) \). For \(u \in E \), define

\begin{equation}
I(u) = \int_{\Omega} \left[\frac{1}{2} |\nabla u|^2 - p(x,u) - h(x)u \right] \, dx
\end{equation}

where \(p, h, \Omega \) satisfy the hypotheses of Theorem 0.5. The proof of Proposition B.10 of [7] shows \(I \in C^1(E,R) \). By e.g. [10, Chapter 2] critical points of \(I \) are classical solutions of (3.1). Note that \(I(u + kr) = I(u) \) for all \(u \in E \) and \(k \in \mathbb{Z} \) via \((p_1)\) and \((h_2)\). Therefore \(I \) does not satisfy \((PS)\) on \(E \). For \(u,v \in E \), we say \(u \) is equivalent to \(v \), \(u \sim v \), if \(u - v = kr \) for some \(k \in \mathbb{Z} \). Let \(\tilde{E} = E/\sim \). As in §1, \(A \subseteq E \) is an invariant set if and only if there is an \(\tilde{A} \subseteq \tilde{E} \) such that \(\tilde{A} = A/\sim \). Again \(E \) can be identified with \(R \otimes F \) where \(F \) is the orthogonal complement of span \{1\} in \(E \) and \(\tilde{E} \) can be identified with \(S^1 \otimes F \).

The argument of Lemma 1.7 shows that

\[\Gamma_k = \{ A \subseteq E | \text{cat}_{\tilde{E}} A > k \} \neq \emptyset \]

for \(k = 1,2 \). Noting that \((\int_{\Omega} |\nabla u|^2 \, dx)^{1/2} \) is a norm on \(F \) and that

\begin{equation}
I'(u) = D(u - [u]) + P(u)
\end{equation}

where \(D \) again denotes the duality map and \(P \) is compact (see Proposition B.10 of [7]). Therefore there is an analogue of Proposition 1.10 here which implies that

\begin{equation}
c_k = \inf_{A \in \Gamma_k} \max_{u \in A} I(u), \quad k = 1,2
\end{equation}
is a critical value of \(I, k = 1,2 \) with a multiplicity result if \(c_1 = c_2 \).

This completes the proof of Theorem 0.5.

Remark 3.5: If in (0.6), \(u \) is an \(n \) vector, \(p(x,u) = \nabla_u P(x,u) \), and \(P \) is periodic in the components of \(u \), a version of Theorem 0.5 analogous to Theorem 0.3 obtains.

Remark 3.6: An alternate way to prove Theorem 0.5 is to obtain a first solution as a minimum and a second using a variant of the Mountain Pass Theorem as in [1]-[4] for (0.1) with \(n = 1 \). Such an approach, however, does not extend to cover the vector case mentioned in Remark 3.5.

Remark 3.7: Theorem 0.5 can also be extended by replacing \(-\Delta\) by a more general second order divergence structure uniformly elliptic operator with appropriate changes in the boundary conditions. A similar result also obtains if \(\Omega \) is replaced by a rectangular domain and the Neumann boundary conditions by periodic ones.
References

END
DATE
FILMED
6-1988
DTIC