Memory-Induced Extra Resonances of Adsorbates

by

Henk F. Arnoldus and Thomas F. George

Prepared for Publication
in
Physical Review Letters

Departments of Chemistry and Physics
State University of New York at Buffalo
Buffalo, New York 14260

March 1988

Reproduction in whole or in part is permitted for any purpose of the United States Government.

This document has been approved for public release and sale; its distribution is unlimited.
Memory-Induced Extra Resonances of Adsorbates

The optical absorption profile of an atom-surface vibrational bond is studied. From Markovian relaxation theory it follows that the line shape is a Lorentzian around the adsorbate resonance frequency ω_0. Dispersion relations for crystals have a fairly small cutoff frequency ω_D, which prohibits the use of such a simple theory. We calculated the spectral profile with finite memory-time reservoir theory, and we found that the modified Lorentzian vanishes above ω_D. Also a new spectral line at $\omega_0 + \omega_D$ is predicted, which disappears in the Markovian limit. The physical origin of the new line is explained.
Memory-induced extra resonances of adsorbates

Henk F. Arnoldus and Thomas F. George
Departments of Physics and Chemistry
239 Fronczak Hall
State University of New York at Buffalo
Buffalo, New York 14260

Abstract

The optical absorption profile of an atom-surface vibrational bond is studied. From Markovian relaxation theory it follows that the line shape is a Lorentzian around the adsorbate resonance frequency \(\omega_0 \). Dispersion relations for crystals have a fairly small cutoff frequency \(\omega_D \), which prohibits the use of such a simple theory. We calculated the spectral profile with finite memory-time reservoir theory, and we found that the modified Lorentzian vanishes above \(\omega_D \). Also a new spectral line at \(\omega_0 + \omega_D \) is predicted, which disappears in the Markovian limit. The physical origin of the new line is explained.

PACS: 32.70.-n, 32.80.-t, 71.36.+c, 78.90.+t
Adsorbed atoms on the surface of a crystal can absorb photons from an incident infrared laser beam. Coupling between the van der Waals bond and the radiation is brought about by the motion-induced dipole moment \(\mu \) (the atom itself is assumed to be neutral for IR light), and the atom-crystal interaction is governed by the single-phonon coupling Hamiltonian \(^1\)

\[
H_i = -(u\cdot e_z) dV/dz ,
\]

in terms of the derivative of the binding potential well \(V(z) \). Here \(z \) denotes the normal direction to the surface (we neglect lateral motion) and \(u \) is the phonon-field amplitude operator, \(^2\) evaluated at the position of the surface atom which is closest to the adsorbate. Relaxation of the atomic bond due to phonon exchange with the crystal is most conveniently described with reservoir theory, where the crystal is regarded as a thermal bath. \(^3\) Then an equation of motion for the reduced adsorbate density operator can be derived, in which the properties of the heat bath only enter parametrically, and can be expressed in terms of the Fourier-Laplace transform of the reservoir correlation function

\[
g(\omega/\omega_D) = \frac{2M\omega_D^2}{3k_B} \int_0^\infty dr \, e^{i\omega r} \langle (u(r)\cdot e_z)(u\cdot e_z) \rangle .
\]

Equation (2) defines the dimensionless function \(g(z) \) in terms of the mass \(M \) of a bulk atom and the Debye frequency \(\omega_D \). Then it can be shown that \(g(z) \) depends only on the dimensionless temperature \(\gamma = \omega_D/\kappa_B T \), with \(k_B \) Boltzmann’s constant. An explicit expression for \(g(\gamma) \) can be found in Ref. 4.
In the most simple theory of relaxation one adopts the Markov and secular approximations, which yields for the low-intensity absorption line shape as a function of the laser frequency \(\omega \)

\[
I(\omega) = \omega_0 (n_1 - n_2) \text{Re} \frac{1}{\omega - \omega_0 + i a(g(\omega_o) + g*(-\omega_0))} .
\] (3)

This profile is a Lorentzian with its peak value at \(\omega = \omega_0 + a \text{Im}(g(\omega_o) + g*(-\omega_0)) \), and a half-width at half-maximum equal to \(a \text{Re}(g(\omega_o) + g*(-\omega_0)) \). The notation is \(\omega = \omega/\omega_0 \), \(\omega_0 = \) unperturbed adsorbate resonance, and \(n_i = \) population of the \(i \)-th level \((n_1 > n_2) \). The temperature dependence is incorporated in \(g(z) \), and the phonon-coupling strength is measured by

\[
a = \frac{3\pi}{2} \frac{V}{2KM\omega_D} <2|\frac{dV}{dz}|1>^2 .
\] (4)

Most crucial for the derivation of the line profile (3) is the conjecture that the phonon-amplitude correlation function \(\langle (u(\tau) \cdot e_z)(u* e_z) \rangle \) decays to zero very fast for \(\tau > 0 \), which would justify the Markov approximation. It is an essential feature of a crystal, however, that its dispersion relation has a finite cutoff frequency \(\omega_D \), which sets the lower limit of \(1/\omega_D \) on the decay time. In fact, the structure of the amplitude operator \(u \) is such that the correlation function decays only as \(1/\tau \) for \(\tau \rightarrow \infty \), rather than exponentially, which makes a Markov approximation (zero memory time) at least doubtful. In order to investigate this problem quantitively, we have developed a finite memory-time relaxation theory, with no restriction on the time scales. Subsequently, we have applied this theory to the evaluation of the absorption line shape, with the formal result.
\[I(\omega) = \omega \mu_{\text{21}}^{-2} \text{Re} \text{Tr} L_X \left[\frac{\omega}{\omega - \omega^a} + i\Gamma(\omega) \right] (L_Y - iT(\omega)) \rho . \] (5)

This expression holds for any configuration of adsorbate levels and includes multiphonon transitions as well. In Eq. (5), \(\rho \) equals the adsorbate density operator in thermal equilibrium, and the Liouvillians \(L_X \) and \(L_Y \) are defined by \(L_X\sigma = \mu\sigma \), \(L_Y\sigma = [\mu,\sigma] \) in terms of their action on an arbitrary adsorbate density operator \(\sigma \). The relaxation operator \(\Gamma(\omega) \) is frequency dependent, which reflects the memory in the time regression of two-time quantum correlation functions. In the time domain this would be a memory kernel, and in the Markov approximation \(\Gamma(\omega) \) assumes an \(\omega \)-independent value. Furthermore, a Liouville operator \(T(\omega) \) appears, which accounts for the fact that the density operator of the entire system does not factorize as \(\rho_{\text{adsorbate}} \times \rho_{\text{crystal}} \) in thermal equilibrium if the memory time is finite. We call this term the initial correlation contribution to the line shape, in contrast to the term \(L_Y \), which is referred to as the regression part. In a zero memory-time approximation the operator \(T(\omega) \) vanishes identically, since then a factorization of the density operator can be justified. Both \(\Gamma(\omega) \) and \(T(\omega) \) are complicated operators. Elsewhere we have studied the modifications of the Lorentzian profile (3) due to the memory effects, and we have derived an explicit expression for \(I(\omega) \), pertaining to the situation where \(\omega_0 \) is smaller than \(\omega_D \).

In this Letter we report a peculiar feature of the absorption profile (5) which arises as a consequence of the memory in the interaction. Since Eq. (5) applies to any configuration, we can consider the case where the vibrational resonance \(\omega_0 \) is larger than \(\omega_D \). Then we scan the laser over this resonance, implying that also \(\omega > \omega_D \). For frequencies larger than \(\omega_D \) a Markov approximation can never be justified, and it is imperative to include the memory in the time evolution. At this stage we neglect the small contribution of multiphonon...
processes, in order to emphasize the significance of the predicted effects. Then it can be shown that the regression part \((- I_1\)) which would lead to the Lorentzian in the Markov approximation, is identically zero for \(\omega > \omega_D\). Hence any absorption is due to the initial-correlation term \(T(\omega)\), and therefore a mere consequence of the finiteness of the memory time. We obtain for the absorption spectrum

\[
I(\omega) = a \left(\frac{\mu_{21}}{\mu_{11}} \right)^2 \text{Re} \frac{g(\tilde{\omega}, \omega)}{\omega + ia(g(\tilde{\omega} - \omega) + g^*(\tilde{\omega} - \omega))},
\]

for \(\omega > \omega_D\). Here we used that the population of the upper state must be zero for \(\omega_o > \omega_D\) (so \(n_1 = 1\)), and the general property \(\text{Re} g(z) = 0\) for \(|z| > 1\) of the reservoir correlation function. A characteristic example of \(I(\omega)\) is plotted in Fig. 1.

We observe that \(I(\omega)\) has a spectral line for \(\omega > \omega_D\). Recalling that our result (6) only includes single-phonon transitions,\(^{10}\) this might appear to be a contradiction. We see, however, that the line is not brought about by the transition dipole moment \(\mu_{21}\), as usual, but by the permanent dipole moments \(\mu_{22}\) and \(\mu_{11}\) of the two levels. From the diagrams of Fig. 2 we then anticipate that it could be possible to absorb a photon with \(\omega > \omega_D\), and in such a way that energy conservation can be met with a single-phonon process. The mismatch between \(\omega\) and \(\omega_o\) is simply the phonon frequency. Although level \(|2\rangle\) cannot be populated because of \(\omega_o > \omega_D\), it can nevertheless be reached via a photon-phonon process. This mechanism gives rise to the line at \(\omega > \omega_D\).

Figure 2 suggests that the processes responsible for this line (b and c) can only occur for \(|\omega - \omega_o| < \omega_D\), since otherwise the phonon frequency would become
larger than ω_D. This can be shown explicitly from Eq. (6). If we work out the real part and use $\text{Re} \, g(z) = 0$ for $|z| > 1$, we find

$$I(\omega) = 0 \quad \text{for} \quad |\omega - \omega_o| > \omega_D.$$ \hspace{1cm} (7)

Furthermore, from Eq. (6) it follows that the line must be situated at the zero of the real part of the denominator, e.g., at the solution of $\bar{\omega} = \text{aIm}(g(\hat{\omega} - \omega_o) + g^*(\hat{\omega}_o - \omega))$. We know that $g(z)$ attains its extreme at $\omega = \pm 1$ (for a Debye model we have $g(\pm 1) = \pm \infty$) and that $\omega > \omega_D >> a$, which gives for the position of the line $\omega = \omega_o + \omega_D$. Together with Eq. (7), this explains the sharp edge of the line at the blue side. In conclusion, the finite memory-time in the atom-crystal interaction prohibits the factorization of the density operator in thermal equilibrium, which in turn gives rise to a new spectral line at $\omega_o + \omega_D$, provided that the system has a permanent dipole moment. Its profile is given by Eq. (6).

As a last remark we mention that the detailed shape of the line at $\omega_o + \omega_D$ depends crucially on the adopted model for the phonon dispersion relation. The sharp peak at $\omega = \omega_o + \omega_D$ is a consequence of the cutoff of the dispersion relation at ω_D. In a more realistic model, where the detailed structure of the first Brillouin zone for a specific crystal is taken into consideration, this peak will smoothen out. Expression (6) for the line shape remains valid, but the function $g(z)$ will behave more realistic. The infinities in $z = \pm 1$ will turn into finite van Hove singularities.

ACKNOWLEDGMENTS

This research was supported by the Office of Naval Research and the Air Force Office of Scientific Research (AFSC), United States Air Force, under Contract No. F49620-86-C-0009.
REFERENCES

10. A low-intensity laser can only cause transitions between two states $|n\rangle$ and $|m\rangle$ for which $\langle n | H_1 | m \rangle \neq 0$, according to the Golden Rule. The Hamiltonian H_1 from Eq. (1) connects only states which differ by one phonon. See for instance: S. W. Lovesey, Condensed Matter Physics, Dynamic Correlations (Benjamin, London, 1980) pg. 3.

FIGURE CAPTIONS

Fig. 1. Absorption profile $I(\omega)$ from Eq. (5) as a function of $\hat{\omega} = \omega / \omega_0$, and for $\omega_0 = 3 \omega_D$ (dotted line), $\alpha = 0.4 \times \omega_D$, $\gamma = 10$ (low temperature), and $(\mu_{22}^* \mu_{11})^2 = 0.5 \times \mu_{21}^2$. The left peak at $\omega < \omega_D$ is the far red wing of the regression part of the line, which is brought about by transitions with $\omega = \omega_{\text{phonon}}$ (diagram (a) of Fig. 2), and governed by the transition dipole moment μ_{21}. The peak on the right-hand side is the memory-time-induced extra resonance, with $|\omega - \omega_0| = \omega_{\text{phonon}}$. Processes represented by the diagrams (b) and (c) of Fig. 2 give rise to this line, and its line shape is given by Eq. (6). In a zero memory-time approximation this line vanishes.

Fig. 2. Energy-conserving diagrams which contribute to the absorption spectrum $I(\omega)$. Double arrows indicate a photon and single arrows a phonon. Diagram (a) and its reverse are responsible for the profile at $\omega < \omega_D$, whereas diagrams (b) and (c) represent processes which yield the line at $\omega > \omega_D$. Since level $|2\rangle$ is not populated, the reverse processes (stimulated emission) of diagrams (b) and (c) do not occur.
<table>
<thead>
<tr>
<th>No. Copies</th>
<th>Address/Contact</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Office of Naval Research</td>
</tr>
<tr>
<td></td>
<td>Attn: Code 1113</td>
</tr>
<tr>
<td></td>
<td>800 N. Quincy Street</td>
</tr>
<tr>
<td></td>
<td>Arlington, Virginia 22217-5000</td>
</tr>
<tr>
<td>1</td>
<td>Dr. Bernard Doula</td>
</tr>
<tr>
<td></td>
<td>Naval Weapons Support Center</td>
</tr>
<tr>
<td></td>
<td>Code 50C</td>
</tr>
<tr>
<td></td>
<td>Crane, Indiana 47522-5050</td>
</tr>
<tr>
<td>1</td>
<td>Naval Civil Engineering Laboratory</td>
</tr>
<tr>
<td></td>
<td>Attn: Dr. R. W. Drisko, Code L2</td>
</tr>
<tr>
<td></td>
<td>Port Hueneme, California 93401</td>
</tr>
<tr>
<td>12</td>
<td>Defense Technical Information Center</td>
</tr>
<tr>
<td></td>
<td>Building 5, Cameron Station</td>
</tr>
<tr>
<td></td>
<td>Alexandria, Virginia 22314</td>
</tr>
<tr>
<td>1</td>
<td>DTNSRDC</td>
</tr>
<tr>
<td></td>
<td>Attn: Dr. H. Singerman</td>
</tr>
<tr>
<td></td>
<td>Applied Chemistry Division</td>
</tr>
<tr>
<td></td>
<td>Annapolis, Maryland 21401</td>
</tr>
<tr>
<td>1</td>
<td>Dr. William Tolles</td>
</tr>
<tr>
<td></td>
<td>Superintendent</td>
</tr>
<tr>
<td></td>
<td>Chemistry Division, Code 6100</td>
</tr>
<tr>
<td></td>
<td>Naval Research Laboratory</td>
</tr>
<tr>
<td></td>
<td>Washington, D.C. 20375-5000</td>
</tr>
<tr>
<td>1</td>
<td>U.S. Army Research Office</td>
</tr>
<tr>
<td></td>
<td>Attn: CRD-AA-IP</td>
</tr>
<tr>
<td></td>
<td>P.O. Box 12211</td>
</tr>
<tr>
<td></td>
<td>research Triangle Park, NC 27709</td>
</tr>
<tr>
<td>1</td>
<td>Mr. John Boyle</td>
</tr>
<tr>
<td></td>
<td>Materials Branch</td>
</tr>
<tr>
<td></td>
<td>Naval Ship Engineering Center</td>
</tr>
<tr>
<td></td>
<td>Philadelphia, Pennsylvania 19112</td>
</tr>
<tr>
<td>1</td>
<td>Naval Ocean Systems Center</td>
</tr>
<tr>
<td></td>
<td>Attn: Dr. S. Yamamoto</td>
</tr>
<tr>
<td></td>
<td>Marine Sciences Division</td>
</tr>
<tr>
<td></td>
<td>San Diego, California 91232</td>
</tr>
<tr>
<td>1</td>
<td>Dr. David L. Nelson</td>
</tr>
<tr>
<td></td>
<td>Chemistry Division</td>
</tr>
<tr>
<td></td>
<td>Office of Naval Research</td>
</tr>
<tr>
<td></td>
<td>800 North Quincy Street</td>
</tr>
<tr>
<td></td>
<td>Arlington, Virginia 22217</td>
</tr>
</tbody>
</table>
ABSTRACTS DISTRIBUTION LIST, 056/625/629

Dr. J. E. Jensen
Hughes Research Laboratory
3011 Malibu Canyon Road
Malibu, California 90265

Dr. C. B. Harris
Department of Chemistry
University of California
Berkeley, California 94720

Dr. J. H. Weaver
Department of Chemical Engineering and Materials Science
University of Minnesota
Minneapolis, Minnesota 55455

Dr. F. Kutzler
Department of Chemistry
Box 5055
Tennessee Technological University
 Cookeville, Tennessee 38501

Dr. A. Reisman
Microelectronics Center of North Carolina
Research Triangle Park, North Carolina 27709

Dr. D. DiLella
Chemistry Department
George Washington University
Washington D.C. 20052

Dr. M. Grunze
Laboratory for Surface Science and Technology
University of Maine
Orono, Maine 04469

Dr. R. Reeves
Chemistry Department
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. J. Butler
Naval Research Laboratory
Code 6115
Washington D.C. 20375-5000

Dr. Steven M. George
Stanford University
Department of Chemistry
Stanford, CA 94305

Dr. L. Interante
Chemistry Department
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. Mark Johnson
Yale University
Department of Chemistry
New Haven, CT 06511-8118

Dr. Irvin Heard
Chemistry and Physics Department
Lincoln University
Lincoln University, Pennsylvania 19352

Dr. W. Knauer
Hughes Research Laboratory
3011 Malibu Canyon Road
Malibu, California 90265

Dr. K.J. Klaubunde
Department of Chemistry
Kansas State University
Manhattan, Kansas 66506
ABSTRACTS DISTRIBUTION LIST, 056/625/629

Dr. G. A. Somorjai
Department of Chemistry
University of California
Berkeley, California 94720

Dr. J. M. Murday
Naval Research Laboratory
Code 6170
Washington, D.C. 20375-5000

Dr. J. B. Hudson
Materials Division
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. Theodore E. Madey
Surface Chemistry Section
Department of Commerce
National Bureau of Standards
Washington, D.C. 20234

Dr. J. E. Demuth
IBM Corporation
Thomas J. Watson Research Center
P.O. Box 218
Yorktown Heights, New York 10598

Dr. M. G. Lagally
Department of Metallurgical
and Mining Engineering
University of Wisconsin
Madison, Wisconsin 53706

Dr. R. P. Van Duyne
Chemistry Department
Northwestern University
Evanston, Illinois 60637

Dr. J. M. White
Department of Chemistry
University of Texas
Austin, Texas 78712

Dr. D. E. Harrison
Department of Physics
Naval Postgraduate School
Monterey, California 93940

Dr. R. L. Park
Director, Center of Materials
Research
University of Maryland
College Park, Maryland 20742

Dr. W. T. Peria
Electrical Engineering Department
University of Minnesota
Minneapolis, Minnesota 55455

Dr. Keith H. Johnson
Department of Metallurgy and
Materials Science
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Dr. S. Sibener
Department of Chemistry
James Franck Institute
5640 Ellis Avenue
Chicago, Illinois 60637

Dr. A. Wold
Department of Chemistry
Brown University
Providence, Rhode Island 02912

Dr. S. L. Bernasek
Department of Chemistry
Princeton University
Princeton, New Jersey 08544

Dr. W. Kohn
Department of Physics
University of California, San Diego
La Jolla, California 92037
ABSTRACTS DISTRIBUTION LIST, 056/625/629

Dr. F. Carter
Code 6170
Naval Research Laboratory
Washington, D.C. 20375-5000

Dr. Richard Colton
Code 6170
Naval Research Laboratory
Washington, D.C. 20375-5000

Dr. Dan Pierce
National Bureau of Standards
Optical Physics Division
Washington, D.C. 20234

Dr. R. Stanley Williams
Department of Chemistry
University of California
Los Angeles, California 90024

Dr. R. P. Messmer
Materials Characterization Lab.
General Electric Company
Schenectady, New York 22217

Dr. Robert Gomer
Department of Chemistry
James Franck Institute
5640 Ellis Avenue
Chicago, Illinois 60637

Dr. Ronald Lee
R301
Naval Surface Weapons Center
White Oak
Silver Spring, Maryland 20910

Dr. Paul Schoen
Code 6190
Naval Research Laboratory
Washington, D.C. 20375-5000

Dr. John T. Yates
Department of Chemistry
University of Pittsburgh
Pittsburgh, Pennsylvania 15260

Dr. Richard Greene
Code 5230
Naval Research Laboratory
Washington, D.C. 20375-5000

Dr. L. Kesmodel
Department of Physics
Indiana University
Bloomington, Indiana 47403

Dr. K. C. Janda
University of Pittsburgh
Chemistry Building
Pittsburgh, PA 15260

Dr. E. A. Irene
Department of Chemistry
University of North Carolina
Chapel Hill, North Carolina 27514

Dr. Adam Heller
Bell Laboratories
Murray Hill, New Jersey 07974

Dr. Martin Fleischmann
Department of Chemistry
University of Southampton
Southampton 509 5NH
UNITED KINGDOM

Dr. H. Tachikawa
Chemistry Department
Jackson State University
Jackson, Mississippi 39217

Dr. John W. Wilkins
Cornell University
Laboratory of Atomic and Solid State Physics
Ithaca, New York 14853
ABSTRACTS DISTRIBUTION LIST, 056/625/629

Dr. R. G. Wallis
Department of Physics
University of California
Irvine, California 92664

Dr. J. T. Keiser
Department of Chemistry
University of Richmond
Richmond, Virginia 23173

Dr. D. Ramaker
Chemistry Department
George Washington University
Washington, D.C. 20052

Dr. R. W. Plummer
Department of Physics
University of Pennsylvania
Philadelphia, Pennsylvania 19104

Dr. J. C. Hemminger
Chemistry Department
University of California
Irvine, California 92717

Dr. E. Yeager
Department of Chemistry
Case Western Reserve University
Cleveland, Ohio 41106

Dr. T. F. George
Chemistry Department
University of Rochester
Rochester, New York 14627

Dr. N. Winograd
Department of Chemistry
Pennsylvania State University
University Park, Pennsylvania 16802

Dr. G. Rubloff
IBM
Thomas J. Watson Research Center
P.O. Box 218
Yorktown Heights, New York 10598

Dr. R. Hoffmann
Department of Chemistry
Cornell University
Ithaca, New York 14853

Dr. J. C. Hemminger
Chemistry Department
University of California
Irvine, California 92717

Dr. A. Steckl
Department of Electrical and Systems Engineering
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. W. Goddard
Department of Chemistry and Chemical Engineering
California Institute of Technology
Pasadena, California 91125

Dr. G. H. Morrison
Department of Chemistry
Cornell University
Ithaca, New York 14853

Dr. P. Hansma
Department of Physics
University of California
Santa Barbara, California 93106

Dr. J. Baldeschwieler
Department of Chemistry and Chemical Engineering
California Institute of Technology
Pasadena, California 91125
END
DATE
FILMED
6-1988
DTIC