On the exceedance random measures for stationary processes

Two common approaches to extremal theory for stationary processes involve (a) consideration of point processes of upcrossings of high levels and (b) use of the total exceedance time above such levels. The approach (a) yields a greater variety of interesting results regarding the "global" and local maxima, but requires more by way of regularity conditions on the sample paths, than does the approach (b).

In this work we combine both approaches by consideration of the exceedance random measure thereby obtaining general results under weak conditions on the sample functions. These include previously known results in the case where more sample function regularity is assumed.
CENTER FOR STOCHASTIC PROCESSES

Department of Statistics
University of North Carolina
Chapel Hill, North Carolina

ON THE EXCEEDANCE RANDOM MEASURES
FOR STATIONARY PROCESSES

by

M. R. Leadbetter

Technical Report No. 215
November 1987

155. R.F. Serfozo. Extreme values of queue lengths in M/G/1 and GI/M/1 systems. Sept. 86.

162. R.L. Taylor and T-C. Hu. Strong laws of large numbers for arrays or rowwise independent random elements. Nov. 86.

171. J. Nolan. Local properties of index-

ON THE EXCEEDANCE RANDOM MEASURES
FOR STATIONARY PROCESSES

by

M.R. Leadbetter

University of North Carolina

Summary: Two common approaches to extremal theory for stationary processes involve (a) consideration of point processes of upcrossings of high levels and (b) use of the total exceedance time above such levels. The approach (a) yields a greater variety of interesting results regarding the "global" and local maxima, but requires more by way of regularity conditions on the sample paths, than does the approach (b).

In this work we combine both approaches by consideration of the "exceedance random measure" thereby obtaining general results under weak conditions on the sample functions. These include previously known results in the case where more sample function regularity is assumed.

Research supported by the Air Force Office of Scientific Research under Contract No. F49620 85C 0144.
1. Introduction

Two approaches have been used to obtain theory surrounding the asymptotic distribution of the maxima

\[M(T) = \sup \{ \xi_t : 0 \leq t \leq T \} \]

of a stationary process \(\{ \xi_t : t \geq 0 \} \), as \(T \to \infty \). The first of these involves upcrossings of high levels, using the simple connection

\[\{ M(T) \leq u \} \subset \{ N_u(T) = 0 \} \subset \{ M(T)

if \(N_u(T) \) denotes the number of upcrossings of a level \(u \) by \(\xi_t \) in \(0 \leq t \leq T \). It may be seen from this (cf. [9] and references therein) that the limiting distribution of \(M(T) \) is intimately connected with the asymptotic Poisson character of point processes of high level upcrossings. This approach must be modified when the sample functions are so irregular that upcrossings do not form a point process and this may be done by use of the so called \(\varepsilon \)-upcrossings of Pickands [10].

The second approach to extremal theory for \(M(T) \), employed by Berman (cf. [1]) uses the exceedance time \(L_T(u) = \int_0^T 1(\xi_t > u) \, dt \), and the immediate equivalence \(P(M(T) \leq u) = P(L_T(u) = 0) \). While the "upcrossing framework" provides a greater variety of associated results (e.g. concerning \(k \)th largest local maxima), the use of exceedance times requires very little by way of sample function regularity.

In this paper we explore a simple extension to the notion of exceedance time, namely the exceedance times in arbitrary Borel sets, or "exceedance random measure". This may be defined under the same minimal conditions as \(L_T(u) \) but
gives new and more detailed results involving upcrossings when the sample functions are more regular. In fact in such cases the limiting random measure represents both the positions of high upcrossing points and the lengths of the high level exceedances thus initiated.

Specifically it will be convenient to consider the random measure (r.m.) ζ_T defined for Borel subsets B of $(0,1]$ as the amount of time in TB for which $\xi_t > u_T$, where $\{u_T : T \geq 0\}$ is a given family of constants, viz.

$$\zeta_T(B) = \int_{T \times B} 1\{\xi_t > u_T\} dt.$$

For convenience we assume throughout that the underlying probability space is complete, and that ξ_t has a.s. continuous sample paths (and hence in particular is a measurable process). Clearly $\zeta_T(0,1]) = L_T(u_T)$, the previously defined exceedance time.

Our primary interest concerns distributional limits for the random measure $a_T \zeta_T$ as $T \to \infty$, (for suitable constants a_T) when the levels u_T from a "family of normalizers for the maximum $M(T)$", in the sense that $P(M(T) \leq u_T)$ has a non-zero limit. To obtain non-trivial results, it is clearly necessary to restrict the long range dependence in the process to some degree. This will be done by an assumption "$A(u_T)$" of similar type but significantly weaker than strong mixing. This will be discussed in Section 2, and some basic lemmas proved.

Section 3 contains the main results of the paper-characterizing the possible random measure limits for $a_T \zeta_T$ as a class of Lévy Processes of Compound Poisson form (with general type of multiplicity distribution), and giving sufficient conditions for convergence.

Section 4 concerns families of levels $u_T(\tau)$ parametrized by the quantity τ such that $P(M(T) \leq u_T) \to e^{-\tau}$. It being shown that convergence of $a_T \zeta_T$ for one
such level implies its convergence for all such levels. Finally in Section 5 we interpret the limiting r.m. in terms of high level upcrossings and exceedance times when the sample functions are more regular, and illustrate the theory by obtaining explicit results for stationary normal processes.

In some respects our development parallels that for high level exceedances in discrete time considered in [4], and we have made some technical simplifications which could also have been used in the discrete time case. But the more essential differences arise from the fact that random measures rather than point processes are considered, with consequent problems of "lack of tightness". In particular a case specifically excluded from [4] where convergence of the so-called "exceedance point process" occurs after multiplication by normalizing factors tending to zero, may be treated using the present methods.

2. Framework and basic lemmas.

The basic dependence condition to be used throughout is an obvious continuous time version of a weak mixing condition used in discrete time (e.g. [4]). Specifically let \{u_T\} be a family of constants and write \(B^T_{s,t} = \sigma((\mathbb{F}_v : u_T), s \leq v \leq t) \) where \(\sigma(\cdot) \) denotes the generated \(\sigma \)-field. Write also

\[
\alpha_T, \ell = \sup(|P(A\cap B) - P(A)P(B)| : A \in B^T_{0,s}, B \in B^T_{s+\ell,t}, s \geq 0, \ell + s \leq T).
\]

Then we say that the stationary process \(\mathbb{F}_t \) satisfies the condition \(A(u_T) \) if

\[
(2.1) \quad \alpha_T, \ell_T \rightarrow 0 \text{ as } T \rightarrow \infty, \text{ for some } \ell_T = o(T).
\]

The condition \(A \) is often applied through the following lemma essentially given in [11].
Lemma 2.1 Let $\beta_T, \ell = \sup \{ |s'YZ - s'YZ| : Y, Z \in B^T_{0,s}, B^T_{s+\ell,T} \}$ measurable respectively, $|Y|, |Z| \leq 1$, $s, \ell > 0$, $s+\ell \leq T$. Then $\alpha_T, \ell \leq \beta_T, \ell \leq 4\alpha_T, \ell$ so that $\Delta(u_T)$ holds iff $\beta_T, \ell_T \to 0$ for some $\ell_T = o(T)$.

The following result show how the Δ condition implies approximate independence of the Laplace transform of ζ_T in appropriately chosen disjoint intervals. Results of this type have been used in various forms (cf. [7]) and the present statement corresponds closely to the general discrete time version by Hsing ([4]). A proof will be given since a slightly more general statement is given than is covered by a direct transposition of that in [4], and some notational simplification is possible in the continuous time context. A corresponding result for the maxima will be obtained as a corollary. Here and throughout $m(\cdot)$ will denote Lebesgue measure. Use will be made at various points of the inequality

$$|\Pi y_1 - \Pi x_1| \leq \sum |y_i - x_i|, \quad 0 < x_i, y_i \leq 1. \tag{2.2}$$

Lemma 2.2 Let $\Delta(u_T)$ hold and $\{k_T\}$ be integers such that

$$k_T \ell_T \to 0, \quad k_T \alpha_T, \ell_T \to 0 \tag{2.3}$$

where ℓ_T is as in (2.1). Let $J_1 = (J_{1,i}, 1 \leq i \leq k_T$, be disjoint subintervals of (0.1) with $J(=J(T)) = \bigcup_{i=1}^{k_T} J_i$, and a_T, ℓ_T positive constants. Let f be a bounded non-negative measurable function such that $f(x) \geq \alpha > 0$ on a non-degenerate interval $I \subset (0.1]$ and suppose that $\sum (I \cap J)/(k_T \ell_T) \to \infty$. Then

$$\tau_T = \ell \exp(-a_T \sum_{J_i} f) \zeta_T) - \Pi \ell \exp(-a_T \sum_{J_i} f) \zeta_T) \to 0 \quad \text{as } T \to \infty. \tag{2.4}$$
Proof: It is sufficient to show that any convergent subsequence \(\{ \gamma_T : T \in S \} \) of \(\{ \gamma_T \} \) has limit zero. Write
\[
G \left(= G_T \right) = \{ 1, 1 \leq i \leq k_T : m(J_i) > e_{\gamma_T} / T \}
\]
\[
H \left(= H_T \right) = \{ 1, 1 \leq i \leq k_T : m(J_i) \leq e_{\gamma_T} / T \}
\]

The intervals \(J_i \) may be open or closed at either endpoint, but for definiteness we shall regard them as semiclosed and write \(J_i = (\alpha_i, \beta_i - e_{\gamma_T} / T] \). For \(1 \in G \) define \(I_1 = (\alpha_1, \beta_1 - e_{\gamma_T} / T] \), \(I_0^T = (0, e_{\gamma_T} / T] \). Note that by stationarity \(\zeta_T^T(I_1^T) \) has the same distribution as \(\zeta_T^T(I_0^T) \) for each \(1 \in G \).

Let \(A \) be an upper bound for \(f \) and suppose first that

(a) \(k_T \exp(-a_T A \zeta_T^T(I_0^T)) \to 1 \) as \(T \to \infty \) through \(S \).

Taking limits through \(S \), and using stationarity and (2.2),

\[
(2.5) \quad \left| \delta \exp(-a_T \sum_{1 \in G} \int_J^T f d\zeta_T) - \delta \exp(-a_T \sum_{1 \in G} \int_{J_1}^T f d\zeta_T) \right| \leq \sum_{j \in H} \delta(1 - \exp(-a_T \int_{J_1}^T f d\zeta_T)) \leq k_T \delta(1 - \exp(-a_T A \zeta_T^T(I_0^T)))
\]

This expression tends to zero by taking logs in assumption (a).

It follows in a very similar way that

\[
(2.6) \quad \delta \exp(-a_T \sum_{1 \in G} \int_{J_1}^T f d\zeta_T) - \delta \exp(-a_T \sum_{1 \in G} \int_{J_1}^T f d\zeta_T) \to 0.
\]

Also by an obvious induction from Lemma 2.1,

\[
(2.7) \quad \left| \delta \exp(-a_T \sum_{1 \in G} \int_{J_1}^T f d\zeta_T) - \delta \exp(-a_T \sum_{1 \in G} \int_{J_1}^T f d\zeta_T) \right| \leq 4k_T a_{\gamma_T} \epsilon_T \to 0
\]
and by (2.2)

\begin{align}
\sum_{i \in G} \varepsilon (1 - \exp(-a_T \int_{I_i} f \, d\xi_T)) & \rightarrow 0
\end{align}

exactly as in (2.5). Finally

\begin{align}
\sum_{i=1}^{k_T} \varepsilon (1 - \exp(-a_T \int_{I_i} f \, d\xi_T)) & \rightarrow 0
\end{align}

which again tends to zero as in (2.5).

It thus follows by combining (2.5)-(2.9) that if (a) holds then \(\gamma_T \rightarrow 0 \) as \(T \rightarrow \infty \) through \(S \).

(b) If (a) does not hold there is a subsequence \(S' \) of \(S \) such that

\[\varepsilon^T \exp(-a_T \Lambda_{\xi_T}(I_i^0)) \rightarrow c < 1 \text{ as } T \rightarrow \infty \text{ through } S'. \]

We have \(f(x) \geq \alpha > 0 \) for \(x \in I \). Choose \(\theta_T \) such that \(\theta_T/k_T \rightarrow \infty, \theta_T \alpha_T, \ell_T \rightarrow 0, \text{ and write (with } \lfloor \cdot \rfloor \text{ denoting integer part) } \]

\[\theta_{T, i} = \lfloor \theta_T m(I_i \cap I)/m(I \cap I) \rfloor \]

Clearly, since \(k_T = o(\theta_T), \forall \theta_{T, i} \sim \theta_T \) and \(\theta_{T, i}(2\ell_T)/(Tm(I_i \cap I)) = 2\ell_T \theta_T/(Tm(I \cap J)) \rightarrow 0 \) uniformly for all \(J_i \) intersecting \(I \). Hence \(\theta_{T, i} \geq 0 \) subintervals \(E_{i,j} \) of \((J_i \cap I) \) may be chosen of length \(\ell_T/T \), and mutually separated by at least \(\ell_T/T \), giving

\begin{align*}
\varepsilon \exp(-a_T \int f d\xi_T) & \leq \varepsilon \exp(-a_T \sum_{i,j} \int_{E_{i,j}} f d\xi_T) \\
& \leq \varepsilon \exp(-a_T \alpha_{\xi_T}(I_0^x)) + 4\theta_T \alpha_T, \ell_T
\end{align*}

which, using Hölder's Inequality, (noting \(\alpha/A \leq 1 \)) does not exceed
\[\theta \frac{\alpha/\lambda}{\epsilon} \exp(-a_\frac{\alpha/\lambda}{\epsilon} \zeta_T(I_X^1)) + o(1) = \{ \epsilon \exp(-a_\frac{\alpha/\lambda}{\epsilon} \zeta_T(I_X^1)) \} \theta \frac{\alpha/\lambda}{\epsilon} \rightarrow 0 \]

since the inside term tends to \(c < 1 \) and \(\theta \frac{\alpha/\lambda}{\epsilon} \rightarrow \infty \). Hence the first term in \(\gamma_T \) tends to zero. Similarly the second (product) terms does not exceed \(\epsilon \exp(-a_\frac{\alpha/\lambda}{\epsilon} \zeta_T(I_X^1)) + o(1) \) which tends to zero as above so that \(\gamma_T \rightarrow 0 \) as \(T \rightarrow \infty \) through \(S' \) and hence through \(S \), as required. \(\square \)

Remark: The result still holds if the function \(f \) changes with \(T \), i.e. \(f=f_T \), for example, provided each \(f_T \) is bounded above and the same lower bound constant \(\alpha \) applies to all \(f_T \) (though the interval \(I \) can depend on \(T \)).

Lemma 2.2 is often applied in the following form

Lemma 2.3 Let the assumptions of Lemma 2.2 hold and suppose \(J = (\alpha, \beta_T) \) where \(\beta_T \uparrow \beta \) (0\(\leq \alpha \leq \beta \leq 1 \)). Suppose also that \(I \cap (\alpha, \beta) \neq \emptyset \) (which guarantees also the last assumption of Lemma 2.2). Then

\[\epsilon \exp(-a_\frac{\alpha/\lambda}{\epsilon} \int_1 \zeta_T) = \epsilon \exp(-a_\frac{\alpha/\lambda}{\epsilon} \int_1 \zeta_T) \rightarrow 0 \text{ as } T \rightarrow \infty \]

Proof: By Lemma 2.2 it is sufficient to show that

\[\gamma_T = \epsilon \exp(-a_\int \{ \frac{\alpha/\lambda}{\epsilon} \zeta_T \}) - \epsilon \exp(-a_\int \frac{\alpha/\lambda}{\epsilon} \zeta_T) \rightarrow 0 \]

as \(T \rightarrow \infty \) through a sequence \(S \) such that \(\gamma_T \) has a limit as \(T \rightarrow \infty \) through \(S \).

Since \(0 \leq \gamma_T \leq 1 - \exp(-a_\frac{\alpha/\lambda}{\epsilon} \zeta_T(J^X)) \) by familiar arguments, where \(J^X = (\beta_T, \beta) \) the result follows if \(\epsilon \exp(-a_\frac{\alpha/\lambda}{\epsilon} \zeta_T(J^X)) \rightarrow 1 \) as \(T \rightarrow \infty \) through \(S \). Otherwise there is a subsequence \(S' \subset S \) such that as \(T \rightarrow \infty \) through \(S' \).

\[(2.10) \quad \epsilon \exp(-a_\frac{\alpha/\lambda}{\epsilon} \zeta_T(J^X)) \rightarrow c < 1 \]
Now since \(\text{m}(I \cap J) \rightarrow \text{m}(I \cap (\alpha, \beta)) > 0 \), \(\text{m}(J) \rightarrow 0 \), \(\ell_T \rightarrow 0 \) it follows that
\[\text{m}(I \cap J)/(\ell_T/\tau + \text{m}(J)) \rightarrow \infty \] and hence we can find in \(I \cap J \), \(\theta_T \rightarrow \infty \) copies \(E_1 \ldots E_{\theta_T} \) of \(J \), mutually separated by at least \(\ell_T/\tau \). Hence

\[
\ell \exp(-a_T \int_J f \xi d\xi_T) \leq \ell \exp(-a_T \alpha_T(I \cap J)) \\
\leq \ell \exp(-a_T \alpha_T(J^\tau)) + 4\alpha_T/\theta_T, \ell_T \\
a\theta_T/\Lambda \\
\leq \ell \exp(-a_T \alpha_T(J^\tau)) + o(1)
\]

(choosing \(\theta_T \) so that \(\theta_T \alpha_T, \ell_T \rightarrow 0 \)). But this last expression tends to zero by
(2.10) since \(\theta_T \rightarrow \infty \). Hence the first term of \(\gamma_T^\tau \) tends to zero as \(T \rightarrow \infty \) through \(S' \). But \(\gamma_T^\tau \) is dominated by this term and hence itself tends to zero, completing the proof.

The following result showing approximate independence of maxima in disjoint intervals follows simply. In this and throughout, \(M(E) \) will denote
\(\sup(f_t: t \in E) \) for sets \(E \subseteq (0,T] \) (so that \(M((0,T]) = M(T) \) as previously defined). Note the slight asymmetry of notation in that \(M(E) \) is defined for subsets of \((0,T] \) whereas \(\xi_T(B) \) is defined for subsets \(B \subseteq (0,1] \), and the equivalence \(\{\xi_T(I) = 0\} = \{M(T, I) \leq u_T\} \) for an interval \(I \subseteq (0,1] \).

Lemma 2.4 Let \(\Lambda(u_T) \) hold and \(\{k_T\} \) be integers satisfying (2.3). Let \(J_1 \ldots J_k \)
\((=J_1, \ldots, k_T \leq 1 \leq k_T, \) be disjoint subintervals of \([0,1], J_1 (J) = J(T)) = \cup J_1. \) Then

\[
P(M(T,J) \leq u_T) = \prod_{1}^{k_T} P(M(T,J_1) \leq u_T) \rightarrow 0 \text{ as } T \rightarrow \infty
\]

Proof: Putting \(f = 1 \) in Lemma 2.2 gives
\[\xi_t = \exp(-a_T(0.1)) - \prod_{i=1}^k \exp(-a_T(J_i)) \to 0. \]

Now write \(C_T \) for the d.f. of \(\zeta_T((0,1]) \), \(C_{T,1} \) for that of \(\zeta_T(J_1) \). Clearly constants \(b_T > 0 \) may be chosen so that

\[
\begin{align*}
 C_T(b_T) - C_T(0) & \to 0, \\
 \sum_{i=1}^k (C_{T,1}(b_T) - C_{T,1}(0)) & \to 0 \text{ as } T \to \infty.
\end{align*}
\]

Further choose \(a_T \) such that

\[
0 \leq \xi_T((0,1]) - \prod_{i=1}^k \exp(-a_T(J_i)) = 0 \]

which tends to zero. The same inequality holds for \(\zeta_T(J_1) \) with \(C_{T,1} \) replacing \(C_T \), and thus by (2.2),

\[
\begin{align*}
 k_T & \prod_{i=1}^k \exp(-a_T(J_i)) - \prod_{i=1}^k \exp(-a_T(J_i)) = 0 \leq 0 \sum_{i=1}^k (C_{T,1}(b_T) - C_{T,1}(0)) + k_T \exp(-a_T b_T)
\end{align*}
\]

which also tends to zero by choice of \(a_T \) and \(b_T \). The result thus follows by identifying \(\{\zeta_T(B) = 0\} \) with \(M((T,B) \leq u_T) \) for \(B = J, J_1 \). \(\square \)

The following analog of Lemma 2.3 follows simply.

Lemma 2.5 Let the assumptions of Lemma 2.3 hold and \(J = U J_1 \subseteq (\alpha, \beta) \), \(0 < \alpha < \beta < 1 \), with \(m(J) = \beta - \alpha \). Then

\[
\begin{align*}
 k_T & \prod_{i=1}^k \exp(-a_T(J_i)) - \prod_{i=1}^k \exp(-a_T(J_i)) \to 0 \text{ as } T \to \infty.
\end{align*}
\]

Proof: This follows from Lemma 2.3, or may be similarly proved. First note that the \(J_1 \) may be replaced by abutting intervals of the same length without
affecting either term (using stationarity) so that \(J \) becomes an interval \((\alpha, \beta_T)\) with \(\beta_T \rightarrow \beta \).

3. Convergence of \(\xi_T \)

It is straightforward to characterize the class of possible limits in distribution for \(a_T \xi_T \) where \(a_T \xi_T \) is any family of positive constants. Specifically if \(a_T \xi_T \) converges in distribution to a random measure \(\xi \), then \(\xi \) may be shown to be stationary, to have no fixed atoms and to have independent increments and hence (along the same lines as Lemma 3.1 of [4]) to have Laplace Transform \(L_\xi \) satisfying

\[
(3.1) \quad -\log L_\xi(f) = \alpha \int_0^1 f dx + \int_0^1 (1-e^{-yf(x)}) dv(y) dx
\]

where \(\alpha > 0 \) and the (Lévy) measure \(v \) on \((0, \infty)\) satisfies

\[
(3.2) \quad \int_0^\infty (1-e^{-y}) dv(y) < \infty.
\]

In fact this result may be strengthened to replace weak convergence of the random measures \(a_T \xi_T \) by just weak convergence of the random variables \(a_T \xi_T(I) \) for one fixed subinterval of \((0,1] \). Further an elementary proof may be given as will now be indicated.

Theorem 3.1 Let \(\Delta(u_T) \) hold for the stationary process \(\{\xi_T\} \), assumed to have continuous sample paths and write \(\xi_T \) for the exceedance random measure corresponding to \(\{u_T\} \). Suppose that for some non empty subinterval \(I \subset (0,1] \) and a family \(\{a_T > 0\} \) of constants, that \(a_T \xi_T(I) \) converges in distribution to a r.v. \(\xi_0 \). Then \(a_T \xi_T \rightarrow \xi \) where \(\xi \) is a random measure with Laplace Transform given by (3.1).
Proof: It will be notationally convenient to take \(I = (0, 1] \). With the notation of \(\Lambda(u_T) \), choose integers \(k_T \to \infty \), satisfying (2.3). If \(\zeta_0 \) has Laplace Transform \(\psi(s) = \exp(-s\zeta_0) \) we have \(\psi(s) = \lim_{T \to \infty} \exp(-s\zeta_T(I)) \) and it follows from Lemma 2.2 with \(f(x) \equiv s \), and \(J_1 = ((1-1)/k_T, 1/k_T] \), that \(\exp(-s\zeta_T(J_1)) \to \psi(s) \).

Again by Lemma 2.3 by obvious calculations for any interval \(I = (\alpha, \beta] \subset (0, 1] \) it follows that \(\exp(-s\zeta_T(I)) = \lim_{T \to \infty} \exp(-s\zeta_T(J_1))(1+o(1)) \) where \(n_T = [k_T(\beta-\alpha)] \) from which it is simply shown that

\[\exp(-s\zeta_T(I)) \to \psi(s)^{m(I)} \text{ as } T \to \infty. \]

In particular if \(I = (0, 1/k] \) for a fixed integer \(k \) it follows that

\[\psi(s)^{1/k} = \lim_{T \to \infty} \exp(-s\zeta_T(I)) \text{ is a Laplace Transform so that since } \]

\[\psi(s) = ((\psi(s))^{1/k})^k, \zeta_0 \text{ is indefinitely divisible and hence} \]

\begin{equation}
(3.3) \quad -\log \psi(s) = \alpha + \int_0^\infty (1-e^{-sy})dv(y)
\end{equation}

for some constant \(\alpha \), and measure \(v \) on \((0, \infty)\) satisfying (3.2).

A further application of Lemma 2.2 shows that if \(I_1, \ldots, I_k \) are disjoint semiclosed subintervals of \((0, 1]\) (and \(f(x) = s_j \) on \(I_j \), then \(\zeta_T(I_1) \ldots \zeta_T(I_k) \) have the joint Laplace Transform

\[\exp(-\sum_{i=1}^k s_i \zeta_T(I_i)) \to \prod_{i=1}^k \psi(s_i)^{m(I_i)} \]

so that

\[\exp(-s\zeta_T(I_1) \ldots \zeta_T(I_k)) \to m(\zeta_1, \ldots, \zeta_k) \]

where \(\zeta_i \) are independent and \(-\log \exp(-s\zeta_i) = m(I_i)[\alpha + \int_0^\infty (1-e^{-sy})dv(y)] \) may thus be recognized as having the distribution of \((\zeta(I_1), \ldots, \zeta(I_k)) \) where \(\zeta \) is a random measure with Laplace Transform (3.1) so that \(\zeta_T \to \zeta \) (e.g. [6], Theorem...
Corollary 3.2 If the convergence of \(a_T\xi_T(I) \rightarrow \xi_0 \) in the above statement is replaced by convergence in distribution of \(a_T\xi_T \) to a random measure \(\xi \), then \(\xi \) has Laplace Transform given by (3.1).

Proof: The stationarity of \(\xi_T \) may be used to show that \(\xi \) has no fixed atoms and hence \(\xi(\{0\}) = \xi(\{1\}) = 0 \) a.s. giving \(\xi_T((0,1]) \rightarrow \xi((0,1]) \) so that the theorem applies.

A random measure \(\xi \) satisfying (3.1) also has the "cluster" representation

\[\xi(\cdot) = \alpha m(\cdot) + \int_{x=0}^{\infty} \int_{y=0}^{\infty} y\delta_x(\cdot) d\eta(x,y) \]

where \(\delta_x \) denotes unit mass at \(x \) and \(\eta \) is a Poisson Process on \((0,1) \times (0,\infty)\) with intensity \(m \times \nu \). Thus \(\xi \) has a uniform mass on \((0,1]\) together with a sequence of point masses \(y_i \) at points \(x_i \) where \((x_i,y_i) \) are the points of \(\eta \). In general there may be infinitely many of the atoms \(x_i \) in \((0,1]\) (though their total mass is finite) so that this component is then an atomic random measure which is not a point process. However if \(\nu \) is finite the \(x_i \) do form a point process - indeed a stationary Poisson Process on \((0,1]\) with intensity parameter \(\nu(0,\infty) \). In any case the points \(x_i \) for which \(y_i > a \) form a Poisson Process with intensity parameter \(\nu(a,\infty) \), for any \(a > 0 \). It is also readily seen that \(P(\xi(0,1) = 0) > 0 \) if and only if \(\alpha = 0 \) and \(\nu(0,\infty) < \infty \) so that if \(\alpha \) or \(\nu(0,\infty) = \infty \) the interval \((0,1]\) (and in fact every interval) contains \(\xi \)-mass with probability one.

In the case when \(\alpha = 0 \) and \(\nu(0,\infty) < \infty \), \(\nu(\cdot) = \nu(\cdot)/\nu(0,\infty) \) is a probability distribution on \((0,\infty)\) with Laplace Transform \(\phi(s) = \int_0^{\infty} e^{-sx} d\nu(x) \). Then from (3.1), writing \(\nu(0,\infty) = \nu \).
which shows that ξ is a Compound Poisson Process (with not necessarily integer valued multiplicities) based on a Poisson Process with rate v, and multiplicity distribution π.

As might be anticipated, the case where every interval contains ξ-mass with probability one arises when the level u_T is low in comparison with the values of the process i.e. when $P(M(T) \leq u_T)$ is small. Specifically the following result holds.

Theorem 3.3 Suppose that the conditions of Theorem 3.1 hold and that $P(M(T) \leq u_T) \rightarrow 0$ as $T \rightarrow \infty$. Then $\alpha = 0$ and $v(0,\infty) < \infty$ in (3.1).

Proof: If $P(M(T) \leq u_T) \rightarrow 0$, $\limsup P(M(T) \leq u_T) > 0$ so that since

$$\lim_{a_T \xi_T(0,1) \rightarrow 0} \alpha = 0,$$

$$P(\xi_0 = 0) \geq \limsup P(a_T \xi_T(0,1) = 0) = \limsup P(M(T) \leq u_T) > 0.$$

But from (3.3), $P(\xi_0 = 0) = \limsup \exp(-s\xi_0) = 0$ if either $\alpha > 0$ or $v(0,\infty) = \infty$, so $s \rightarrow \infty$ that $\alpha = 0$ and $v(0,\infty) < \infty$ both follow, as required. \(\square \)

It will be convenient to refer to the set of points (if any) in an interval

$$J_1 = ((i-1)/k_T, i/k_T]$$

for which $E_T > u_T$ as an excursion of E_T above u_T. An excursion may consist of disconnected segments within one J_1, and points in successive intervals at which $E_T > u_T$ are regarded as belonging to different excursions. The conditional distributions π_T of $a_T \xi_T(J_1)$ given $\xi_T(J_1) > 0$ will be termed excursion length distributions. It will be seen below that these distributions (on $(0,\infty)$) converge weakly to a probability distribution π on
[0, \infty) under the conditions of Theorem 3.1, though the limit may have mass at zero. A more definitive result is possible if it is assumed that the distribution \(\pi_T \) are tight at zero in the sense that \(\lim \lim \inf \pi_T((0,\varepsilon)) = 0 \) as \(\varepsilon \to 0 \) and \(T \to \infty \).

Theorem 3.4 Let the conditions of Theorem 3.1 hold and suppose \(P(M(T) \leq u_T) \to 0 \). Then the representation (3.5) holds, and if \(P(M(T) \leq u_T) \to e^{-v_0} 0 \leq v_0 \leq \infty \) as \(T \to \infty \) through some sequence \(S \), then \(v_0 \geq v \) and

\[
(3.6) \quad \pi_T \to (1-v/v_0)\delta_0 + (v/v_0)\pi
\]

as \(T \to \infty \) through \(S \), \(\delta_0 \) being unit mass at zero. In particular if \(P(M(T) \leq u_T) \) has a limit \(e^{-v_0} \) as \(T \to \infty \) then (3.6) holds as \(T \to \infty \).

Proof: By Theorem 3.3 it follows that \(\alpha = 0 \) and \(v(0,\infty) < \infty \), giving the representation (3.5). Writing \(J_1 = (0,1/k_T] \) again and \(r_T = T/k_T \), we have by Lemma 2.2,

\[
\xi \exp(-s\pi_T((0,1])) = \xi \exp(-s\pi_T(J_1)) + o(1)
\]

\[
= [P(M(r_T) \leq u_T) + P(M(r_T) > u_T)] \int_0^\infty e^{-sx}d\pi_T(x)] k_T + o(1)
\]

\[
= [1 - P(M(r_T) > u_T)] \int_0^\infty (1-e^{-sx})d\pi_T(x)] k_T + o(1).
\]

so that

\[
k_T P(M(T) \leq u_T) \int_0^\infty (1-e^{-sx})d\pi_T(x) \to -\log e^{-s\xi((0,1])}
\]

\[
= v \int_0^\infty (1-e^{-sy})d\pi(y)
\]

by (3.5). If \(P(M(T) \leq u_T) \to e^{-v_0} 0 \leq v_0 \leq \infty \) as \(T \to \infty \)

through a sequence \(S \), then Lemma 2.4 shows that \(k_T P(M(r_T) > u_T) \to v_0 (\leq \infty) \) and hence
\[
\int_0^\infty (1-e^{-sx})dw_T(x) \rightarrow (v/v_0) \int_0^\infty (1-e^{-sy})dw(y) \quad (\geq 0).
\]

That is, as \(T \rightarrow \infty \) through \(S \),

\[
\int_0^\infty e^{-sx}dw_T(x) \rightarrow (1-v/v_0) + (v/v_0) \int_0^\infty e^{-sy}dw(y)
\]

from which (3.6) follows by the continuity theorem for Laplace Transforms.

Finally by (3.6),

\[
1 = \liminf \pi_T(0,\infty) \geq \{(1-v/v_0)\delta_0 + (v/v_0)p\}(0,\infty) = v/v_0
\]

so that \(v \leq v_0 \) as required.

Theorem 3.5. Suppose that the conditions of Theorem 3.1 hold and that the family \(\{\pi_T\} \) of excursion distributions is tight as zero in the sense defined above. Assume that \(P(M(T) \leq u_T) \rightarrow 0 \) as \(T \rightarrow \infty \). Then the representation (3.5) holds. \(P(M(T) \leq u_T) \rightarrow e^{-v} \) and \(\pi_T \rightarrow \pi \).

Proof: The representation (3.5) holds by Theorem 3.4. Let \(S \) be a sequence through which \(P(M(T) \leq u_T) \) converges to some limit \(e^{-v_0} \). Then from (3.6) for \(\varepsilon > 0 \),

\[
\liminf_{T \in S} \pi_T([0,\varepsilon)) \geq \frac{v}{v_0} \pi([0,\varepsilon)) + 1 - \frac{v}{v_0} \geq 0.
\]

But by tightness at zero the left hand side has zero limit as \(\varepsilon \rightarrow 0 \). This rules out the case \(v_0 = \infty \) and further shows that \(v_0 = v \). Thus \(P(M(T) \leq u_T) \) has the limit \(e^{-v} \) as \(T \rightarrow \infty \) through any sequence \(S \) for which there is convergence so that \(P(M(T) \leq u_T) \rightarrow e^{-v} \) as \(T \rightarrow \infty \). Hence also (3.6) gives \(\pi_T \rightarrow \pi \) as \(T \rightarrow \infty \), completing the proof.

The final result of this section gives sufficient conditions for
Theorem 3.6 Let \((u_T)\) be a family of constants such that \(P(M(T) \leq u_T) \rightarrow e^{-v}\) for some \(0 \leq v < \infty\) and such that \(\Delta(u_T)\) holds. Suppose that for some family \((a_T)\) of positive constants, the excursion length distributions \(\pi_T\) converge weakly to a probability distribution \(\nu\) on \((0, \infty)\). Then \(a_T \zeta_T \rightarrow \zeta\), where \(\zeta\) is a r.m. with Laplace Transform satisfying (3.5).

Proof: It follows as in the proof of Theorem 3.4 that

\[
\exp(-sa_T(0.1)) = \left(1 - P(M(r_T) > u_T) \int_0^1 (1 - e^{-sx})d\pi_T(x)\right) k_T \rightarrow o(1)
\]

which converges to \(\exp(-\int_0^1 (1 - e^{-sx})d\nu(x))\) as \(T \rightarrow \infty\) since \(P(M(r_T) > u_T) \sim v/k_T\) by Lemma 2.4 and \(\pi_T \rightarrow \nu\). This shows that \(a_T \zeta_T(0.1)\) converges in distribution so that the conditions of Theorem 3.1 hold. Since the assumed weak convergence of \(\pi_T\) clearly implies its "tightness at zero" the conditions of Theorem 3.5 thus hold, so that (3.5) holds with the given \(v, \nu\).

4. Families of levels.

Suppose that for each \(\tau > 0\) there exists \(u_T(\tau)\) such that

\[
P(M(T) \leq u_T(\tau)) \rightarrow e^{-\tau}
\]

This will be the case (cf. [3]) if there are normalizing functions (not necessarily linear) \(v_T(x)\) for the maximum such that \(P(M(T) \leq v_T(x)) \rightarrow G(x)\) where \(G\) is a continuous d.f. (For \(\forall \tau > 0\), choose \(x\) such that \(G(x) = e^{-\tau}\) and \(u_T(\tau) = v_T(x)\)). If \(\Delta(u_T)\) holds for each \(\tau > 0\) then it may be shown (cf. [3]) from Lemma 2.2 that \(P(M(T) \leq u_T(\tau)) \rightarrow e^{-\tau}\) so that (4.1) still holds if \(u_T(\tau)\) is replaced...
by \(u_{T/\tau}(1) \). That is \(u_T(\tau) \) may be replaced by a new version satisfying (4.1) and such that

\[u_{\sigma T}(\sigma \tau) = u_T(\tau) \]

for each \(\sigma > 0 \). For simplicity we assume in what follows that \(u_T(\tau) \) satisfies (4.2) as well as (4.1). The exceedance random measures for the levels \(u_T(\tau) \) will be denoted by \(\zeta_T^{(\tau)} \). The first result shows that convergence in distribution of (a normalized version of) \(\zeta_T^{(\tau)} \) for some \(\tau > 0 \) implies such convergence for all \(\tau > 0 \).

Theorem 4.1 Suppose \(A(u_T(\tau)) \) holds for each \(\tau > 0 \) where levels \(u_T(\tau) \) are defined as above satisfying (4.1) and (4.2). Suppose that for some \(\tau > 0 \) and some constants \(a_T > 0, a_T \zeta_T^{(\tau)} \) converges in distribution to a random measure \(\zeta^{(\tau)} \).

Then

\[a_T^{(\tau)} \zeta_T^{(\tau)} \xrightarrow{d} \zeta^{(\tau)} \]

where \(a_T^{(\tau)} = a_{T\tau_1}/\tau \) and \(\zeta^{(\tau)} \) has Laplace Transform given by

\[-\log \mathbb{E} e^{-\int_{-\infty}^{\tau} \phi(x) dx} = \tau \int_0^1 (1 - \phi(f(x))) dx \]

in which \(\phi(s) = \int_0^\infty e^{-sx} d\nu(x) \) is the Laplace Transform of a distribution \(\nu \) on \((0,\infty)\) which is independent of \(\tau \).

Proof: Fix \(\tau > 0 \), choose \(\varepsilon > 0 \) such that \(\varepsilon \tau / \tau_1 < 1 \) and write \(I = (0, \varepsilon) \). Then

\[a_T^{(\tau)} \zeta_T^{(\tau)}(I) = a_T^{(\tau)} \int_0^{\tau \varepsilon \tau_1} 1 \{ \xi_t > u_T(\tau) \} dt \]

\[= a_T \int_0^{(T \tau_1/\tau) \tau \varepsilon / \tau_1} 1 \{ \xi_t > u_T \tau_1/\tau(\tau_1) \} dt \]
Hence the convergence of \(a_T^{(\tau)} \) to a r.m. \(\xi^{(\tau)} \) with the desired Laplace Transform follows from Theorem 3.1. The fact that \(\pi \) does not depend on \(\tau \) follows since with the above notation,

\[
\xi \exp(-sa_T^{(\tau)}(\xi)) = \xi \exp(-s\xi^{(\tau)}(\xi)) = \exp(-\tau_1(\xi)(1 - \phi(s))) = \exp(-\tau m(I)(1 - \phi(s)))
\]

so that \(\phi(s) \) (and hence \(\pi \)) is the same for all values of \(\tau \). \(\square \)

If \(\tau_1 < \tau_2 \), \(u_T(\tau_2) \) will typically be less than \(u_T(\tau_1) \) (and indeed may be assumed so if desired) giving \(\xi_T^{(\tau_1)}(B) \leq \xi_T^{(\tau_2)}(B) \) for Borel subsets \(B \) of (0,1].

so that \(\xi_T^{(\tau_1)} \) is a "thinned version" of \(\xi_T^{(\tau_2)} \). Thus one expects \(\xi_T^{(\tau_1)} \) to be a thinned version of \(\xi_T^{(\tau_2)} \). While the thinning process may be complicated it is readily seen that the probability that an event in \(\xi_T^{(\tau_1)} \) is totally eliminated in \(\xi_T^{(\tau_2)} \) with probability \(1 - \tau_1/\tau_2 \) and, if not eliminated, retains the same marginal multiplicity distribution (\(\pi \)) as for \(\xi_T^{(\tau_2)} \). A detailed discussion of these and "multilevel" cases is planned for [5].

5. "Regular" sample functions and stationary normal processes.

Suppose now that \(\xi_t \) is stationary with continuous sample functions and that the mean number \(\mu(u) \) of upcrossings (cf. [9, Chapter 7]) of \(u \) per unit time is finite for each \(u \). Suppose also that \(\Delta(u) \) holds where \(\{u_T\} \) is a family of levels such that \(T\mu(u_T) \to v \). Then it may be shown under natural further conditions (cf. the Condition C' of [9] Section 13.2) that \(P(M(T) \leq u_T) \to e^{-v} \).
(In the following it will be simply assumed that this limit holds.) Write \(\tilde{N}_T \) for the point process of upcrossings of \(u_T \) defined on the unit interval by writing \(\tilde{N}_T(B) \) to be the number of upcrossings of \(u_T \) by \(\xi_t \) for \(t \in T.B \), for each Borel subset of \((0,1] \). The following result is then readily proved.

Theorem 5.1 Suppose that \(\xi_t \) satisfies the above general conditions and

\[
P(M(T) \leq u_T) \to e^{-v}, \quad \text{where } T\mu(u_T) \to v.
\]

Then \(\tilde{N}_T \to N \), a Poisson Process on \((0,1] \) with intensity \(v \).

Proof: This follows simply by standard arguments from a theorem of Kallenberg ([6], Theorem 4.7).

This result and Theorem 3.5 suggest that one may regard the upcrossings asymptotically as forming the underlying Poisson Process in the Compound Poisson limit for the normalized exceedance r.m. \(a_T \xi_T \). A further natural question is whether the excursion length distribution \(\pi_T \) as defined prior to Theorem 3.4 is equivalent to the distribution of time from an upcrossing to the next downcrossing, after normalization. The affirmative answer to this question stated below is obtained from Prop. 4.5 of [8]. Specifically we write \(\tilde{\pi}_T \) for the conditional distribution of the time to the first downcrossing of \(u_T \) after \(t = 0 \), given an upcrossing occurred at \(t = 0 \) (in the Palm or "horizontal window" sense). \(\tilde{\pi}_T \) may be evaluated by

\[
\tilde{\pi}_T(x) = \mu_x(u_T)/\mu(u_T)
\]

where \(\mu_x(u) \) is the mean number of upcrossing of \(u \) per unit time such that the next downcrossing occurs within a further time \(x \).

If \(A(u_T) \) holds write \(\pi_T' \) for the conditional distribution of \(\zeta_T(J_1) \) given \(\zeta_T(J_1) > 0 \) and \(J_1 = (0,k_T^{-1}] \) with \(k_T \) satisfying (2.3). (Thus \(\pi_T'(x) \) is the
non-normalized excursion length distribution and \(\pi_T(x) = \pi'_T(a_T^{-1}x) \). Proposition 4.5 of [8] then gives

Theorem 5.2 Let \(A(u_T) \) hold where \(T\mu(u_T) \to v \) and \(P(M(T) \leq u_T) \to e^{-u} \) for some \(v \geq 0 \), and \(\tilde{\pi}_T, \pi'_T \) be defined as above. Then \(\tilde{\pi}_T(x) \to \pi'_T(x) \) uniformly in \(x \) as \(T \to \infty \).

It thus follows from this result that \(\tilde{\pi}_T(a_T^{-1}x) \) may be used to replace \(\pi_T(x) \) to give the multiplicity distribution \(\pi \) in the Compound Poisson limit (e.g. Theorem 3.6).

In these results we see that the underlying Poisson event for the limiting Compound Poisson process for \(a_T \xi_T \) may be identified with high level upcrossings and the event multiplicities with lengths of excursions above the level following upcrossings. A closer identification may be obtained by showing that the point process of upcrossings "marked" with the immediately following excursion lengths, has the same compound Poisson limit as does the exceedance r.m., but the details of this will not be pursued here.

As a specific case consider a stationary normal process \(\xi_{t} \) with zero mean, unit variance and covariance function \(r(\tau) \) which is twice differentiable at \(\tau = 0 \), \(-r''(0) = 1\). Then Rice's Formula gives the upcrossing intensity \(\mu(u) = (2\pi)^{-1}e^{-u^2/2} \). It is known ([2], Section 12.5) that if \(\theta_T = (\mu(u_T))^{-1}P(\xi(0) > u_T) \) where \(T\mu(u_T) \to v \) (hence \(\theta_T \approx (\pi/\log T)^{1/2} \)) then

\[
\tilde{\pi}_T(\theta_T x) \to 1 - \exp(-\frac{\pi}{4}x^2) \text{ as } T \to \infty
\]

A convenient non-degenerate limit for \(\pi_T \) is thus obtained by taking

\(a_T = \sqrt{\theta_T} (\log T)^{1/2} \) so that \(\tilde{\pi}_T(a_T^{-1}x) \to 1 - e^{-x^2/4} \). The condition \(A(u_T) \) certainly holds under reasonable conditions (e.g. strong mixing and it seems...
likely to hold even under the weaker condition \(r(t) \log t \to 0 \) as \(t \to \infty \), though we have not attempted to verify this). Hence for such processes the limiting Compound Poisson Process for \(a_T \xi_T \) has underlying Poisson intensity \(\nu = \lim T \mu(u_T) \) and multiplicity distribution function \(1 - e^{-x^2/4} \).

Finally we note that similar results will apply under appropriately modified mixing conditions to other functionals associated with high level exceedances, or excursions into other "rare sets". Indeed a discussion could be carried out as a study of a class of random measures on the real line without reference to a real valued process \(\xi_t \) at all. Here we prefer to use the more specific framework within the context of extremal theory.

Acknowledgments

This research was initiated during a visit to the Catholic University of Leuven and it is a pleasure to record my gratitude to the University and Professor Jozef Teugels for this hospitality. I am also very grateful to Professor Tailen Hsing for many stimulating conversations on this and related subjects.
References

DTC
6-88
FILMED
DATE
88-6