In Situ Infrared Spectroelectrochemistry

By

Stanley Pons
C. Korzeniewski

Prepared for Publication in
Journal of Vacuum Science and Technology B

University of Utah
Department of Chemistry
Salt Lake City, Utah 84112

July 30, 1986

Reproduction in whole or in part is permitted for
any purpose of the United States Government.

This document has been approved for public release
and sale; its distribution is unlimited.
<table>
<thead>
<tr>
<th>REPORT DOCUMENTATION PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. REPORT NUMBER</td>
</tr>
<tr>
<td>2. GOVT ACCESSION NO.</td>
</tr>
<tr>
<td>3. RECIPIENT'S CATALOG NUMBER</td>
</tr>
<tr>
<td>4. TITLE (if subtitle)</td>
</tr>
<tr>
<td>5. TYPE OF REPORT & PERIOD COVERED</td>
</tr>
<tr>
<td>6. PERFORMING ORG. REPORT NUMBER</td>
</tr>
<tr>
<td>7. AUTHOR(S)</td>
</tr>
<tr>
<td>8. CONTRACT OR GRANT NUMBER(S)</td>
</tr>
</tbody>
</table>
| 9. PERFORMING ORGANIZATION NAME AND ADDRESS | University of Utah
Department of Chemistry
Salt Lake City, UT 84112 |
| 10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS | Task No.-NR 359-718 |
| 11. CONTROLLING OFFICE NAME AND ADDRESS | Office of Naval Research
Chemistry Program - Chemistry Code 472
Arlington, Virginia 22217 |
| 12. REPORT DATE | July 30, 1986 |
| 13. NUMBER OF PAGES | |
| 14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office) | |
| 15. SECURITY CLASS. (of this report) | Unclassified |
| 16. DISTRIBUTION STATEMENT (of this Report) | This document has been approved for public release and sale; its distribution unlimited. |
| 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) | |
| 18. SUPPLEMENTARY NOTES | |
| 19. KEYWORDS (Continue on reverse side if necessary and identify by block number) | IR spectroelectrochemistry, infrared, radiation. |
| 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) | The vibrational spectrum of molecules at or near an electrode surface can be obtained using subtractively normalized interfacial Fourier transform infrared spectroscopy (SNIFTIRS) and electromodulated infrared spectroscopy (EMIRS). |
01050358
Running Title: In situ infrared spectroelectrochemistry
In situ infrared spectroelectrochemistry

Carol Kortezienswki and Stanley Pons
Department of Chemistry, University of Utah, Salt Lake City, Utah 84112
(Received 15 February 1985; accepted 1 May 1985)

The vibrational spectrum of molecules at or near an electrode surface can be obtained using subtracively normalized interfacial Fourier transform infrared spectroscopy (SNIFTIRS) and electromodulated infrared spectroscopy (EMIRS). The large electric field existing at the electrode/solution interface is sufficient to induce dipole moments in highly polarizable molecules. The magnitude of the induced dipole moment is proportional to the electric field strength. As a result of this interaction some totally symmetric normal vibrations are made infrared active, and other bands appear in violation of the surface selection rule. This effect is known as the electrochemical Stark effect. Calculation of the expected absorption coefficients for the totally symmetric modes of adsorbed species gives values which are close to those observed experimentally. Experimental evidence of A_e mode activation of adsorbed pyrene is presented.

The electric field dependence of the integrated absorption coefficient is demonstrated in the study of acrylonitrile adsorbed on a gold electrode.

I. INTRODUCTION

In recent years several techniques have been developed for obtaining in situ the infrared spectra of species at the electrode-solution interface. The vibrational spectra is strongly dependent upon the molecular orientation with respect to the electrode surface. Electromagnetic radiation polarized perpendicular to the metal surface is polarized; it undergoes a phase shift close to 180° for all angles of incidence resulting in a standing wave which has little amplitude at the metal surface. The electric vectors of light polarized parallel to the plane of incidence p polarized add constructively upon reflection at glancing angles giving rise to a sizable component of electric vector normal to the surface. Therefore, only molecules which have a component of their dipole moment normal to the surface are able to interact with electromagnetic radiation.

Since intense electric fields exist near electrode surfaces, it is possible for the electric field to interact with highly polarizable molecules. This interaction may distort the diffuse electron cloud inducing a dipole in the direction of the electric field. If the polarization of the infrared radiation is in the same direction as the induced dipole, the integrated absorption coefficient for the transition is proportional to the square of the electric field strength. Therefore, the electric field at the electrode surface may allow infrared activity for vibrations normally forbidden by symmetry or the surface selection rule. This effect is known as the electrochemical Stark effect. Perturbation of vibrational spectra by strong electric fields was first predicted by Condon and has been demonstrated in several systems.

We report in this work a brief review and some new results that are related to the electrochemical Stark effect and vibrionic activation of symmetric vibrational modes. The techniques used are modulated potential specular reflectance types that have recently been introduced to electrochemical science.

II. EXPERIMENTAL

Experiments were performed in a three-electrode thin-layer cell (Fig. 1). The working electrode consisted of an 8-

![Diagram](image-url)
ratio. At small values of \(\delta R \) compared to \(R, \delta R / R \) corresponds to the absorbance \(A = \log_{10} \frac{I_0}{I} \).

This results in a small modulation of the reflectivity which is easily extracted by synchronous demodulation techniques. Details of both experimental techniques have been presented earlier.\(^{1,2}\)

For cleaning cells, triply distilled water was used for steaming previously acid-cleaned cells. Aqueous solutions were prepared from recrystallized salts and triply distilled water. Acetonitrile (Burdick and Jackson, Muskegon MI) was used as received. The water content was nominally <0.01%. Organic substrates were obtained from Aldrich and used as received. Electrochemistry was controlled by a potentiostat and waveform generator (JAS Instrument Systems, Inc.). Cells and electrodes were also obtained from JAS.

Typically, spectra were obtained at an electrode potential where the species of interest was either not adsorbed or weakly adsorbed; and at a potential where the species was present on the electrode surface or interfacial region to a large extent. The values of these potentials can be obtained usually by conventional double layer capacitance measurements which can give quantitative values of the surface coverage and information on the thickness of the electrical double layer near the interface.

III. RESULTS AND DISCUSSION

A. Calculation of \(B \)

In an experiment where the electric field \(E_0 \) is applied in a direction \(z \), the induced dipole moment becomes

\[
\mu_z = \sigma_{0z} E_0,
\]

where \(\sigma_{0z} \) is the polarizability tensor. The integrated absorption coefficient is given by

\[
B = \frac{2\mu_0^2 T}{e \hbar c}, \mu_\|, \mu_z \|^2,
\]

where \(B \) is the transition dipole matrix element, \(T \) is the number of absorbing molecules per unit area in the beam path, and all other constants have their usual meaning. In the presence of an external electric field the transition dipole matrix element can be expressed as the sum of the permanent dipole moment \(\mu_0 \) and the induced dipole moment \(\mu_z \) where

\[
\mu_z = \sigma_{0z} E_0.
\]

Thus,

\[
|\mu_z| = (\sigma_{0z}) \mu_0 + \mu_z \psi - \frac{1}{2}.
\]

If the expression for \(\mu_0 \) and \(\mu_z \) are expanded in a Taylor series and the high order terms are neglected the integrated absorption coefficient becomes:

\[
B = \frac{2\mu_0^2 T}{e \hbar c} \left(\langle \sigma_\|, \mu_0 \rangle \right) + E \langle \sigma_\|, \psi \rangle,
\]

where \(\mu_0 \) and \(\sigma_\| \) correspond to the change in the permanent dipole moment and polarizability with respect to a normal coordinate, respectively. We have calculated the absorption coefficient for the \(C = C \) symmetric stretch of molecules adsorbed flat at an electrode surface. For these molecules \(\mu_z \) approaches zero and we are left with evaluating the remaining matrix element. Since the matrix elements \(\langle \sigma_\|, \psi \rangle \) are not tabulated for molecules larger than diatomic, we have estimated this change to be of the same order of magnitude as the polarizability normal to the molecular axis, providing an upper bound value to the matrix element. The polarizabilities necessary for the calculation were taken from Ref. 11. The value of the absorption coefficient is calculated as a function of electric field strength and shown in Table 1.

\[
A_\| \text{ mode activation}
\]

We have observed electric field activation of the totally symmetric \(A_\| \) mode of pyrene at or near the surface of a platinum electrode. Figure 2 is the SNIFTIRS spectra of 0.5

\[
\text{vol.

}\]
mM pyrene in acetonitrile. The limits of the modulation potential were set between +0.5 and -1.2 V vs Ag/Ag⁺ where no electrochemical reaction was occurring. Therefore, the bands appearing in the difference spectra are due to the changing electric field rather than a chemical process. The band which occurs at -1640 cm⁻¹ corresponds to the totally symmetric (A₁) C-C stretching mode of pyrene. The Raman spectrum of pyrene was obtained in our labs and three bands were found in this frequency region (Fig. 3). The intensity of the band is about an order of magnitude weaker than expected for perpendicular adsorption, and is strongly potential dependent. As the potential is made more positive the band intensity increases. Figure 5 shows the band intensity as a function of the amplitude of the potential modulation. If only desorption of acrylonitrile at higher potentials was occurring, the band intensity should increase over the entire potential range and a band of opposite sign corresponding to solution free acrylonitrile should appear. However, as the modulation amplitude increases the band intensity increases, reaches a maximum, and begins to decrease. The observed spectra can be explained in terms of an electric field effect.

Since the potential dependence of the electric field at the electrode surface is unknown, it is difficult to test the exact field dependence of the intensity. However, there should be a maximum in band intensity when one of the modulation limits is at the potential point of zero charge at the interface. The dashed curve sketched in the figure is the theoretical curve predicted by the squared electric field dependence of intensity. The maximum in the curve appears at about -0.5 V vs SCE which is not an unreasonable position for the potential of zero field.

Also, the position of the band is not a linear function of...
potential. In systems were perpendicular adsorption is certain, such as CO adsorbed on platinum and CN adsorbed on silver, band position is a linear function of potential.

Although the fit is only approximate it is sufficiently good to demonstrate the effect of strong electric fields on infrared spectra. Intense electric fields present near the electrode surface may interact with polarizable molecules and induce a dipole moment in the direction of the field which give rise to very weak absorptions. With refinements in the calculation it may possibly to use the electrochemical Stark effect to study the electric field intensity in the double layer region of the electrode.

8 C. Kortenewski and S. Pons, in preparation.

To whom correspondence should be addressed.

<table>
<thead>
<tr>
<th>Office of Naval Research</th>
<th>2</th>
<th>Office of Naval Research</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attn: Code 413</td>
<td></td>
<td>Attn: Code 413</td>
<td></td>
</tr>
<tr>
<td>800 N. Quincy Street</td>
<td></td>
<td>800 N. Quincy Street</td>
<td></td>
</tr>
<tr>
<td>Arlington, Virginia 22217</td>
<td></td>
<td>Arlington, Virginia 22217</td>
<td></td>
</tr>
<tr>
<td>Dr. Bernard Ouda</td>
<td>1</td>
<td>Dr. Bernard Ouda</td>
<td>1</td>
</tr>
<tr>
<td>Naval Weapons Support Center</td>
<td></td>
<td>Naval Weapons Support Center</td>
<td></td>
</tr>
<tr>
<td>Code 5042</td>
<td></td>
<td>Code 5042</td>
<td></td>
</tr>
<tr>
<td>Crane, Indiana 47522</td>
<td></td>
<td>Crane, Indiana 47522</td>
<td></td>
</tr>
<tr>
<td>Commander, Naval Air Systems Command</td>
<td>1</td>
<td>Commander, Naval Air Systems Command</td>
<td>1</td>
</tr>
<tr>
<td>Washington, D.C. 20360</td>
<td></td>
<td>Washington, D.C. 20360</td>
<td></td>
</tr>
<tr>
<td>Naval Civil Engineering Laboratory</td>
<td>1</td>
<td>Naval Civil Engineering Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>Attn: Dr. R. W. Drisko</td>
<td></td>
<td>Attn: Dr. R. W. Drisko</td>
<td></td>
</tr>
<tr>
<td>Port Hueneme, California 93401</td>
<td></td>
<td>Port Hueneme, California 93401</td>
<td></td>
</tr>
<tr>
<td>Defense Technical Information Center</td>
<td>12</td>
<td>Defense Technical Information Center</td>
<td>12</td>
</tr>
<tr>
<td>Building 5, Cameron Station</td>
<td></td>
<td>Building 5, Cameron Station</td>
<td></td>
</tr>
<tr>
<td>Alexandria, Virginia 22314</td>
<td></td>
<td>Alexandria, Virginia 22314</td>
<td></td>
</tr>
<tr>
<td>DTNSRC</td>
<td>1</td>
<td>DTNSRC</td>
<td>1</td>
</tr>
<tr>
<td>Attn: Dr. G. Bosmajian</td>
<td></td>
<td>Attn: Dr. G. Bosmajian</td>
<td></td>
</tr>
<tr>
<td>Applied Chemistry Division</td>
<td></td>
<td>Applied Chemistry Division</td>
<td></td>
</tr>
<tr>
<td>Annapolis, Maryland 21401</td>
<td></td>
<td>Annapolis, Maryland 21401</td>
<td></td>
</tr>
<tr>
<td>Dr. William Tolles</td>
<td>1</td>
<td>Dr. William Tolles</td>
<td>1</td>
</tr>
<tr>
<td>Superintendent</td>
<td></td>
<td>Superintendent</td>
<td></td>
</tr>
<tr>
<td>Chemistry Division, Code 6100</td>
<td></td>
<td>Chemistry Division, Code 6100</td>
<td></td>
</tr>
<tr>
<td>Naval Research Laboratory</td>
<td></td>
<td>Naval Research Laboratory</td>
<td></td>
</tr>
<tr>
<td>Washington, D.C. 20375</td>
<td></td>
<td>Washington, D.C. 20375</td>
<td></td>
</tr>
<tr>
<td>Dr. David Young</td>
<td>1</td>
<td>Dr. David Young</td>
<td>1</td>
</tr>
<tr>
<td>Code 334</td>
<td></td>
<td>Code 334</td>
<td></td>
</tr>
<tr>
<td>NORDA</td>
<td></td>
<td>NORDA</td>
<td></td>
</tr>
<tr>
<td>NSTL, Mississippi 39529</td>
<td></td>
<td>NSTL, Mississippi 39529</td>
<td></td>
</tr>
<tr>
<td>Naval Weapons Center</td>
<td>1</td>
<td>Naval Weapons Center</td>
<td>1</td>
</tr>
<tr>
<td>Attn: Dr. Ron Atkins</td>
<td></td>
<td>Attn: Dr. Ron Atkins</td>
<td></td>
</tr>
<tr>
<td>Chemistry Division</td>
<td></td>
<td>Chemistry Division</td>
<td></td>
</tr>
<tr>
<td>China Lake, California 93555</td>
<td></td>
<td>China Lake, California 93555</td>
<td></td>
</tr>
<tr>
<td>Scientific Advisor</td>
<td>1</td>
<td>Scientific Advisor</td>
<td>1</td>
</tr>
<tr>
<td>Commandant of the Marine Corps</td>
<td></td>
<td>Commandant of the Marine Corps</td>
<td></td>
</tr>
<tr>
<td>Code RD-1</td>
<td></td>
<td>Code RD-1</td>
<td></td>
</tr>
<tr>
<td>Washington, D.C. 20380</td>
<td></td>
<td>Washington, D.C. 20380</td>
<td></td>
</tr>
<tr>
<td>U.S. Army Research Office</td>
<td>1</td>
<td>U.S. Army Research Office</td>
<td>1</td>
</tr>
<tr>
<td>Attn: CRD-AA-IP</td>
<td></td>
<td>Attn: CRD-AA-IP</td>
<td></td>
</tr>
<tr>
<td>P.O. Box 12211</td>
<td></td>
<td>P.O. Box 12211</td>
<td></td>
</tr>
<tr>
<td>Research Triangle Park, NC 27709</td>
<td></td>
<td>Research Triangle Park, NC 27709</td>
<td></td>
</tr>
<tr>
<td>Mr. John Boyle</td>
<td>1</td>
<td>Mr. John Boyle</td>
<td>1</td>
</tr>
<tr>
<td>Materials Branch</td>
<td></td>
<td>Materials Branch</td>
<td></td>
</tr>
<tr>
<td>Naval Ship Engineering Center</td>
<td></td>
<td>Naval Ship Engineering Center</td>
<td></td>
</tr>
<tr>
<td>Naval Ocean Systems Center</td>
<td>1</td>
<td>Naval Ocean Systems Center</td>
<td>1</td>
</tr>
<tr>
<td>Attn: Dr. S. Yamamoto</td>
<td></td>
<td>Attn: Dr. S. Yamamoto</td>
<td></td>
</tr>
<tr>
<td>Marine Sciences Division</td>
<td></td>
<td>Marine Sciences Division</td>
<td></td>
</tr>
<tr>
<td>San Diego, California 91232</td>
<td></td>
<td>San Diego, California 91232</td>
<td></td>
</tr>
</tbody>
</table>
ABSTRACTS DISTRIBUTION LIST, 359/627

Dr. Paul Delahay
Department of Chemistry
New York University
New York, New York 10003

Dr. E. Yeager
Department of Chemistry
Case Western Reserve University
Cleveland, Ohio 44106

Dr. P. J. Hendra
Department of Chemistry
University of Southampton
Southampton S09 5NH
United Kingdom

Dr. C. E. Mueller
The Electrochemistry Branch
Naval Surface Weapons Center
White Oak Laboratory
Silver Spring, Maryland 20910

Dr. J. Driscoll
Lockheed Palo Alto Research Laboratory
3251 Hanover Street
Palo Alto, California 94304

Dr. Sam Perone
Chemistry & Materials Science Department
Lawrence Livermore National Laboratory
Livermore, California 94550

Dr. D. N. Bennion
Department of Chemical Engineering
Brigham Young University
Provo, Utah 84602

Dr. Royce W. Murray
Department of Chemistry
University of North Carolina
Chapel Hill, North Carolina 27514

Dr. R. A. Marcus
Department of Chemistry
California Institute of Technology
Pasadena, California 91125

Dr. B. Brummer
EIC Incorporated
111 Downey Street
Norwood, Massachusetts 02062

Dr. J. J. Auborn
Bell Laboratories
Murray Hill, New Jersey 07974

Dr. Adam Heller
Bell Laboratories
Murray Hill, New Jersey 07974

Dr. Joseph Singer, Code 302-1
NASA-Lewis
21000 Brookpark Road
Cleveland, Ohio 44135

Dr. A. B. Ellis
Chemistry Department
University of Wisconsin
Madison, Wisconsin 53706

Dr. P. P. Schrier
Department of Chemistry
Oakland University
Rochester, Michigan 48063

Library
Duracell, Inc.
Burlington, Massachusetts 01803

Dr. Manfred Breiter
Institut fur Technische Elektrochemie
Technischen Universitat Wien
9 Getreidemarkt, 1160 Wien
AUSTRIA

Electrochimica Corporation
20 Kelly Court
Menlo Park, California 94025-1418
ABSTRACTS DISTRIBUTION LIST, 359/627

Dr. M. Wrighton
Chemistry Department
Massachusetts Institute
of Technology
Cambridge, Massachusetts 02139

Dr. B. Stanley Pons
Department of Chemistry
University of Utah
Salt Lake City, Utah 84112

Donald E. Mains
Naval Weapons Support Center
Electrochemical Power Sources Division
Crane, Indiana 47522

S. Ruby
DOE (STOR)
Room 5E036 Forrestal Bldg., CE-14
Washington, D.C. 20595

Dr. A. J. Bard
Department of Chemistry
University of Texas
Austin, Texas 78712

Dr. Janet Osteryoung
Department of Chemistry
State University of New York
Buffalo, New York 14214

Dr. Donald W. Ernst
Naval Surface Weapons Center
Code R-33
White Oak Laboratory
Silver Spring, Maryland 20910

Mr. James R. Moden
Naval Underwater Systems Center
Code 3632
Newport, Rhode Island 02840

Dr. Bernard Spielvogel
U.S. Army Research Office
P.O. Box 12211
Research Triangle Park, NC 27709

Dr. Aaron Fletcher
Naval Weapons Center
Code 3852
China Lake, California 93555

Dr. M. M. Nicholson
Electronics Research Center
Rockwell International
3370 Miraloma Avenue
Anaheim, California

Dr. Michael J. Weaver
Department of Chemistry
Purdue University
West Lafayette, Indiana 47907

Dr. R. David Rauh
EIC Laboratories, Inc.
111 Downey Street
Norwood, Massachusetts 02062

Dr. Aaron Wold
Department of Chemistry
Brown University
Providence, Rhode Island 02192

Dr. Martin Fleischmann
Department of Chemistry
University of Southampton
Southampton S09 5NH ENGLAND

Dr. R. A. Osteryoung
Department of Chemistry
State University of New York
Buffalo, New York 14214

Dr. John Wilkes
Air Force Office of Scientific
Research
Bolling AFB
Washington, D.C. 20332

Dr. R. Nowak
Naval Research Laboratory
Code 6171
Washington, D.C. 20375

Dr. D. F. Shriver
Department of Chemistry
Northwestern University
Evanston, Illinois 60201
<table>
<thead>
<tr>
<th>Name</th>
<th>Department</th>
<th>Institution</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Hector D. Abruna</td>
<td>Department of Chemistry</td>
<td>Cornell University</td>
<td>Ithaca, New York 14853</td>
</tr>
<tr>
<td>Dr. A. B. P. Lever</td>
<td>Chemistry Department</td>
<td>York University</td>
<td>Downsvile, Ontario M3J1P3</td>
</tr>
<tr>
<td>Dr. Stanislaw Szpak</td>
<td>Naval Ocean Systems Center</td>
<td>York University</td>
<td>San Diego, California 95152</td>
</tr>
<tr>
<td>Dr. Gregory Farrington</td>
<td>Department of Materials Science and Engineering</td>
<td>University of Pennsylvania</td>
<td>Philadelphia, Pennsylvania 19104</td>
</tr>
<tr>
<td>Dr. T. Marks</td>
<td>Department of Chemistry</td>
<td>Northwestern University</td>
<td>Evanston, Illinois 60201</td>
</tr>
<tr>
<td>Dr.Micha Tomkiewicz</td>
<td>Department of Physics</td>
<td>Brooklyn College</td>
<td>Brooklyn, New York 11210</td>
</tr>
<tr>
<td>Dr. lesser Blum</td>
<td>Department of Physics</td>
<td>University of Puerto Rico</td>
<td>Rio Piedras, Puerto Rico 00931</td>
</tr>
<tr>
<td>Dr. Joseph Gordon, II</td>
<td>IBM Corporation</td>
<td>5600 Cottle Road</td>
<td>San Jose, California 95193</td>
</tr>
<tr>
<td>Dr. Nathan Lewis</td>
<td>Department of Chemistry</td>
<td>Stanford University</td>
<td>Stanford, California 94305</td>
</tr>
<tr>
<td>Dr. D. H. Whitmore</td>
<td>Department of Materials Science</td>
<td>Northwestern University</td>
<td>Evanston, Illinois 60201</td>
</tr>
<tr>
<td>Dr. Alan Bewick</td>
<td>Department of Chemistry</td>
<td>The University of Southampton</td>
<td>Southampton, S09 5NH ENGLAND</td>
</tr>
<tr>
<td>Dr. E. Anderson</td>
<td>Department of Engineering & Applied Science</td>
<td>University of California</td>
<td>Los Angeles, California 90024</td>
</tr>
<tr>
<td>Dr. Bruce Dunn</td>
<td>Department of Engineering & Applied Science</td>
<td>Lawrence Berkeley Laboratory</td>
<td>Berkeley, California 94720</td>
</tr>
<tr>
<td>Dr. Richard Pollard</td>
<td>Department of Chemical Engineering</td>
<td>University of Houston</td>
<td>Houston, Texas 77004</td>
</tr>
<tr>
<td>Dr. M. Philpott</td>
<td>IBM Corporation</td>
<td>5600 Cottle Road</td>
<td>San Jose, California 95193</td>
</tr>
<tr>
<td>Dr. Donald Sandstrom</td>
<td>Boeing Aerospace Co.</td>
<td>P.O. Box 3999</td>
<td>Seattle, Washington 98124</td>
</tr>
<tr>
<td>Dr. Carl Kannewurf</td>
<td>Department of Electrical Engineering and Computer Science</td>
<td>Northwestern University</td>
<td>Evanston, Illinois 60201</td>
</tr>
<tr>
<td>Dr. Joel Harris</td>
<td>Department of Chemistry</td>
<td>University of Utah</td>
<td>Salt Lake City, Utah 84112</td>
</tr>
</tbody>
</table>
ABSTRACTS DISTRIBUTION LIST, 359/627

Dr. Robert Somoano
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California 91103

Dr. Johann A. Joebstl
USA Mobility Equipment R&D Command
OROME-EC
Fort Belvoir, Virginia 22060

Dr. Judith H. Ambrus
NASA Headquarters
M.S. RTS-6
Washington, D.C. 20546

Dr. Albert R. Landgrebe
U.S. Department of Energy
M.S. 68025 Forrestal Building
Washington, D.C. 20595

Dr. J. J. Brophy
Department of Physics
University of Utah
Salt Lake City, Utah 84112

Dr. Charles Martin
Department of Chemistry
Texas A&M University
College Station, Texas 77843

Dr. H. Tachikawa
Department of Chemistry
Jackson State University
Jackson, Mississippi 39217

Dr. Theodore Beck
Electrochemical Technology Corp.
3935 Leary Way N.W.
Seattle, Washington 98107

Dr. Farrell Lytle
Boeing Engineering and Construction Engineers
P.O. Box 3707
Seattle, Washington 98124

Dr. Robert Gotscholl
U.S. Department of Energy
MS G-226
Washington, D.C. 20545

Dr. Edward Fletcher
Department of Mechanical Engineering
University of Minnesota
Minneapolis, Minnesota 55455

Dr. John Fontanella
Department of Physics
U.S. Naval Academy
Annapolis, Maryland 21402

Dr. Martha Greenblatt
Department of Chemistry
Rutgers University
New Brunswick, New Jersey 08903

Dr. John Wasson
Syntheco, Inc.
Rte 6 - Industrial Pike Road
Gastonia, North Carolina 28052

Dr. Walter Roth
Department of Physics
State University of New York
Albany, New York 12222

Dr. Anthony Sammells
Eltron Research Inc.
4260 Westbrook Drive, Suite 111
Aurora, Illinois 60506

Dr. C. A. Angell
Department of Chemistry
Purdue University
West Lafayette, Indiana 47907

Dr. Thomas Davis
Polymer Science and Standards Division
National Bureau of Standards
Washington, D.C. 20234

Ms. Wendy Parkhurst
Naval Surface Weapons Center R-33
Silver Spring, Maryland 20910
ABSTRACTS DISTRIBUTION LIST, 359/627

Dr. John Owen
Department of Chemistry and
Applied Chemistry
University of Salford
Salford M5 4WT ENGLAND

Dr. Boone Owens
Department of Chemical Engineering
and Materials Science
University of Minnesota
Minneapolis, Minnesota 55455

Dr. J. O. Thomas
University of Uppsala
Institute of Chemistry
Box 531
S-751 21 Uppsala, Sweden

Dr. O. Stafsudd
Department of Electrical Engineering
University of California
Los Angeles, California 90024

Dr. S. G. Greenbaum
Department of Physics
Hunter College of CUNY
New York, New York 10021

Dr. Menahem Anderman
W.R. Grace & Co.
Columbia, Maryland 20144
END

DATE

FILMED

6-88

DTIC