THE INFRARED SPECTRA OF SURFACE METAL ATOM VIBRATIONS

SWIFTIRS STUDIES IN.. (U) UTAH UNIV SALT LAKE CITY DEPT OF CHEMISTRY S PONS ET AL. 30 JUL 86 TR-59

UNCLASSIFIED N00014-83-K-0470
The Infrared Spectra of Surface Metal Atom Vibrations.
SNIFTIRS Studies in the Far Infrared Region using
Time Resolved FTIR Techniques

By
Stanley Pons, J. Li, J. Daschbach, J. Smith, M. Morse

Prepared for Publication in
Journal of Electroanalytical Chemistry
University of Utah
Department of Chemistry
Salt Lake City, Utah 84112

July 30, 1986

Reproduction in whole or in part is permitted for
any purpose of the United States Government.

This document has been approved for public release
and sale; its distribution is unlimited.
The infrared spectra of surface metal atom vibrations. SNIFTIRS studies in the far infrared region using time resolved FTIR techniques.

Abstract:
IR spectra of metal atoms on electrodes is discussed.
Short communication

THE INFRARED SPECTRA OF SURFACE METAL ATOM VIBRATIONS

SNIFTIRS STUDIES IN THE FAR INFRARED REGION USING TIME RESOLVED FTIR TECHNIQUES

JIANGUO LI, JOHN DESCHBACH, JERRY J. SMITH*, MICHAEL D. MORSE
and STANLEY PONS**

Department of Chemistry, University of Utah, Salt Lake City, UT 84112 (U.S.A.)
(Received 16th April 1986; in revised form 28th May 1986)

Studies of the vibrations of pure metals have historically been pursued by inelastic neutron scattering (which is sensitive to vibrations of the bulk crystal) and more recently by high-resolution electron energy loss spectroscopy, HREELS (which is more sensitive to vibrations of the metal surface). Direct infrared absorbance techniques provide advantages over both of these methods, since they may be used in more hostile environments (such as at the interface between metal and chemical solutions). They have rarely been applied with much success, however, because of the very effective shielding of the electromagnetic radiation by the metal conduction electrons. This results in an exponential damping of the radiation field as it enters the metal phase, with typical skin depths (1/e damping distances) of only a few tens of nm. This damping improves the sensitivity of infrared absorption measurements to the surface vibrations as opposed to bulk phonons, but limits the magnitude of the absorbance considerably. In this report we demonstrate that reflection infrared vibrational spectroscopy may be used to observe the vibrational structure of metallic species deposited on a metal surface which is under electrochemical control.

The surface FTIR spectroscopic technique SNIFTIRS [1] has been shown to be useful for the observation of the vibrational structure of monolayer (or less) quantities of materials adsorbed at the surface of metal electrodes while under electrochemical control. We have now extended the method by modifying the cell and detector design to permit observations in the far infrared region, even below 100 cm⁻¹. In addition, a signal/timer/controller/sequencer and associated software has been developed to allow time resolved infrared spectral measurements to be recorded with 10 μs resolution [2].

* Permanent address: Naval Weapons Center, Physics Division, China Lake, CA 93555, U.S.A.
** To whom correspondence should be addressed.

0022-0728/86/$03.50 © 1986 Elsevier Sequoia S.A.
Underpotential, solid solution, alloy formation, and bulk metal deposition studies were made for lithium deposited on gold from acetonitrile solution. At potentials between -2.40 and -2.60 V, lithium adatoms are underpotentially deposited on a polycrystalline gold surface where they are oxidized rapidly by trace water to solid lithium hydroxide. Between -2.60 and -2.80 V, this insulating precipitate is reduced to lithium atoms in solid solution with gold, and between -2.80 and -3.10 V a chemically resistant gold + lithium alloy is formed. At potentials more negative than -3.10 V, bulk lithium is formed and reduction of solvent proceeds spontaneously.

Figure 1 shows the SNIFTIRS difference spectrum in a region where one would expect to observe the gold–gold fundamental stretch. Diatomic gold has a vibration frequency of 190.9 cm$^{-1}$, with a reduced mass of 98.5 amu [3]. If the gold atom were vibrating with the same force constant against an infinite mass the reduced mass would by 197 amu, and a vibrational frequency of 135 cm$^{-1}$ would be expected. As the potential is made more negative we observe that the intensity of a band at 145 cm$^{-1}$ increases. At these potentials, the surface is being increasingly covered with underpotentially deposited lithium. Due to the sign convention used in these spectra the increase in intensity is an indication of the loss of absorption by a species, here the gold adatom on the gold surface. The close correspondence between the observed 145 cm$^{-1}$ frequency and that calculated for a gold atom vibrating against an infinite mass suggests that the adatom is bonded to a single surface atom, that most of the motion involved in the optically active vibration occurs on the adatoms, and that the force constant is nearly the same on the surface as the gas-phase dimer.

At 440 cm$^{-1}$ (Fig. 2), a simultaneous and parallel increase in absorbance occurs. This compares to a vibrational frequency of matrix-isolated 197Au7Li of 705 cm$^{-1}$.

Fig. 1. Surface far infrared difference spectrum of the system described on 130–170 cm$^{-1}$ region as a function of electrode potential. The curves represent potentials of (top to bottom) -1.70 V, -1.90 V, -2.60 V, and -2.90 V respectively. Reference potential -1.50 V.
Fig. 2. Surface far infrared difference spectrum of the system described in Fig. 1 in the 200–700 cm\(^{-1}\) region as a function of electrode potential. The curves represent potentials of (top to bottom) –1.70 V, –2.90 V, and –3.0 V respectively. Reference potential –1.50 V.

and probably corresponds to a gold-lithium surface species. The diatomic gold–lithium molecule probably derives much of its high vibrational frequency and large bond strength (2.92 eV) [5] from ionic interactions, Li\(^{+}\)Au\(^{-}\). This is expected since apart from the halogen atoms, gold has the highest electron affinity of any element (2.31 eV) [6]. On a surface or in the bulk, the electron donated to gold may be delocalized into the gold conduction band, resulting in a smaller Coulombic force between the atoms in Li–Au (surface) than in diatomic Li–Au. Other explanations are possible, of course, but this does explain the lower than expected value for the Li–Au vibrational frequency, however.

No bands attributed to Li–Li vibrations are observed at potentials more positive than those required for bulk deposition of lithium. As soon as three dimensional growth of lithium begins, however, a band at 395 cm\(^{-1}\) rapidly grows in. This may be compared to the Li\(_2\) vibrational frequency of 351 cm\(^{-1}\) in the gas phase [3]. The shift of 44 cm\(^{-1}\) to higher frequency is relatively small considering that it corresponds to condensation of a dimer onto a solid surface. It is therefore probable that the 395 cm\(^{-1}\) peak does correspond to a surface vibration of Li–Li.

A cell was equipped with a very small electrode (0.5 mm diameter) so that the time constant of the cell could be decreased to suitably small values, and time resolved spectra were obtained for the fact nucleation and growth process of lithium on gold. Figure 3a shows the time and wavenumber resolved spectral response obtained at 10 ms intervals following application of the potential. The time profile alone is shown in Fig. 3b. The growth of the absorption transient follows a t\(^3\) dependence (a plot of absorbance/t\(^3\) vs. t is linear with a correlation coefficient = 0.9989). With this information, one may consider various models of nucleation and crystal growth to determine which possibilities are consistent with this time depend-
In this particular example, one finds that a mechanism involving instantaneous nucleation of lithium atoms followed by three-dimensional growth is consistent with the observed time dependence. One also notes that the absorption peak broadens as it grows, as a result of lateral interactions and surface defects which are incorporated into the new-grown crystallite.

In addition to the metal stretch bands reported in this note, we point out that there are other bands observed in other regions of the infrared spectrum. These correspond to adsorbed supporting electrolyte and solvent, as is evidenced by changing the system components. The behavior and nature of these vibrations will be the subject of a forthcoming report.

In conclusion, we have shown that two new powerful variations of infrared spectroelectrochemistry may be used for the study of fast reactions at metal surfaces involving direct bonding to the metal surface. Finally, we report the direct observation of metal atom vibrations at surfaces by reflection FTIR spectroscopy.

ACKNOWLEDGEMENT

We thank the Office of Naval Research for support of this work.

REFERENCES

2 J. Daschbach, D. Heisler and S. Pons, Appl. Spectrosc., in press.
<table>
<thead>
<tr>
<th>Office of Naval Research</th>
<th>2</th>
<th>Dr. David Young</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attn: Code 413</td>
<td></td>
<td>Code 334</td>
</tr>
<tr>
<td>800 N. Quincy Street</td>
<td></td>
<td>NORDA</td>
</tr>
<tr>
<td>Arlington, Virginia 22217</td>
<td></td>
<td>NSTL, Mississippi 39529</td>
</tr>
<tr>
<td>Dr. Bernard Douda</td>
<td>1</td>
<td>Naval Weapons Center</td>
</tr>
<tr>
<td>Naval Weapons Support Center</td>
<td></td>
<td>Attn: Dr. Ron Atkins</td>
</tr>
<tr>
<td>Code 5042</td>
<td></td>
<td>Chemistry Division</td>
</tr>
<tr>
<td>Crane, Indiana 47522</td>
<td></td>
<td>China Lake, California 93555</td>
</tr>
<tr>
<td>Commander, Naval Air Systems Command</td>
<td>1</td>
<td>Scientific Advisor</td>
</tr>
<tr>
<td>Attn: Code 310C (H. Rosenwasser)</td>
<td></td>
<td>Commandant of the Marine Corps</td>
</tr>
<tr>
<td>Washington, D.C. 20360</td>
<td></td>
<td>Code RD-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Washington, D.C. 20380</td>
</tr>
<tr>
<td>Naval Civil Engineering Laboratory</td>
<td>1</td>
<td>U.S. Army Research Office</td>
</tr>
<tr>
<td>Attn: Dr. R. W. Drisko</td>
<td></td>
<td>Attn: CRD-AA-IP</td>
</tr>
<tr>
<td>Port Hueneme, California 93401</td>
<td></td>
<td>P.O. Box 12211</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Research Triangle Park, NC 27709</td>
</tr>
<tr>
<td>Defense Technical Information Center</td>
<td>12</td>
<td>Mr. John Boyle</td>
</tr>
<tr>
<td>Building 5, Cameron Station</td>
<td></td>
<td>Materials Branch</td>
</tr>
<tr>
<td>Alexandria, Virginia 22314</td>
<td></td>
<td>Naval Ship Engineering Center</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Philadelphia, Pennsylvania 19112</td>
</tr>
<tr>
<td>DTNSRDC</td>
<td>1</td>
<td>Naval Ocean Systems Center</td>
</tr>
<tr>
<td>Attn: Dr. G. Bosmajian</td>
<td></td>
<td>Attn: Dr. S. Yamamoto</td>
</tr>
<tr>
<td>Applied Chemistry Division</td>
<td></td>
<td>Marine Sciences Division</td>
</tr>
<tr>
<td>Annapolis, Maryland 21401</td>
<td></td>
<td>San Diego, California 91232</td>
</tr>
<tr>
<td>Dr. William Tolles</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Superintendent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemistry Division, Code 6100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naval Research Laboratory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Washington, D.C. 20375</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ABSTRACTS DISTRIBUTION LIST, 359/627

Dr. Paul Delahay
Department of Chemistry
New York University
New York, New York 10003

Dr. P. J. Hendra
Department of Chemistry
University of Southampton
Southampton S09 5NH
United Kingdom

Dr. J. Oriscoli
Lockheed Palo Alto Research Laboratory
3251 Hanover Street
Palo Alto, California 94304

Dr. D. N. Bennion
Department of Chemical Engineering
Brigham Young University
Provo, Utah 84602

Dr. R. A. Marcus
Department of Chemistry
California Institute of Technology
Pasadena, California 91125

Dr. J. J. Auburn
Bell Laboratories
Murray Hill, New Jersey 07974

Dr. Joseph Singer, Code 302-1
NASA-Lewis
21000 Brookpark Road
Cleveland, Ohio 44135

Dr. P. P. Schmidt
Department of Chemistry
Oakland University
Rochester, Michigan 48063

Dr. Manfred Breiter
Institut fur Technische Elektrochemie
Technischen Universitat Wien
9 Getreidemarkt, 1160 Wien
AUSTRIA

Dr. E. Yeager
Department of Chemistry
Case Western Reserve University
Cleveland, Ohio 44106

Dr. C. E. Mueller
The Electrochemistry Branch
Naval Surface Weapons Center
White Oak Laboratory
Silver Spring, Maryland 20910

Dr. Sam Perone
Chemistry & Materials Science Department
Lawrence Livermore National Laboratory
Livermore, California 94550

Dr. Royce W. Murray
Department of Chemistry
University of North Carolina
Chapel Hill, North Carolina 27514

Dr. B. Brummer
EIC Incorporated
111 Downey Street
Norwood, Massachusetts 02062

Dr. Adam Heller
Bell Laboratories
Murray Hill, New Jersey 07974

Dr. A. B. Ellis
Chemistry Department
University of Wisconsin
Madison, Wisconsin 53706

Library
Duracell, Inc.
Burlington, Massachusetts 01803

Electrochimica Corporation
20 Kelly Court
Menlo Park, California 94025-1418
ABSTRACTS DISTRIBUTION LIST, 359/627

Dr. M. Wrighton
Chemistry Department
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Dr. B. Stanley Pons
Department of Chemistry
University of Utah
Salt Lake City, Utah 84112

Donald E. Mains
Naval Weapons Support Center
Electrochemical Power Sources Division
Crane, Indiana 47522

S. Ruby
DOE (STOR)
Room 5E036 Forrestal Bldg., CE-14
Washington, D.C. 20595

Dr. A. J. Bard
Department of Chemistry
University of Texas
Austin, Texas 78712

Dr. Janet Osteryoung
Department of Chemistry
State University of New York
Buffalo, New York 14214

Dr. Donald W. Ernst
Naval Surface Weapons Center
Code R-33
White Oak Laboratory
Silver Spring, Maryland 20910

Mr. James R. Moden
Naval Underwater Systems Center
Code 3632
Newport, Rhode Island 02840

Dr. Bernard Spielvogel
U.S. Army Research Office
P.O. Box 12211
Research Triangle Park, NC 27709

Dr. Aaron Fletcher
Naval Weapons Center
Code 3852
China Lake, California 93555

Dr. M. M. Nicholson
Electronics Research Center
Rockwell International
3370 Miraloma Avenue
Anaheim, California

Dr. Michael J. Weaver
Department of Chemistry
Purdue University
West Lafayette, Indiana 47907

Dr. R. David Rauh
EIC Laboratories, Inc.
111 Downey Street
Norwood, Massachusetts 02062

Dr. Aaron Wold
Department of Chemistry
Brown University
Providence, Rhode Island 02192

Dr. Martin Fleischmann
Department of Chemistry
University of Southampton
Southampton S09 5NH ENGLAND

Dr. R. A. Osteryoung
Department of Chemistry
State University of New York
Buffalo, New York 14214

Dr. John Wilkes
Air Force Office of Scientific Research
Bolling AFB
Washington, D.C. 20332

Dr. R. Nowak
Naval Research Laboratory
Code 6171
Washington, D.C. 20375

Dr. D. F. Shriver
Department of Chemistry
Northwestern University
Evanston, Illinois 60201
ABSTRACTS DISTRIBUTION LIST, 359/627

Dr. Hector D. Abruna
Department of Chemistry
Cornell University
Ithaca, New York 14853

Dr. A. B. P. Lever
Chemistry Department
York University
Downsview, Ontario M3J1P3

Dr. Stanislaw Szpak
Naval Ocean Systems Center
Code 633, Bayside
San Diego, California 95152

Dr. Gregory Farrington
Department of Materials Science and Engineering
University of Pennsylvania
Philadelphia, Pennsylvania 19104

M. L. Robertson
Manager, Electrochemical and Power Sources Division
Naval Weapons Support Center
Crane, Indiana 47522

Dr. T. Marks
Department of Chemistry
Northwestern University
Evanston, Illinois 60201

Dr. Micha Tomkiewicz
Department of Physics
Brooklyn College
Brooklyn, New York 11210

Dr. Lesser Blum
Department of Physics
University of Puerto Rico
Rio Piedras, Puerto Rico 00931

Dr. Joseph Gordon, II
IBM Corporation
5600 Cottle Road
San Jose, California 95193

Dr. Nathan Lewis
Department of Chemistry
Stanford University
Stanford, California 94305

Dr. D. H. Whitmore
Department of Materials Science
Northwestern University
Evanston, Illinois 60201

Dr. Alan Bewick
Department of Chemistry
The University of Southampton
Southampton, SO9 5NH ENGLAND

Dr. E. Anderson
NAVSEA-56233 NC #4
2541 Jefferson Davis Highway
Arlington, Virginia 20362

Dr. Bruce Dunn
Department of Engineering & Applied Science
University of California
Los Angeles, California 90024

Dr. Elton Cairns
Energy & Environment Division
Lawrence Berkeley Laboratory
University of California
Berkeley, California 94720

Dr. Richard Pollard
Department of Chemical Engineering
University of Houston
Houston, Texas 77004

Dr. M. Philpott
IBM Corporation
5600 Cottle Road
San Jose, California 95193

Dr. Donald Sandstrom
Boeing Aerospace Co.
P.O. Box 3999
Seattle, Washington 98124

Dr. Carl Kannewurf
Department of Electrical Engineering and Computer Science
Northwestern University
Evanston, Illinois 60201

Dr. Joel Harris
Department of Chemistry
University of Utah
Salt Lake City, Utah 84112
ABSTRACTS DISTRIBUTION LIST, 359/627

Dr. Robert Samoano
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California 91103

Dr. Edward Fletcher
Department of Mechanical Engineering
University of Minnesota
Minneapolis, Minnesota 55455

Dr. Johann A. Joebstl
USA Mobility Equipment R&D Command
DRDME-EC
Fort Belvoir, Virginia 22060

Dr. John Fontanella
Department of Physics
U.S. Naval Academy
Annapolis, Maryland 21402

Dr. Judith H. Ambrus
NASA Headquarters
M.S. RTS-6
Washington, D.C. 20546

Dr. Martha Greenblatt
Department of Chemistry
Rutgers University
New Brunswick, New Jersey 08903

Dr. Albert R. Landgrebe
U.S. Department of Energy
M.S. 6B025 Forrestal Building
Washington, D.C. 20595

Dr. John Wasson
Syntheco, Inc.
Rte 6 - Industrial Pike Road
Gastonia, North Carolina 28052

Dr. J. J. Brophy
Department of Physics
University of Utah
Salt Lake City, Utah 84112

Dr. Walter Roth
Department of Physics
State University of New York
Albany, New York 12222

Dr. Charles Martin
Department of Chemistry
Texas A&M University
College Station, Texas 77843

Dr. Anthony Sammells
Eltron Research Inc.
4260 Westbrook Drive, Suite 111
Aurora, Illinois 60505

Dr. H. Tachikawa
Department of Chemistry
Jackson State University
Jackson, Mississippi 39217

Dr. C. A. Angell
Department of Chemistry
Purdue University
West Lafayette, Indiana 47907

Dr. Theodore Beck
Electrochemical Technology Corp.
3935 Leary Way N.W.
Seattle, Washington 98107

Dr. Thomas Davis
Polymer Science and Standards Division
National Bureau of Standards
Washington, D.C. 20234

Dr. Farrell Lytle
Boeing Engineering and Construction Engineers
P.O. Box 3707
Seattle, Washington 98124

Ms. Wendy Parkhurst
Naval Surface Weapons Center R-33
R-33
Silver Spring, Maryland 20910

Dr. Robert Gotscholl
U.S. Department of Energy
MS G-226
Washington, D.C. 20545

Dr. Theodore Beck
Electrochemical Technology Corp.
3935 Leary Way N.W.
Seattle, Washington 98107
ABSTRACTS DISTRIBUTION LIST, 359/627

Dr. John Owen
Department of Chemistry and Applied Chemistry
University of Salford
Salford M5 4WT ENGLAND

Dr. O. Stafsudd
Department of Electrical Engineering
University of California
Los Angeles, California 90024

Dr. Boone Owens
Department of Chemical Engineering and Materials Science
University of Minnesota
Minneapolis, Minnesota 55455

Dr. S. G. Greenbaum
Department of Physics
Hunter College of CUNY
New York, New York 10021

Dr. J. O. Thomas
University of Uppsala
Institute of Chemistry
Box 531
S-751 21 Uppsala, Sweden

Dr. Menahem Anderman
W.R. Grace & Co.
Columbia, Maryland 20144
END
DATE
FILMED
6-1988
DTIC