AN IETS (inelastic electron tunneling spectroscopy) study of surface reactions.

Henriksten, P. et al.

March 88

TR-12

UNCLASSIFIED

AD-A192 274

UNCLASSIFIED

M4-85-K-0222
AN IETS STUDY OF SURFACE REACTIONS APPLICABLE TO ADHESION

by

P. N. Henriksen, A. N. Gent, R. D. Ramsier, and J. D. Alexander

Institute of Polymer Science
The University of Akron
Akron, Ohio 44325

March, 1988

Reproduction in whole or in part is permitted for any purpose of the United States Government
Approved for public release; distribution unrestricted
Inelastic electron tunneling spectroscopy (IETS) has been used to study two classes of adhesion promoting compounds adsorbed on alumina: trialkoxysilanes and phosphonic acids. It has been shown that both types of compounds can condense directly with hydroxyl groups on the surface.
Condensation is through the alkoxy groups in the case of the silanes and through the hydroxyl groups in the case of the acids. The silanes can further condense to form surface siloxanes. The absence of bands characteristic of the phosphoryl group in the spectra of the acids is indicative of resonance bond formation followed by ionic bonding to the surface.
I. INTRODUCTION

In many instances, metal surfaces undergo several chemical pretreatment processes prior to adhesive bonding. The purpose of these processes is to enhance certain desirable characteristics of the completed structure such as bond strength and durability. Although the effects of certain pretreatments have been well characterized empirically, the surface chemistry is not always well understood. Insight into the chemical nature of the pretreated metal surface is therefore of interest. An experimental technique which is ideally suited for studying the way in which chemical compounds are adsorbed onto metal oxide surfaces is inelastic electron tunneling spectroscopy (IETS). This technique relies on the existence of the oxide layer, is non-destructive, and provides vibrational mode information about chemical species adsorbed onto the metal oxide, thus making it appropriate for investigating chemical reactions associated with adhesion.

This paper will describe the technique of IETS, discuss its advantages and limitations as applied to surface reaction studies, and provide specific examples of how the technique has been used to study the chemisorption of silane coupling compounds and phosphonic acid hydration inhibitors on alumina. These compounds are known to
improve the strength and long-term durability of bonded aluminum structures, and are therefore of great importance in the area of applied adhesion science.

II. PRINCIPLES OF IETS

IETS is a solid state energy loss spectroscopy which utilizes a metal/insulator/metal (MI/I/M2) tunnel junction as illustrated in Figure 1a. By applying a negative bias to the base electrode, M1, electrons will tunnel from M1 into the counter electrode, M2, and thus produce a tunneling current which is dependent upon both the thickness of the tunneling barrier and the bias voltage. An energy diagram of the system is illustrated in Figure 1b, where Φ is the work function of the metal, ε_F is the Fermi energy, and eV is the energy of the electron which tunnels from the Fermi level of M1 to a vacant state in M2. Also illustrated within the barrier in Figure 1a is a classical oscillator depicting a molecule adsorbed on the surface of the metal oxide. When the energy of the tunneling electron is less than the vibrational energy of the adsorbed molecule, $\hbar \nu_m$, the electron will tunnel elastically, i.e., without energy loss. By increasing the bias voltage, the energy of the electron is increased. When the electron energy is equal to the
vibrational energy of the adsorbed molecule, it can excite the vibrational mode of the molecule, thereby losing energy and tunneling inelastically. The onset of this new tunneling mode results in a slight change in the current-voltage characteristic of the tunnel junction (Fig. 2a). Superimposing a small ac modulation voltage on top of the dc bias and using harmonic detection to obtain the second derivative of the I-V curve gives rise to a peak whenever the condition $eV_m = \hbar \nu_m$ is met (Fig. 2b). Recording this as a function of the applied bias voltage results in a spectrum with peaks corresponding to the modes of vibration of the adsorbed molecule. Excellent reviews of the theoretical and experimental aspects of IETS are available in the literature.1,2

III. ADVANTAGES AND LIMITATIONS OF IETS

A tunneling electron perturbs the uniformity of the electric field at the site of an adsorbed molecule to such an extent that both Raman and infrared active modes appear in the tunneling spectra with comparable intensities, and the usual spectroscopic selection rules are relaxed. One useful guideline, when properly applied, is that dipole moments parallel to the tunneling electron’s motion interact more strongly with the electron than do those
perpendicular to its motion. Combining this knowledge with that of the vibrational modes can provide valuable insight into the orientation of molecules with respect to the oxide surface.

The spectral range of IETS extends from 300 cm\(^{-1}\) to 4000 cm\(^{-1}\), which includes all molecular vibrations. IETS is extremely sensitive to minute quantities of adsorbate on the oxide surface, and even with the recent advances in FT-IR, IETS remains the most sensitive surface analysis technique. In fact, since the tunneling current decreases exponentially with increasing barrier thickness, adsorbate coverage of several monolayers is unsuitable for IETS.

Peak width in IETS is governed by two parameters: thermal and modulation broadening. Thermal broadening is a result of the distribution of electron energies about the Fermi level at finite temperatures. This contribution to the peak width is minimized by cooling the completed tunnel junction to 4.2 K prior to data collection. Modulation broadening is proportional to the amplitude of the applied ac modulation voltage, and is minimized by choosing the optimum ac voltage which still allows for reasonable signal to noise ratio. A typical modulation voltage of 1.5 eV (1 eV = 8.065 cm\(^{-1}\)) results in
resolution of the order of 25 cm\(^{-1}\) with the tunnel junction temperature maintained at 4.2 K.

The most serious limitation of IETS is that it can only be done with devices consisting of metal/insulator/metal tunnel junctions. The most common system is aluminum/aluminum-oxide/lead (Al/Al-O/Pb), which is exactly the system of practical interest when investigating the reaction mechanisms involved in the adhesive bonding of aluminum structures. It has been shown that the top electrode does not significantly alter the surface chemistry of the oxide layer, and that the positions of the vibrational modes of adsorbed molecules are the same as those observed in IR spectroscopy to within the limits of uncertainty due to resolution.\(^3\)

IV. SAMPLE PREPARATION

The metal/insulator/metal tunnel junctions are fabricated by evaporating three narrow aluminum strips onto a smooth glass substrate at pressures of 3\(\times\)10\(^{-7}\) Torr or less in a vacuum evaporator. A glow discharge is then used to oxidize the aluminum surface to form a tunneling barrier of about 20 Å thickness. A monolayer or less of the compound of interest is then adsorbed as a dopant on the oxide. This is done outside the vacuum chamber by
liquid-phase doping, with the compound of interest being
diluted to a concentration of about 0.1% by weight in a
solvent. The excess liquid is removed from the surface by
rapidly spinning the substrate in a mechanical spinner.
The substrate is then returned to the evaporator, where
lead electrodes are applied, thus making three devices
available for measurements. The completed devices are
inserted into an edge connector sample holder which is
lowered into a liquid helium storage Dewar for four-point
probe measurements. Devices having junction resistances
of about 200 ohms are ideal for our spectrometer.

V. SILANE COUPLING COMPOUNDS

Organofunctional silanes are often used as coupling
compounds in the bonding of polymers to alumina or silica.
This terminology has arisen because the alkoxy groups are
thought to react with the mineral surface while the
organofunctional groups react with the adhesive to form a
coupling bond between the two, thus improving the adhesior
of the bonded structure. A schematic representation of the
aluminum oxide surface is shown in Figure 3, and some
possible mechanisms by which triethoxysilane adsorbs on
alumina are illustrated in Figure 4. Analysis, in terms
of the observed vibrational bands in IET spectra, has been used in an attempt to discern which, if any, of these possible mechanisms is most likely.5,6

The spectrum of an undoped Al/Al-O/Pb tunnel junction is displayed in Figure 5. This spectrum will be superimposed as a background on all other spectra to be discussed. The broad band at 940 cm-1 is due to the vibrational modes of aluminum oxide, the weak band at 1855 cm-1 is attributed to aluminum hydride, and the band at 3600 cm-1 arises from the stretching vibrations of surface hydroxyl groups.

The spectrum of triethoxysilane adsorbed on alumina is displayed in Figure 6. In this particular case the aluminum surface was oxidized by a dc glow discharge in an atmosphere consisting of both oxygen and deuterium. This process is known to produce both hydroxyl and deuterated hydroxyl groups on the surface, resulting in an OH band at 3600 cm-1 and an OD band at 2661 cm-1 in the undoped junction.7 The tunnel junction was liquid doped in this case with 10-3 ml of triethoxysilane in 4 ml of acetone. The purpose of these procedures was to assure that the silane was anhydrous before reacting with the surface, and
to discern the role of the surface hydroxyl groups in the reaction. The absence of the OH and OD bands in this spectrum suggest that chemisorption of the silane has taken place by condensation at all available hydroxyl sites on the surface.

The weak bands at 1065 cm\(^{-1}\) and 1097 cm\(^{-1}\) have been attributed to the asymmetric stretching modes of Si-O-Si, which suggest that polymerization of the silane has taken place. Similar results were also obtained with anhydrous vinyltriethoxysilane and vinyltrimethoxysilane. Together, these results suggest that trialkoxysilanes can condense directly with surface hydroxyl groups on alumina to form siloxane interfacial bonds, and these bonds may be stabilized by condensation between chemisorbed silane molecules to form siloxane oligomers.

Although no conclusive evidence for any of the bonding mechanisms in Figure 4 was observed, results of this investigation support either covalent or ionic bonding. However, in the chemisorption of phosphonic acids on alumina, IETS has provided strong evidence for the existence of ionic bonding.
VI. PHOSPHONIC ACID HYDRATION INHIBITORS

It has been shown that the presence or intrusion of water into the bondline area is a major cause of bond failure in adhesively bonded aluminum structures. Therefore, the identification of chemical compounds which dehydrate the surfaces prior to bonding, and which also make the completed structure resistant to subsequent water intrusion has received great attention. Phosphonic acid and several alkylphosphonic acids have exhibited these desirable characteristics, and have therefore been described as hydration inhibitors.

There are several proposed mechanisms of how these acids react with the surface of aluminum oxide, some of which closely parallel those illustrated in Figure 4 for triethoxysilane. The mechanism most generally accepted is that of condensation via the hydroxyl groups of the acid with those on the surface to form covalent P-O-Al bonds. IETS has been utilized to investigate the validity of such mechanisms, and combined with other analysis techniques, has provided valuable insight into the surface chemistry of these acids when adsorbed on alumina.

The IET spectrum of phosphonic acid adsorbed on
alumina is presented in Figure 7. The intense peaks at 1034 cm$^{-1}$ and 2428 cm$^{-1}$ are attributed to the bending and stretching modes of the P-H bond respectively, and the remaining features have also been assigned. The most interesting aspect of this spectrum is the lack of any bands associated with the phosphoryl group, which is known from IR absorption studies to have a characteristically strong stretching mode in the vicinity of 1200 cm$^{-1}$. The IET spectra of several alkylphosphonic acids also lacked these bands.

The absence of the P=O bands in these spectra suggests that the phosphoryl groups no longer exist as independent entities in the adsorbed acids. This can be accounted for by the formation of a resonance bond between the phosphoryl oxygen and adjacent hydroxyl oxygens upon condensation with surface hydroxyls. The acid becomes an anion which interacts ionically with the surface. In this way the surface is dehydrated, and the alkyl group is unaltered, thus accounting for the known hydration inhibiting effects of these acids on bonded aluminum structures.
VII. CONCLUSIONS

From this work it can be concluded that both trialkoxysilanes and phosphonic acids can condense directly on alumina. For the silanes the condensation product will be an alcohol, and the adsorbed silane can polymerize by subsequent condensation to form surface siloxanes. In the case of phosphonic acids, the condensation product is water. The deprotonated hydroxyl then appears to form a resonance anion with the phosphoryl group and bond ionically to available aluminum sites on the surface. The absence of any bands in the spectra corresponding to the phosphoryl group makes covalent bonding less likely. The case for ionic bonding of the silanes is weaker because the expected position (approx. 1000 cm\(^{-1}\)) of the band associated with the Si-O-Al covalent bond is always obscured by other bands, and its presence or absence cannot be determined.
REFERENCES

1. R.G. Keil, T.P. Graham, and K.P. Roenker,

2. P.K. Hansma, "Tunneling Spectroscopy"

3. J.R. Kirtley and P.K. Hansma,

4. D.P. Oxley, A.J. Bowles, C.C. Horley, A.J. Langley,
 R.G. Pritchard, and D.L. Tunnicliffe,

5. D.M. Brewis, J. Comyn, D.P. Oxley, R.G. Pritchard,
 S. Reynolds, C.R. Werrett, and A.J. Kinloch,

6. J.D. Alexander, A.N. Gent, and P.N. Henriksen

7. Unpublished results obtained in this laboratory.
8. W. Brockmann, O.D. Hennemann, H. Kollek, and C. Matz
 Int. J. Adhesion and Adhesives, Vol. 6, No. 3,
 July 1986.

9. G.D. Davis, J.S. Ahearn, L.J. Matienzoe, and

10. To be submitted.
FIGURE CAPTIONS

Fig. 1 a) Schematic representation of an IETS tunnel junction and b) associated energy level diagram.

Fig. 2 a) I-V curve of an IETS tunnel junction showing change in slope at onset of inelastic tunneling and b) its second derivative.

Fig. 3 Idealized representation of the surface of aluminum oxide.

Fig. 4 Possible bonding mechanisms of triethoxysilane to aluminum oxide.

Fig. 5 IET spectrum of an undoped Al/Al-O/Pb tunnel junction.

Fig. 6 IET spectrum of triethoxysilane adsorbed on alumina (Ref. 6).

Fig. 7 IET spectrum of phosphonic acid adsorbed on alumina.
Figure 1
Figure 2
Possible Bonding Mechanisms

- Covalent Bonding
- Ionic Bonding
- Hydrogen Bonding
- Interstitial Insertion

Figure 4
DISTRIBUTION LIST

Dr. R.S. Miller
Office of Naval Research
Code 432P
Arlington, VA 22217
(10 copies)

Dr. J. Pastine
Naval Sea Systems Command
Code 06R
Washington, DC 20362

Dr. Kenneth D. Hartman
Hercules Aerospace Division
Hercules Incorporated
Alleghany Ballistic Lab
P.O. Box 210
Cumberland, MD 20502

Mr. Otto K. Heiney
AFATL-DLJG
Elgin AFB, FL 32542

Dr. Merrill K. King
Atlantic Research Corp.
5390 Cherokee Avenue
Alexandria, VA 22312

Dr. R.L. Lou
Aerojet Strategic Propulsion Co.
Bldg. 05025 - Dept 5400 - MS 167
P.O. Box 15699C
Sacramento, CA 95813

Dr. R. Olsen
Aerojet Strategic Propulsion Co.
Bldg. 05025 - Dept 5400 - MS 167
P.O. Box 15699C
Sacramento, CA 95813

Dr. Randy Peters
Aerojet Strategic Propulsion Co.
Bldg. 05025 - Dept 5400 - MS 167
P.O. Box 15699C
Sacramento, CA 95813

Dr. D. Mann
U.S. Army Research Office
Engineering Division
Box 12211
Research Triangle Park, NC 27709-2211

Dr. L.V. Schmidt
Office of Naval Technology
Code 07CT
Arlington, VA 22217

JHU Applied Physics Laboratory
ATTN: CPIA (Mr. T.W. Christian)
Johns Hopkins Rd.
Laurel, MD 20707

Dr. R. McGuire
Lawrence Livermore Laboratory
University of California
Code L-324
Livermore, CA 94550

P.A. Miller
736 Leavenworth Street, #6
San Francisco, CA 94109

Dr. W. Moniz
Naval Research Lab.
Code 6120
Washington, DC 20375

Dr. K.F. Mueller
Naval Surface Weapons Center
Code R11
White Oak
Silver Spring, MD 20910

Prof. M. Nicol
Dept. of Chemistry & Biochemistry
University of California
Los Angeles, CA 90024

Mr. L. Roslund
Naval Surface Weapons Center
Code R10C
White Oak, Silver Spring, MD 20910

Dr. David C. Sayles
Ballistic Missile Defense
Advanced Technology Center
P.O. Box 1500
Huntsville, AL 35807
DISTRIBUTION LIST

Mr. R. Geisler
ATTN: DY/MS-24
AFRPL
Edwards AFB, CA 93523

Naval Air Systems Command
ATTN: Mr. Bertram P. Sobers
NAVAIR-320G
Jefferson Plaza 1, RM 472
Washington, DC 20361

R.B. Steele
Aerojet Strategic Propulsion Co.
P.O. Box 15699C
Sacramento, CA 95813

Mr. M. Stosz
Naval Surface Weapons Center
Code R1OB
White Oak
Silver Spring, MD 20910

Mr. E.S. Sutton
Thiokol Corporation
Elkton Division
P.O. Box 241
Elkton, MD 21921

Dr. Grant Thompson
Morton Thiokol, Inc.
Wasatch Division
MS 240 P.O. Box 524
Brigham City, UT 84302

Dr. R.S. Valentini
United Technologies Chemical Systems
P.O. Box 50015
San Jose, CA 95150-0015

Dr. R.F. Walker
Chief, Energetic Materials Division
DRSMC-LCE (D), B-3022
USA ARDC
Dover, NJ 07801

Dr. Janet Wall
Code 012
Director, Research Administration
Naval Postgraduate School
Monterey, CA 93943

Director
US Army Ballistic Research Lab.
ATTN: DRXBR-IRB
Aberdeen Proving Ground, MD 21005

Commander
US Army Missile Command
ATTN: DRSMI-RKL
Walter W. Wharton
Redstone Arsenal, AL 35898

Dr. Ingo W. May
Army Ballistic Research Lab.
ARRADCOM
Code DRXBR - 1BD
Aberdeen Proving Ground, MD 21005

Dr. E. Zimet
Office of Naval Technology
Code 071
Arlington, VA 22217

Dr. Ronald L. Derr
Naval Weapons Center
Code 389
China Lake, CA 93555

T. Boggs
Naval Weapons Center
Code 389
China Lake, CA 93555

Lee C. Estabrook, P.E.
Morton Thiokol, Inc.
P.O. Box 30058
Shreveport, Louisiana 71130

Dr. J.R. West
Morton Thiokol, Inc.
P.O. Box 30058
Shreveport, Louisiana 71130

Dr. D.D. Dillehay
Morton Thiokol, Inc.
Longhorn Division
Marshall, TX 75670

G.T. Bowman
Atlantic Research Corp.
7511 Wellington Road
Gainesville, VA 22065
DISTRIBUTION LIST

<table>
<thead>
<tr>
<th>Name</th>
<th>Organization</th>
<th>Address 1</th>
<th>Address 2</th>
<th>City</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>R.E. Shenton</td>
<td>Atlantic Research Corp.</td>
<td>7511 Wellington Road</td>
<td>Gainesville, VA 22065</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mike Barnes</td>
<td>Atlantic Research Corp.</td>
<td>7511 Wellington Road</td>
<td>Gainesville, VA 22065</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. Lionel Dickinson</td>
<td>Naval Explosive Ordnance Disposal Tech. Center</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prof. J.T. Dickinson</td>
<td>Washington State University</td>
<td>Dept. of Physics 4</td>
<td>Pullman, WA 99164-2814</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M.H. Miles</td>
<td>Washington State University</td>
<td>Dept. of Physics</td>
<td>Pullman, WA 99164-2814</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. T.F. Davidson</td>
<td>Morton Thiokol, Inc.</td>
<td>Vice President, Technical</td>
<td>Ogden, UT 84405</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mr. J. Consaga</td>
<td>Naval Surface Weapons Center</td>
<td>Code R-16</td>
<td>Indian Head, MD 20640</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naval Sea Systems Command</td>
<td>ATTN: Mr. Charles M. Christensen NAVSEA-62R2</td>
<td>Crystal Plaza, Bldg. 6, Rm 806</td>
<td>Washington, DC 20362</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mr. R. Beauregard</td>
<td>Naval Sea Systems Command</td>
<td>SEA 64E</td>
<td>Washington, DC 20362</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brian Wheatley</td>
<td>Atlantic Research Corp.</td>
<td>7511 Wellington Road</td>
<td>Gainesville, VA 22065</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mr. G. Edwards</td>
<td>Naval Sea Systems Command</td>
<td>Code 62R32</td>
<td>Washington, DC 20362</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. Dickinson</td>
<td>Naval Surface Weapons Center</td>
<td>White Oak, Code R-13</td>
<td>Silver Spring, MD 20910</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prof. John Deutch</td>
<td>MIT</td>
<td>Department of Chemistry</td>
<td>Cambridge, MA 02139</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. E.H. deButts</td>
<td>Hercules Aerospace Co.</td>
<td>P.O. Box 27408</td>
<td>Salt Lake City, UT 84127</td>
<td></td>
<td></td>
</tr>
<tr>
<td>David A. Flanigan</td>
<td>Morton Thiokol, Inc.</td>
<td>Aerospace Group</td>
<td>Ogden, UT 84405</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. L.H. Caveny</td>
<td>Air Force Office of Scientific Research</td>
<td>Directorate of Aerospace Sciences</td>
<td>Bolling Air Force Base</td>
<td>Washington, DC 20332</td>
<td></td>
</tr>
<tr>
<td>Dr. Donald L. Ball</td>
<td>Air Force Office of Scientific Research</td>
<td>Bolling Air Force Base</td>
<td>Washington, DC 20332</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DISTRIBUTION LIST

Dr. Anthony J. Matuszko
Air Force Office of Scientific Research
Directorate of Chemical & Atmospheric Sciences
Bolling Air Force Base
Washington, DC 20332

Dr. Michael Chaykovsky
Naval Surface Weapons Center
Code R11
White Oak
Silver Spring, MD 20910

J.J. Rocchio
USA Ballistic Research Lab.
Aberdeen Proving Ground, MD 21005-5066

B. Swanson
INC-4 MS C-346
Los Alamos National Laboratory
Los Alamos, New Mexico 87545

Dr. James T. Bryant
Naval Weapons Center
Code 3205B
China Lake, CA 93555

Dr. L. Rothstein
Assistant Director
Naval Explosives Dev. Engineering Dept.
Naval Weapons Station
Yorktown, VA 23691

Dr. M.J. Kamlet
Naval Surface Weapons Center
Code R11
White Oak, Silver Spring, MD 20910

Dr. Henry Webster, III
Manager, Chemical Sciences Branch
ATTN: Code 5063
Crane, IN 47522

Dr. A.L. Slafkosky
Scientific Advisor
Commandant of the Marine Corps
Code RD-1
Washington, DC 20380

Dr. H.G. Adolph
Naval Surface Weapons Center
Code R11
White Oak
Silver Spring, MD 20910

U.S. Army Research Office
Chemical & Biological Sciences Division
P.O. Box 12211
Research Triangle Park, NC 27709

Dr. John S. Wilkes, Jr.
FJSRL/NC
USAF Academy, CO 80840

Dr. H. Rosenwasser
AIR-32OR
Naval Air Systems Command
Washington, DC 20361

Dr. Joyce J. Kaufman
The Johns Hopkins University
Department of Chemistry
Baltimore, MD 21218

Dr. A. Nielsen
Naval Weapons Center
Code 385
China Lake, CA 93555
DISTRIBUTION LIST

K.D. Pae
High Pressure Materials Research Lab.
Rutgers University
P.O. Box 909
Piscataway, NJ 08854

Prof. Edward Price
Georgia Institute of Tech.
School of Aerospace Engineering
Atlanta, GA 30332

J.A. Birkett
Naval Ordnance Station
Code 5253K
Indian Head, MD 20640

Prof. R.W. Armstrong
University of Maryland
Dept. of Mechanical Engineering
College Park, MD 20742

Herb Richter
Code 385
Naval Weapons Center
China Lake, CA 93555

J.T. Rosenberg
SRI International
333 Ravenswood Ave.
Menlo Park, CA 94025

G.A. Zimmerman
Aeroject Tactical Systems
P.O. Box 13400
Sacramento, CA 95813

Prof. Kenneth Kuo
Pennsylvania State University
Dept. of Mechanical Engineering
University Park, PA 16802

T.L. Boggs
Naval Weapons Center
Code 3891
China Lake, CA 93555
DISTRIBUTION LIST

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. C.S. Coffey</td>
<td>Naval Surface Weapons Center</td>
</tr>
<tr>
<td></td>
<td>Code R13</td>
</tr>
<tr>
<td></td>
<td>White Oak</td>
</tr>
<tr>
<td></td>
<td>Silver Spring, MD 20910</td>
</tr>
<tr>
<td>J.M. Culver</td>
<td>Strategic Systems Projects Office</td>
</tr>
<tr>
<td></td>
<td>SSPO/SP-2731</td>
</tr>
<tr>
<td></td>
<td>Crystal Mall #3, RM 1048</td>
</tr>
<tr>
<td></td>
<td>Washington, DC 20376</td>
</tr>
<tr>
<td>Prof. G.D. Duvall</td>
<td>Washington State University</td>
</tr>
<tr>
<td></td>
<td>Department of Physics</td>
</tr>
<tr>
<td></td>
<td>Pullman, WA 99163</td>
</tr>
<tr>
<td>Dr. E. Martin</td>
<td>Naval Weapons Center</td>
</tr>
<tr>
<td></td>
<td>Code 3858</td>
</tr>
<tr>
<td></td>
<td>China Lake, CA 93555</td>
</tr>
<tr>
<td>Dr. M. Farber</td>
<td>135 W. Maple Avenue</td>
</tr>
<tr>
<td></td>
<td>Monnovia, CA 91016</td>
</tr>
<tr>
<td>W.L. Elban</td>
<td>Naval Surface Weapons Center</td>
</tr>
<tr>
<td></td>
<td>White Oak, Bldg. 343</td>
</tr>
<tr>
<td></td>
<td>Silver Spring, MD 20910</td>
</tr>
<tr>
<td>Defense Technical Information Center</td>
<td>Bldg. 5, Cameron Station</td>
</tr>
<tr>
<td></td>
<td>Alexandria, VA 22314</td>
</tr>
<tr>
<td>Dr. Robert Polvani</td>
<td>National Bureau of Standards</td>
</tr>
<tr>
<td></td>
<td>Metallurgy Division</td>
</tr>
<tr>
<td></td>
<td>Washington, D.C. 20234</td>
</tr>
<tr>
<td>R.A. Schapery</td>
<td>Civil Engineering Department</td>
</tr>
<tr>
<td></td>
<td>Texas A&M University</td>
</tr>
<tr>
<td></td>
<td>College Station, TX 77843</td>
</tr>
<tr>
<td>Dr. Y. Gupta</td>
<td>Washington State University</td>
</tr>
<tr>
<td></td>
<td>Department of Physics</td>
</tr>
<tr>
<td></td>
<td>Pullman, WA 99163</td>
</tr>
<tr>
<td>Director</td>
<td>Naval Research Laboratory</td>
</tr>
<tr>
<td></td>
<td>Attn: Code 2627</td>
</tr>
<tr>
<td></td>
<td>Washington, DC 20375</td>
</tr>
<tr>
<td>Administrative Contracting Officer</td>
<td>(see contract for address)</td>
</tr>
<tr>
<td></td>
<td>(1 copy)</td>
</tr>
</tbody>
</table>
END
DATE
FILMED
6-1988
DTIC