MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAUX STANDARDS WASH
We present numerical and theoretical results for self-trapped states in the lossless, saturably nonlinear Klein-Gordon equation $\psi_t - \Delta u + \phi(u)/u = 0$. A simple approximate analytic theory is developed which agrees well with self-trapped states found in simulations to emerge from certain types of localized, stationary, one-sided "displacements," $u(x,0) \geq 0$, $u(x,0) = 0$. The stability of these states to strong perturbations is studied by pulse-collision simulations, using for the perturbation one of the two traveling-wave pulses generated in the fast dissociation of a highly unstable initial displacement. The self-trapped states are highly stable, exhibiting a shape change and centroid shift after collision, but little energy loss or change of period.
Self-trapped states in a saturable Klein-Gordon Equation

Richard C. Shockley
Naval Ocean Systems Center, San Diego, California 92152

We present numerical and theoretical results for self-trapped states in the lossless, saturably nonlinear Klein-Gordon equation $u_{xt} - u_{xx} = -u/(1 + u^2)$. A simple approximate analytic theory is developed which agrees well with self-trapped states found in simulations to emerge from certain types of localized, stationary, one-sided "displacements," $u(x,0) \geq 0$, $u_t(x,0) = 0$. The stability of these states to strong perturbations is studied by pulse-collision simulations, using for the perturbation one of the two travelling-wave pulses generated in the fast dissociation of a highly unstable initial displacement. The self-trapped states are highly stable, exhibiting a shape change and centroid shift after collision, but little energy loss or change of period.

PACS numbers: 03.40.Kf, 02.90.+p