IMMUNE ALTERATION STUDIES IN IRRADIATED DOGS

C. A. Bowles
Immuquest Laboratories, Inc.
2723-B Merrilee Drive
Fairfax, VA 22031

31 October 1986

Technical Report

CONTRACT No. DNA 001-83-C-0172

Approved for public release; distribution is unlimited.

THIS WORK WAS SPONSORED BY THE DEFENSE NUCLEAR AGENCY UNDER RDT&E RMSS CODE B350085466 U99QMXMXK00053 H2590D.

Prepared for
Director
DEFENSE NUCLEAR AGENCY
Washington, DC 20305-1000
Destroy this report when it is no longer needed. Do not return to sender.

PLEASE NOTIFY THE DEFENSE NUCLEAR AGENCY ATTN: TITL, WASHINGTON, DC 20305 1000, IF YOUR ADDRESS IS INCORRECT, IF YOU WISH IT DELETED FROM THE DISTRIBUTION LIST, OR IF THE ADDRESSEE IS NO LONGER EMPLOYED BY YOUR ORGANIZATION.
DISTRIBUTION LIST UPDATE

This mailer is provided to enable DNA to maintain current distribution lists for reports. We would appreciate your providing the requested information.

☐ Add the individual listed to your distribution list.
☐ Delete the cited organization/individual.
☐ Change of address.

NAME: __

ORGANIZATION: ____________________________________

OLD ADDRESS
__
__

CURRENT ADDRESS
__
__

TELEPHONE NUMBER: ()

SUBJECT AREA(s) OF INTEREST:
__
__
__

DNA OR OTHER GOVERNMENT CONTRACT NUMBER: _________________________

CERTIFICATION OF NEED-TO-KNOW BY GOVERNMENT SPONSOR (if other than DNA):

SPONSORING ORGANIZATION: ________________________________

CONTRACTING OFFICER OR REPRESENTATIVE: _______________________

SIGNATURE: ________________________________
IMMUNE ALTERATION STUDIES IN IRRADIATED DOGS

The objectives of this research work were to (1) serially evaluate the immune function of experimentally manipulated dogs to define the time required to normalize immune function; (2) identify immunologic lesions produced by the experimental protocol which causes a delay in recovery of immune function; and (3) define method of restoring immune function through the use of immune enhancing agents.
PREFACE

This report presents progress achieved between August 1, 1983, through September 30, 1986, on Contract DNA001-83-C-0172, entitled "Immune Alteration Studies in Irradiated Dogs," for the Armed Forces Radiobiology Research Institute (AFRRI), Bethesda, Maryland. This contract was designed to provide information relating to the immune and inflammatory systems of dogs following experimental injury consisting of total body irradiation and *E. coli* sepsis. These experimental conditions were selected to mimic military situations, and the data generated on the project will assist in defining methods for health management of individuals exposed to these injuries in battlefield conditions.

Research was conducted according to the principles enunciated in the "Guide for the Care and Use of Laboratory Animals," prepared by the Institute of Laboratory Animal Resources, National Research Council.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREFACE</td>
<td>iii</td>
</tr>
<tr>
<td>1 OBJECTIVE AND SCOPE</td>
<td>1</td>
</tr>
<tr>
<td>2 EXPERIMENTAL DESIGN</td>
<td>2</td>
</tr>
<tr>
<td>2.1 Animal Models</td>
<td>2</td>
</tr>
<tr>
<td>2.2 In Vitro Evaluation of Immune and Inflammatory Function</td>
<td>2</td>
</tr>
<tr>
<td>3 RESULTS</td>
<td>3</td>
</tr>
<tr>
<td>3.1 Studies of Lymphocyte Function</td>
<td>3</td>
</tr>
<tr>
<td>3.2 Study of Neutrophil Function</td>
<td>3</td>
</tr>
<tr>
<td>3.3 Neutrophil Function in Chemotaxis</td>
<td>4</td>
</tr>
<tr>
<td>3.4 T-Suppressor Cell Assays</td>
<td>5</td>
</tr>
<tr>
<td>3.5 Other Assays</td>
<td>5</td>
</tr>
<tr>
<td>4 MEETINGS AND PUBLICATIONS</td>
<td>6</td>
</tr>
</tbody>
</table>
SECTION 1

OBJECTIVE AND SCOPE

The specific objectives of this three-year contract were to: (1) serially evaluate the immune function of experimentally manipulated dogs to define the time required to normalize immune function, (2) identify immunologic lesions produced by the experimental protocol which causes a delay in recovery of immune function, and (3) define methods of restoring immune function through the use of immune enhancing agents.

These overall objectives were accomplished by performing a series of assays of immune and inflammatory function as outlined below.

(a) Perform lymphoproliferative assays of T- and B-cell function.

(b) Perform assays of macrophage and neutrophil function, including studies of random and chemotactic migration, Fc mediated particle attachment and ingestion, and microbial kill.

(c) Perform mechanistic studies of immune suppression, including evaluation of T-suppressor and T-helper cell development.

(d) Perform assays to evaluate primary and secondary immune responses to T-cell and B-cell dependent antigens.

(e) Perform in vivo assays of immune function in an attempt to correlate with in vitro findings.
SECTION 2
EXPERIMENTAL DESIGN

2.1 ANIMAL MODELS.

Study animals consisted of adult male and female, beagle dogs purchased from a commercial source by AFRRI. The dogs were housed, quarantined and treated at AFRRI according to protocols designed by the Government's scientific staff. Approximately 125 dogs were studied during this contract period and consisted of animals receiving experimental manipulation of irradiation, surgical implant of a sterile fibrin clot or a fibrin clot containing E. coli. These insults were introduced either singly or in combination, as outlined in Table 1. Normal untreated dogs served as controls and were included with each set of treatment groups.

2.2 IN VITRO EVALUATION OF IMMUNE AND INFLAMMATORY FUNCTION.

Immune and inflammatory function studies were performed using heparinized whole blood collected from treated or control dogs on the day of test. The blood was transported to the testing laboratory and processed to isolate cellular elements of interest, including mononuclear cells (lymphocytes and macrophages) or polymorphonuclear leukocytes (neutrophils). The purified cells were assayed for functional activity, as summarized in Table 2. Individual dogs were tested sequentially starting pretreatment and on post-treatment days 1 through 50. Generally, dogs were tested twice each week for the first three weeks and then weekly thereafter. The test intervals and the animal model systems were defined by the Government's Study Team.
3.1 STUDIES OF LYMPHOCYTE FUNCTION.

The lymphocyte proliferative response to the mitogens, concanavalin-A (Con-A) and pokeweed mitogen (PWM) were evaluated using dogs receiving 150 cGy irradiation (TBI) sterile fibroin clots (SC), fibroin clots containing 1×10^9 E. coli (10^9 EC), or a combination of these insults, i.e., TBI-SC or TBI-10^9 EC. Findings of these studies suggest that TBI transiently reduces lymphocyte blastogenesis during days 1-3 post-irradiation, and that responses return to normal thereafter. Compared to dogs receiving TBI only, dogs receiving TBI-SC had blastogenic responses significantly depressed on days 21 through 50 post-irradiation. In contrast, dogs receiving TBI-10^9 EC had blastogenic responses not significantly different than those of TBI only dogs. Single injuries of SC or 10^9 EC produced transient changes in blastogenic activity without significant trends.

In a parallel set of experiments, the blastogenic activity of lymphocytes from dogs receiving TBI only were evaluated for response to Con-A at 3, 4, 5, and 7 days after lymphocyte cultures had been established. The data suggests that lymphocyte proliferation in irradiated dogs reached its peak response on day 5 of culture, while the blastogenic response of normal lymphocytes reached their peak response on day 3 of culture. These findings may suggest a shift in lymphocyte subpopulations, thereby delaying the onset of the blastogenic response. Alternatively, the accessory cell population (macrophages) may have been modified by the irradiation, thus impairing their ability to initiate the blastogenic response.

3.2 STUDY OF NEUTROPHIL FUNCTION.

Neutrophil function was evaluated in a series of dogs receiving TBI (150 cGy), SC, 10^9 EC or a combination of these insults. Assays of neutrophil function included cell adherence to glass or to nylon wool, migration in agarose droplet (chemokinesis), membrane receptor expression (Fc receptors), particle ingestion, oxidative burst and microbial killing. The results of these studies can be summarized as follows:

3.2.1 Adherence - spontaneous glass or nylon wool adherence was not markedly changed by any of the treatments.
3.2.2 Fc Receptor Expression - Fc receptor expression was not markedly altered by any of the treatments.

3.2.3 Particle Ingestion - spontaneous particle (opsonized sheep erythrocytes) ingestion was not markedly altered by any of the treatments.

3.2.4 Random Migration - chemokinesis from agarose droplets were found to be markedly or significantly altered by the experimental manipulation. Among the changes in migration was a depressed migration by neutrophils from TBI (150 cGy) dogs, compared to control dog responses. Dogs receiving 10^9 EC had significantly enhanced migration on post-implant days 1 through 7 before migration capabilities returned to pretreatment levels. Dogs receiving SC had migration responses similar but to a lesser magnitude, as was seen with FC dogs. The migration seen in dogs receiving TBI-EC and TBI-SC also showed enhanced migration. The migration seen in these dogs was less than seen in dogs receiving SC or EC alone. These data may suggest that irradiation reduces the capability of neutrophils to migrate, in addition to causing a marked reduction in numbers of these cells in the peripheral blood. The reduced migration may be due to a newly emerging population of cells which require further maturation before reaching maximum migration potential.

3.3 NEUTROPHIL FUNCTION IN CHEMOTAXIS.

Based on findings in the initial phase of the contract, studies of neutrophil function were continued in dogs receiving an increased dose of E. coli $(14 \times 10^9, 20 \times 10^9$ and 30×10^9 bacteria per kilogram body weight), and at an elevated dose of irradiation (200 cGy). These increased concentrations and doses were selected by the AFPRRI study director with the objective that a lethal model of irradiation-induced sepsis would magnify the effects of these treatments on the migration response. The results of these studies can be summarized as follows:

3.3.1 neutrophil chemotaxis in irradiated dogs - neutrophil migration in dogs receiving 200 cGy TBI was initially enhanced to the chemoattractant, normal dog serum, on day 1 post-TBI. This was followed by a continuous reduction in ability to migrate starting on day 3, and continuing through days 7, 10, and 14 days post-TBI. Migration capability returned toward normal starting on day 17 and continued to increase in magnitude of
migration ability through day 28, when the migration response was three (3) times greater than was seen with random migration.

3.3.2 neutrophil chemotaxis in E. coli dogs - neutrophil migration in dogs receiving E. coli at varying doses was initially enhanced and subsequently returned to normal. The pattern of these migration increases and the duration of the elevated responses were dependent upon the dose of E. coli.

3.3.2.1 E. coli at 14 x 10⁹ - migration increased significantly on day 1 post-implant, and persisted at elevated migration levels through day 14 before returning to normal levels.

3.3.2.2 E. coli at 20 x 10⁹ - 6 dogs studied in this group, and 4 dogs died by day 1. Data is insufficient to evaluate.

3.3.2.3 E. coli at 30 x 10⁹ - 23 dogs studied in this group, of which 17 died in the first 3 days, and 6 dogs lived through 29 days post-implant. Migration was enhanced starting on day 1 and remained elevated through day 8 before returning to normal.

3.4 T-SUPPRESSOR CELL ASSAYS.

Studies of T-suppressor cell function were performed using lymphocytes from dogs receiving combined injury (TBI-SC and TBI-EC). The variability of the assay brought on by the constantly changing cell populations made interpretation of the results inconclusive. Additional studies will be required to elucidate this question.

3.5 OTHER ASSAYS.

Assays to evaluate the primary and secondary immune response to T-cell and B-cell dependent antigens were not conducted during this contract period. Further, studies of in vivo immune function performed to correlate with in vitro findings were also not performed in this contract period. These studies were not performed based on decisions made by the AFRRI study director to pursue other areas of interest, including evaluation of various animal models having greater potential for meeting the mission of AFRRI.
Publications and Presentations

The following list of papers and presentations resulted from studies performed on this contract.

Presentations

Papers

Meetings Attended

Table 1. Experimental treatment groups for combined injury studies.

<table>
<thead>
<tr>
<th>Treatment Groups</th>
<th>No. of Dogs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Irradiation - 150 cGy</td>
<td>6</td>
</tr>
<tr>
<td>- 200 cGy</td>
<td>16</td>
</tr>
<tr>
<td>E. coli Sepsis - 1 x 10^9 bacteria</td>
<td>10</td>
</tr>
<tr>
<td>10 x 10^9 bacteria</td>
<td>2</td>
</tr>
<tr>
<td>14 x 10^9 bacteria</td>
<td>10</td>
</tr>
<tr>
<td>20 x 10^9 bacteria</td>
<td>6</td>
</tr>
<tr>
<td>30 x 10^9 bacteria</td>
<td>24</td>
</tr>
<tr>
<td>14 x 10^9 bacteria (killed)</td>
<td>2</td>
</tr>
<tr>
<td>30 x 10^9 bacteria (killed)</td>
<td>10</td>
</tr>
<tr>
<td>Sterile Fibrin Clot</td>
<td>13</td>
</tr>
<tr>
<td>Irradiation (150 cGy) plus E. coli at 10 x 10^9 bacteria</td>
<td>2</td>
</tr>
<tr>
<td>Irradiation (150 cGy) plus E. coli at 1 x 10^9 bacteria</td>
<td>4</td>
</tr>
<tr>
<td>Irradiation (150 cGy) plus sterile fibrin clot</td>
<td>6</td>
</tr>
<tr>
<td>Irradiation (200 cGy) plus E. coli at 14 x 10^9 bacteria</td>
<td>13</td>
</tr>
<tr>
<td>Irradiation (200 cGy) plus sterile fibrin clot</td>
<td>1</td>
</tr>
</tbody>
</table>

TOTAL NUMBER DOGS STUDIED = 125
Table 2. Assays of immune and inflammatory function.

A. **Immune Function Assays**

Lymphocyte blastogenesis - Stimulants of lymphocytes include concanavalin-A, phytohemagglutinin, pokeweed mitogen and allogenic cells.

T-Lymphocyte suppressor cell function - Suppression of normal T-lymphocytes evaluated after addition of leukocytes from experimental dogs.

Kinetics of lymphocyte responsiveness - Variability of lymphocyte response evaluated based on day of cell culture incubation and on dose of stimulating mitogen added to culture.

B. **Inflammatory Cell (Neutrophil) Function**

Adherence - Neutrophil adherence to glass and nylon wool was evaluated.

Fc Receptor expression - The number of cells expressing Fc receptors was evaluated.

Ingestion - The number of cells ingesting opsonized sheep erythrocytes was evaluated.

Migration - The ability of neutrophils to migrate randomly and in directed assays was determined.

Oxidative burst - The oxidative potential of neutrophils from experimental dogs was measured in nitroblue tetrazolium assays.

Microbial killing - The ability of neutrophils to kill *S. typhimurium* was determined following experimental treatment of the dogs.

C. **Other Assays**

Leukocyte inhibitory factor production studies were performed.

Macrophage function evaluation in adherence, and Fc receptor assays.
DISTRIBUTION LIST

DEPARTMENT OF DEFENSE

ARMED FORCES RADIOBIOLOGY RSCH INST
1OCYS ATTN: MRCO MAJ LUCKETT

ASSISTANT SECRETARY OF DEFENSE
HEALTH AFFAIRS
ATTN: INTERNATIONAL ACTIVITIES

ASSISTANT TO THE SECRETARY OF DEFENSE
ATTN: ROOM 3E 1074

DEFENSE INTELLIGENCE AGENCY
ATTN: RTS-2B

DEFENSE NUCLEAR AGENCY
4CYS ATTN: TITL

DEFENSE TECHNICAL INFORMATION CENTER
12CYS ATTN: DD

DEPUTY UNDER SECRETARY OF DEFENSE
ATTN: ENV & LIFE SCIENCES

FIELD COMMAND DEFENSE NUCLEAR AGENCY
ATTN: FCP/FCPF

INTERSERVICE NUCLEAR WEAPONS SCHOOL
ATTN: RH

DEPARTMENT OF THE ARMY

ARMED FORCES INSTITUTE OF PATHOLOGY
ATTN: RADIOLOGIC PATHOLOGY DEPT

DIRECTORATE OF COMBAT DEVELOPMENT
ATTN: ATSA-COM-L(NBC)

LETTERMAN ARMY INSTITUTE OF RESEARCH
ATTN: SGRD-ULV-R

SURGEON GENERAL
ATTN: AAFJML
ATTN: MEDOH-N

U S ARMY ACADEMY OF HEALTH SCIENCES
ATTN: HSHA-CDD

U S ARMY NATICK RSCH DEV & ENGRG CENTER
ATTN: STRNC-S

U S ARMY NUCLEAR & CHEMICAL AGENCY
ATTN: MONA NU

WALTER REED ARMY INSTITUTE OF RESEARCH
ATTN: DIV OF EXPER THERAPEUTICS

DEPARTMENT OF THE NAVY

BUREAU OF MEDICINE & SURGERY
ATTN: CODE 71

NAVAL AEROSPACE MEDICAL INSTITUTE
ATTN: ANIMAL BEHAVIORAL SCIENCE BR

NAVAL AEROSPACE MEDICAL RESEARCH LAB
ATTN: COMMANDING OFFICER

NAVAL MEDICAL COMMAND
ATTN: MEDCOM-21

NAVAL MEDICAL RESEARCH & DEV. COMMAND
2CYS ATTN: (CODE 40C). NMCNCR

OFFICE OF NAVAL RESEARCH
ATTN: CODE 441

RADIATION HEALTH OFFICER
ATTN: USS SIMON LAKE (AS 33)

DEPARTMENT OF THE AIR FORCE

BOLLING AFB
ATTN: AF/SGPT
ATTN: HQ USAF/SGES

U S AIR FORCE ACADEMY
ATTN: HQ USAFA/DFBL

U S AIR FORCE OCCUPATIONAL & ENV HEALTH LAB
ATTN: OEHL/RZI

USAF SCHOOL OF AEROSPACE MEDICINE
ATTN: AEROSPACE MED DIV (AFSC)
ATTN: CHIEF/RADIOBIOLOGY DIV (RA)
ATTN: USAF/SAV/REZB

DEPARTMENT OF ENERGY

ARGONNE NATIONAL LABORATORY
ATTN: REPORT SECTION

BROOKHAVEN NATIONAL LABORATORY
ATTN: REPORTS SECTIONS
ATTN: RESEARCH LIBRARY

DEPARTMENT OF ENERGY
ATTN: DIR OTHER ER 70

LAWRENCE BERKELEY NATIONAL LAB
ATTN: LIBRARY
DNA-TR-86-377 (DL CONTINUED)

LAWRENCE LIVERMORE NATIONAL LAB
ATTN TECH INFO DIV LIB L 3

LOS ALAMOS NATIONAL LABORATORY
ATTN REPORT LIBRARY

LOVELACE BIOMEDICAL &
ATTN DOCUMENT LIBRARY

OTHER GOVERNMENT

CENTRAL INTELLIGENCE AGENCY
ATTN OFFICE OF MEDICAL SERV

DIVISION OF LIFE SCIENCES, OST
9CYS ATTN DIVISION OF LIFE SCIENCES, OST

GPO CONSIGNED BRANCH
17CYS ATTN CONSIGNED STOCK

LIBRARY OF CONGRESS
ATTN EXCHANGE AND GIFT DIV

NATIONAL LIBRARY OF MEDICINE, NIH
ATTN OFFICE OF PUB & INQUIRIES

NUCLEAR REGULATORY COMMISSION
ATTN LIBRARY

PROJ OFFICER FOR RADIOLOGICAL MODIFIERS
ATTN NIH NCI OCT CTEP ROB BTSG

U S GOVERNMENT PRINTING OFFICE
ATTN RM A 150

U S PUBLIC HEALTH SERVICE
ATTN DIV OF BIOLOGICAL EFFECTS

U S PUBLIC HEALTH SERVICE
ATTN NORTHEASTERN RADIO HEALTH LAB

DEPARTMENT OF DEFENSE CONTRACTORS

IMMUQUEST LABS INC
2 CYS ATTN CAO BOWLES

KAMAN SCIENCES CORP
ATTN DASIAC

KAMAN TEMPO
ATTN DASIAC

PACIFIC SIERRA RES LAB
ATTN H BRODE, SAGE CHAIRMAN

FOREIGN

NBC DEFENSE RESEARCH AND DEVELOPMENT
ATTN WWDBW AB(SCHUTZ)

SERIAL ACQUISITIONS (EXCHANGE)
ATTN BRITISH LIBRARY

DIRECTORY OF OTHER

CALIFORNIA, UNIVERSITY OF DAVIS
ATTN RADIOBIOLOGY LAB

OREGON STATE UNIVERSITY
ATTN DEPT OBIOCHEM & BIOPHY

RADIOISOTOPE LABORATORY
ATTN RADIOISOTOPE LAB

ROCHESTER UNIV MEDICAL CTR
ATTN RBB LIBRARY

Dist:2
END
DATE
FILMED
5-88
PTIC