SMALL SAMPLE COMPARISONS OF EXPONENTIAL RELIABILITY ESTIMATES FOR TYPE I CENSORING

ARMY BALLISTIC RESEARCH LAB ABERDEEN PROVING GROUND MD

L L CRANFORD ET AL OCT 87 BRL-TR-2852

1/1

F/G 12/7
SMALL SAMPLE COMPARISONS OF EXPONENTIAL RELIABILITY ESTIMATES FOR TYPE I CENSORING

LINDA L. CRAWFORD MOSS
JERRY THOMAS

OCTOBER 1987

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED

US ARMY BALLISTIC RESEARCH LABORATORY
ABERDEEN PROVING GROUND, MARYLAND
DESTRUCTION NOTICE

Destroy this report when it is no longer needed. DO NOT return it to the originator.

Additional copies of this report may be obtained from the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.

The findings of this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The use of trade names or manufacturers' names in this report does not constitute endorsement of any commercial product.
A simulation study was used to evaluate several Chi Square approximations for the lower confidence limit of the exponential parameter used in reliability for Type I censoring. The study showed that the approximation using χ^2 with $2c+1$ degrees of freedom (where c is the number of failures) gave closer estimates to the exact estimates than χ^2_{2c} or χ^2_{2c+2}. The exact estimates of the exponential parameter are based on an algorithm from P. I. Bartholomew (1963). However, it was discovered that not every estimate of the exponential parameter, λ, could be found in Bartholomew's equation. Estimates near the maximum and minimum values of λ were nonsensical.
SUMMARY

Our study has shown that using χ^2_{2c+2} to estimate θ and R for small sample sizes produces estimates that are too conservative when compared to Bartholomew’s exact method. If χ^2_{2c} is used to estimate θ and R, optimistic estimates will be obtained. Better estimates can be obtained for small sample sizes by using χ^2_{2c+1}. Therefore, for small sample sizes, we recommend using χ^2_{2c+1} instead of χ^2_{2c} or χ^2_{2c+2}.

During our study, much to our surprise, we found that the lower confidence limits could not be computed for all realistic values of θ in Bartholomew’s exact method. This occurred when θ approached its maximum theoretical value for very small sample sizes. An explanation for this has not yet been determined by the authors.
ACKNOWLEDGEMENTS

The authors wish to acknowledge the helpful suggestions given by Dr. J. Richard Moore, Ballistic Research Laboratory and Dr. Alan W. Benton, US Army Material Systems Analysis Activity, in the formative stages, and the authors wish to acknowledge the reviewers, Miguel Andriolo and David W. Webb, BRL, for their detailed look at the report.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUMMARY</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF ILLUSTRATIONS</td>
<td>ix</td>
</tr>
<tr>
<td>I. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>II. SIMULATION</td>
<td>3</td>
</tr>
<tr>
<td>III. DISCUSSION OF RESULTS</td>
<td>3</td>
</tr>
<tr>
<td>IV. UNRESOLVED FINDING</td>
<td>12</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>16</td>
</tr>
<tr>
<td>NOMENCLATURE</td>
<td>17</td>
</tr>
<tr>
<td>DISTRIBUTION LIST</td>
<td>19</td>
</tr>
</tbody>
</table>
LIST OF ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Illustration Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Lower 95(^{%}) Confidence Limits on (\theta). Exact vs Estimates (n = 10)</td>
<td>6</td>
</tr>
<tr>
<td>2. Lower 95(^{%}) Confidence Limits on (\theta). Exact vs Estimates (n = 20)</td>
<td>7</td>
</tr>
<tr>
<td>3. Reliability Lower 95(^{%}) Confidence Limits. Exact vs Estimates (n = 10)</td>
<td>8</td>
</tr>
<tr>
<td>4. Reliability Lower 95(^{%}) Confidence Limits. Exact vs Estimates (n = 20)</td>
<td>9</td>
</tr>
<tr>
<td>5. Maximum Absolute Difference in Reliability Lower Confidence Limits for (\alpha = .03)</td>
<td>10</td>
</tr>
<tr>
<td>6. Comparison of Binomial with Maximum and Minimal Exact Reliability Lower</td>
<td>11</td>
</tr>
<tr>
<td>7. Alpha Level versus (\hat{\theta}_L (\theta = 1.95))</td>
<td>13</td>
</tr>
<tr>
<td>8. Alpha Level versus (\hat{\theta}_L (\theta = 1.98))</td>
<td>15</td>
</tr>
</tbody>
</table>
I. INTRODUCTION

The problem of estimating reliability using censored data and determining a lower confidence limit on reliability is discussed in this paper. Censoring occurs when testing is terminated before all items have failed. There are two basic methods of censoring: (1) Type I censoring, where testing is terminated at some predetermined time; and (2) Type II censoring, where testing is terminated after a preassigned number of failures. When failures occur, either an item is replaced or it is not replaced. For this paper, we are interested in Type I censoring without replacement for small sample sizes (less than 25) with one or more failures. Suppose we have n items on test until time T (censored time). Each item is tested until it fails or the c failures occur at times, \(t_1, t_2, \ldots, t_c \), where \(t_i < t_{i+1} < T \).

One could simply ignore the failure times and just consider that \(c \) failures occurred out of \(n \) items, then use the binomial distribution to put a lower confidence limit (L.C.L.) on reliability. However, too much information is ignored and the confidence bound is very conservative.

A better approach would be to utilize both number of failures and failure times. If the failure times \((t_i) \) are assumed to be exponentially distributed, the probability density function (pdf) for \(t \) is \(f(t) = \frac{1}{\theta} e^{-\frac{t}{\theta}} \), and the reliability is \(R(t) = e^{-\frac{t}{\theta}}, t > 0, \theta > 0 \). In a 1960 paper, Epstein\(^1\) gave estimation procedures for both point and confidence limit estimates for \(\theta \). For Type I censoring without replacement of the failed items, the exponential parameter \(\theta \) can be estimated by its maximum likelihood estimate (m.l.e.), which is

\[
\hat{\theta} = \frac{A}{c} \tag{1}
\]

where

\[
A = \sum_{i=1}^{c} t_i + (n - c) T = \text{Total amount of test time}
\]

\[
\sum_{i=1}^{c} t_i = \text{sum of the failure times for the \textit{c} items that failed}
\]

\[
n = \text{total number of items on test}
\]

\[
c = \text{total number of failures}
\]

\[
T = \text{censored time}
\]

(This is a biased estimate: \(E(\hat{\theta}) = \frac{1}{c} \left[\sum_{i=1}^{c} E(t_i) + (n - c) T \right] \)

\[
= \frac{1}{c} [c\theta + (n - c) T] = \theta + \left(\frac{(n - c) T}{c} \right)
\]

Then the lower 100 \((1 - \alpha)\) percent confidence interval for \(\theta\) is estimated by

\[
\hat{\theta}_c + 2 = 2A/\chi^2_{2c + 2(a)}
\]

where \(\chi^2_{2c + 2(a)}\) is the upper \(\alpha\) percentage point of a \(\chi^2\) distribution with \(2c + 2\) degrees of freedom. Therefore, the lower limit on reliability using this l.c.l. for \(\theta\) would be \(\hat{R}_{2c + 2} = e^{-\frac{\hat{\theta}_c}{2}}\). Epstein's approximate procedure is the most commonly used and is cited in text books such as Bazovsky\(^2\); Mann, Shafer, and Singpurwalla\(^3\); Hahn and Shapiro\(^4\); and others.

In lieu of the many approximations that exist for the l.c.l. of \(\theta\), the exact distribution of \(\theta\) can be found. This exact distribution of \(\theta\) was derived by D.J. Bartholomew\(^5\) for small sample sizes where at least one failure occurs, i.e., \(c > 0\).

Bartholomew's exact method of calculating the l.c.l. \(\hat{\theta}_{\text{exact}}\) for the exponential parameter, \(\theta\), is the solution to

\[
\Pr(\theta_0 \geq \hat{\theta}) = \frac{1}{1 - e^{-nT/\hat{\theta}_{\text{exact}}}} \sum_{c=1}^{n} \left(\begin{array}{c} n \\ c \end{array} \right) \sum_{i=0}^{c} \left(\begin{array}{c} c \\ i \end{array} \right) (-1)^i B
\]

\[= \alpha\]

where

\[B = \exp \int_1^{\frac{T}{\hat{\theta}_{\text{exact}}}} (n - c + i) \int_x^{\infty} p(\chi^2_c) \, d\chi^2_c\]

and

\[x = \frac{2c}{\hat{\theta}_{\text{exact}}} \left< \hat{\theta} - \frac{T}{c}(n - c + i) \right>\]

The symbol \(<-\rangle\) means that the expression is to be taken as zero if the contents are negative. Subscripts on \(\theta\)'s indicate l.c.l. (except for \(\theta_0\)) and subscripts on \(\chi\) indicate degrees of freedom.

\(^3\) Mann, N R; Schafer, R E; and Singpurwalla, N D. "Methods for Statistical Analysis of Reliability and Life Data." Wiley 1974

This equation is a weighted sums of χ^2_2, integrals. This is quite cumbersome without the aid of a computer, especially when $n > 2$. It is obvious that even for a sample size of two, Bartholomew's exact method is quite complicated. Complications and complexities using distribution theory leads, in most cases, to the use of asymptotic arguments for inference about parameters. However, because we are only interested in small samples, asymptotic results are not applicable. Therefore, we decided to compare Bartholomew's exact method with Epstein's method and variations of Epstein's method.

II. SIMULATION

A simulation study of the exponential distribution was performed with $\theta = 1$ and $T^l = 1$. We first chose $\alpha = 0.05$ and then chose $\alpha = 0.10$ while letting the sample size, n, range from 2 to 20. For each sample size, 2000 simulations were run.

Uniform random numbers were used to generate random exponentially distributed times. After each exponential time was generated it was compared to $T = 1$. If the exponential time was less than $T = 1$, then it was considered to be a failure occurring at t_1. After n of these times were generated with c failures, A and $\hat{\theta}$ were calculated. Lower confidence limits for θ were then calculated using Bartholomew's exact method, $\hat{\theta}_{\text{exact}}$, and using Epstein's method with modifications in the degrees of freedom for χ^2. The subscript on θ indicates the degrees of freedom for χ^2. Thus lower confidence limits $\hat{\theta}_{2c+2}$, $\hat{\theta}_{2c+1}$, and $\hat{\theta}_{2c}$ were calculated.

The lower limit on reliability was calculated using the computed lower confidence limit for θ in the following equation

$$R_L(T) = e^{-\frac{T}{\hat{\theta}_L}}$$

where

$T = \text{Censored time}$

$\hat{\theta}_L = \text{Computed lower confidence limit.}$

III. DISCUSSION OF RESULTS

For those simulations where $\alpha = .05$, we would expect $\hat{\theta}_L$ to exceed θ only 5% of the time, i.e., $P(\hat{\theta}_L > \theta) = .05$. Since there were 2000 cases for each sample size, we would expect 100 of our $\hat{\theta}_L$ to exceed $\theta = 1$. Table 1 shows the number exceeding 1.

\begin{table}
\centering
\begin{tabular}{|c|c|}
\hline
Sample Size & Number Exceeding 1 \1
\hline
2 & 199 \1
3 & 198 \1
4 & 197 \1
5 & 196 \1
6 & 195 \1
7 & 194 \1
8 & 193 \1
9 & 192 \1
10 & 191 \1
11 & 190 \1
12 & 189 \1
13 & 188 \1
14 & 187 \1
15 & 186 \1
16 & 185 \1
17 & 184 \1
18 & 183 \1
19 & 182 \1
20 & 181 \\
\hline
\end{tabular}
\caption{Number of $\hat{\theta}_L$ Exceeding $\theta = 1$ for Each Sample Size}
\end{table}

\footnote{One property is that T, θ, and $\hat{\theta}_L$ scale proportionally. so if $T = 60$ hours, $\theta = 300$, then $\hat{\theta}_L = 18.33901$. If T and θ are scaled by dividing by 60, i.e., $T = 1$ and $\theta = 0.50$, then $\hat{\theta}_L = 30.6565$ which is $18.33901 \div 60$. Thus we chose to keep $T = 1$ for our examples and simulations.}
TABLE 1. Simulation Study with $\alpha = 0.05$

<table>
<thead>
<tr>
<th>n</th>
<th>$\hat{\theta}_{\text{exact}}$</th>
<th>$\hat{\theta}_{2\alpha}$</th>
<th>$\hat{\theta}_{2\alpha + 1}$</th>
<th>$\hat{\theta}_{2\alpha + 2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>76</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>95</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>87</td>
<td>261</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>102</td>
<td>123</td>
<td>118</td>
<td>13</td>
</tr>
<tr>
<td>6</td>
<td>87</td>
<td>162</td>
<td>57</td>
<td>47</td>
</tr>
<tr>
<td>7</td>
<td>104</td>
<td>136</td>
<td>108</td>
<td>35</td>
</tr>
<tr>
<td>8</td>
<td>105</td>
<td>156</td>
<td>80</td>
<td>69</td>
</tr>
<tr>
<td>9</td>
<td>111</td>
<td>155</td>
<td>110</td>
<td>37</td>
</tr>
<tr>
<td>10</td>
<td>98</td>
<td>134</td>
<td>82</td>
<td>54</td>
</tr>
<tr>
<td>15</td>
<td>98</td>
<td>121</td>
<td>88</td>
<td>63</td>
</tr>
<tr>
<td>20</td>
<td>80</td>
<td>106</td>
<td>83</td>
<td>63</td>
</tr>
</tbody>
</table>

The results obtained for $n = 4, 5, 6, 7, 8, 9, 10, 15$ and 20 for the $\hat{\theta}_{\text{exact}}$ are typical of what one expects. However, we see that for $n = 2$, the exact is conservative. By conservative we mean that the lower limit tends to be too low, since in less than 5% of the simulated runs, $\hat{\theta}_{\text{exact}} > \theta$ but $\hat{\theta}_{2\alpha}$, $\hat{\theta}_{2\alpha + 1}$, and $\hat{\theta}_{2\alpha + 2}$ are extremes, i.e., for $n = 2$ and 3 there are no $\hat{\theta}_{L}$ greater than $\theta = 1$. We can see that $\hat{\theta}_{2\alpha + 2}$ is very conservative with $\hat{\theta}_{2\alpha + 1}$ being better. For $\hat{\theta}_{2\alpha}$, we get more than 100 lower limits exceeding the true value, except for $n = 2$ and 3.

Similarly, simulations were run with $\alpha = .10$. Here we would expect 200 cases of the $\hat{\theta}_{L}$ to exceed θ. Table 2 gives the actual number of cases for each sample size. Again we see that $\hat{\theta}_{2\alpha}$ overestimates the number of lower confidence limits of $\hat{\theta}_{L}$ which exceeds the true value of θ which equals 1 for sample sizes except $n = 2$. $\hat{\theta}_{2\alpha + 2}$ is very conservative and $\hat{\theta}_{2\alpha + 1}$ is less conservative (except for $n = 2$ and 3).

Another observation made from the simulations for computed values of $\hat{\theta}$ was that for each value of θ, the lower limit on θ tended to follow the pattern:

$$\hat{\theta}_{2\alpha + 2} < \hat{\theta}_{2\alpha + 1} < \hat{\theta}_{\text{exact}} < \hat{\theta}_{2\alpha}.$$ \hspace{1cm} (5)

Examples of this can be observed for $n = 10$ and 20 by examining Figures 1 and 2. This indicates again that $\hat{\theta}_{2\alpha + 2}$ and $\hat{\theta}_{2\alpha + 1}$ are conservative, i.e., they underestimate θ_{L}. On the other hand, $\hat{\theta}_{2\alpha}$ overestimates θ_{L} slightly.

The $\hat{\theta}_{L}$'s were used to establish a lower limit on reliability, \hat{R}_{L}, at time T. Selected values of θ were plotted against the \hat{R}_{L}'s for the four methods under study. The plots appear in Figures 3 and 4 for $n = 10$ and $n = 20$, respectively. We can see that for small values of θ, the four methods give approximately the same lower limit on
TABLE 2. Simulation Study with $\alpha = 0.10$
Observed Cases where $\hat{\theta}_L > \theta$
Expected Number = 200

<table>
<thead>
<tr>
<th>n</th>
<th>$\hat{\theta}_{\text{exact}}$</th>
<th>$\hat{\theta}_{2c}$</th>
<th>$\hat{\theta}_{2c+1}$</th>
<th>$\hat{\theta}_{2c+2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>171</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>190</td>
<td>274</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>181</td>
<td>252</td>
<td>193</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>192</td>
<td>280</td>
<td>126</td>
<td>114</td>
</tr>
<tr>
<td>6</td>
<td>180</td>
<td>263</td>
<td>180</td>
<td>67</td>
</tr>
<tr>
<td>7</td>
<td>188</td>
<td>258</td>
<td>152</td>
<td>123</td>
</tr>
<tr>
<td>8</td>
<td>201</td>
<td>279</td>
<td>198</td>
<td>110</td>
</tr>
<tr>
<td>9</td>
<td>193</td>
<td>254</td>
<td>163</td>
<td>130</td>
</tr>
<tr>
<td>10</td>
<td>183</td>
<td>225</td>
<td>171</td>
<td>112</td>
</tr>
<tr>
<td>15</td>
<td>191</td>
<td>232</td>
<td>167</td>
<td>125</td>
</tr>
<tr>
<td>20</td>
<td>170</td>
<td>203</td>
<td>158</td>
<td>117</td>
</tr>
</tbody>
</table>

reliability. For larger values of $\hat{\theta}$, we can see that \hat{R}_{2c} lies above \hat{R}_{exact} everywhere, with \hat{R}_{2c+1} and \hat{R}_{2c+2} lying generally below \hat{R}_{exact}. We also can see that \hat{R}_{2c+1} is much closer to \hat{R}_{exact} than the other two, especially for $n = 20$.

For each sample size, the maximum absolute difference in lower reliability estimates were computed, i.e., $|\hat{R}_{\text{exact}} - \hat{R}_{2c}|$, $|\hat{R}_{\text{exact}} - \hat{R}_{2c+1}|$ and $|\hat{R}_{\text{exact}} - \hat{R}_{2c+2}|$. These differences are plotted versus sample size in Figure 5. We can see that the differences were larger for small sample sizes ($n = 2$ and $n = 5$) and generally \hat{R}_{2c+2} differed the most from the \hat{R}_{exact}. As the sample size got larger ($n = 10, 15$ and 20), all the reliability estimates converged i.e., the differences converged to zero.

Earlier in the report it was mentioned that one alternative to this confidence limit estimate problem would be to ignore the failure times and simply use the number of failures to put a binomial lower confidence limit on reliability. To show how conservative these binomial limits are, we used the minimum and maximum lower reliability estimates obtained from Bartholomew's exact method (2000 simulations; $n = 10$) and compared them to the binomial lower confidence estimates. These comparisons are shown in Figure 6 for the various number of failures observed. We can see that the binomial limits are always at or below the minimum calculated using Bartholomew's method. Thus, by ignoring the failure time information, we are lowering our estimate of reliability.
Figure 1. Lower 95\% Confidence Limits on θ. Exact vs Estimates ($n = 10$).
Figure 2. Lower 95\% Confidence Limits on θ. Exact vs Estimates ($n = 20$).
Figure 3. Reliability Lower 95\% Confidence Limits. Exact vs Estimates ($n = 10$).
Figure 4. Reliability Lower 95\% Confidence Limits. Exact vs Estimates (n = 20).
Figure 5. Maximum Absolute Difference in Reliability Lower Confidence Limits for $\alpha = .05$.

LEGEND

$\square = |\hat{R}_{L\alpha 1} - \hat{R}_{L\alpha 2}|$

$\times = |\hat{R}_{L\alpha 1} - \hat{R}_{L\alpha + 1}|$

$\ast = |\hat{R}_{L\alpha 2} - \hat{R}_{L\alpha + 2}|$
Figure 6. Comparison of Binomial with Maximum and Minimal Exact Reliability Lower 95% Confidence Limit.
IV. UNRESOLVED FINDING

During the simulation it was noted that on occasion we were obtaining estimates of $\hat{\theta}_{\text{exact}}$ that were greater than $\hat{\theta}$. Some $\hat{\theta}_{\text{exact}}$'s were several magnitudes greater than $\hat{\theta}$. Then there were a few instances where computer error messages were obtained instead of an estimate of $\hat{\theta}_{\text{exact}}$. Looking into the problem we noted these anomalies were occurring when $\hat{\theta}$ approached its maximum value.

Take for instance the case when $n = 2$, $c = 1$, $\theta = 1$, $T = 1$ and $\alpha = .05$. We can obtain a closed form for $P \{ \theta_0 \geq \hat{\theta} \mid \theta \} = \alpha$. However, this is not a continuous function; there are three ranges:

For $[0 < \hat{\theta} \leq .5]$, $\alpha = \frac{1}{1 - e^{2/\theta}} \left[-e^{-2/\theta} + (2 \hat{\theta} + 1) e^{-2/\theta} \right]$ (6)

For $[.5 < \hat{\theta} < 1]$, $\alpha = \frac{1}{1 - e^{2/\theta}} \left[2e^{1/\theta} - e^{2/\theta} + (2 \hat{\theta} + 2) e^{2/\theta} \right]$ (7)

For $[1 < \hat{\theta} < 2]$, $\alpha = \frac{2}{1 - e^{-2/\theta}} \left[\frac{e^{\hat{\theta}}}{\hat{\theta}} - e^{-2/\theta} \right]$ (8)

The discontinuities at 0, 1 and 2 can easily be seen by looking at the maximum and minimum values that $\hat{\theta}$ can take on. Recall that

$$\hat{\theta} = \frac{A}{c}$$ (9)

$$\sum_{i=1}^{c} t_i + (n - c) T = \frac{\sum_{i=1}^{c} t_i + (n - c) T}{c}$$

Let ϵ be a very small time, $T = 1$, and $n = 2$. Then for one failure ($c = 1$) near T,

$$\hat{\theta} = \frac{(T - \epsilon) + (n - 1)T}{1} = 2 - \epsilon$$ is the maximum value that $\hat{\theta}$ can assume. For two failures near T,

$$\hat{\theta} = \frac{(t_1 + t_2)}{2}$$

$$= 2(T - \epsilon)/2$$

$$= 1 - \epsilon.$$ (10)

Assume one failure occurs near time 0, $\hat{\theta} = \frac{(0 + \epsilon) + T}{1} = 1 + \epsilon$; for two failures near 0, $\hat{\theta} = \frac{(0 + 2\epsilon)}{2} = 0 + \epsilon$. The maximum value of θ is $2 - \epsilon$. This indicates that the failure occurred only ϵ time before the censoring time T.

To study the problem we selected $\hat{\theta} = 1.95$ and started at $\hat{\theta}_{\text{exact}} = 0.2$ and solved for α. Then $\hat{\theta}_{\text{exact}}$ was increased by increments of $\Delta = .2$ until $\hat{\theta}_{\text{exact}}$ reached 2.0, the theoretical maximum. The largest α obtained while solving for α at each increment was less than 0.03 (See Figure 7). To get an $\alpha = 0.05$ for $\hat{\theta} = 1.95$, it was determined that
Figure 7. Alpha Level versus $\dot{\theta}_L$ ($\dot{\theta} = 1.95$).
\(\hat{\theta}_{\text{exact}} \) would have to be greater than 500. This means that \(\hat{\theta}_{\text{exact}} \) solved in the equation would be much larger than the set value. Similarly, when \(n = 3, 4, \) and 5 there were a few cases where \(\hat{\theta}_{\text{exact}} > \theta \). This phenomena did not occur when \(n = 6, 7, 8, 9, 10, 15 \) and 20. At \(\alpha = 0.10 \), this also occurred for \(n = 2 \) thru 7. Similarly we selected \(\theta = 1.98 \) and solved for \(\alpha \). The largest \(\alpha \) obtained was less than 0.015 (See Figure 8). Yet we have not been able to explain this anomaly.
Figure 8. Alpha Level versus $\hat{\phi}_L$ ($\hat{\theta} = 1.98$).
REFERENCES

NOMENCLATURE

m.l.e. - maximum likelihood estimate
l.c.l. - lower confidence limit
\(\theta \) - exponential parameter
\(\hat{\theta} \) - m.l.e. estimate on \(\theta \)
\(\hat{\theta}_L \) - l.c.l. on \(\theta \)
\(\hat{\theta}^{ex}_{L} \) - l.c.l. on \(\theta \) using Bartholomew's exact method
\(\hat{\theta}^{2\pm2} \) - l.c.l. on \(\theta \) using Epstein's method - subscript indicates d.f. for \(\chi^2 \)
\(\hat{\theta}^{2\pm1} \) - l.c.l. on \(\theta \) using Epstein's method (modified) - subscript indicates d.f. for \(\chi^2 \)
\(\hat{\theta}_{2c} \) - l.c.l. on \(\theta \) using Epstein's method (modified) - subscript indicates d.f. for \(\chi^2 \)
\(\hat{R}_L(1) \) - computed l.c.l. on reliability using \(\hat{\theta}_L \)
\(\hat{R}^{ex}_{exact} \) - l.c.l. on reliability using \(\hat{\theta}^{exact} \)
\(\hat{R}_{2c} \) - l.c.l. on reliability using \(\hat{\theta}_{2c} \)
\(\hat{R}_{2c+1} \) - l.c.l. on reliability using \(\hat{\theta}_{2c+1} \)
\(\hat{R}_{2c+2} \) - l.c.l. on reliability using \(\hat{\theta}_{2c+2} \)
DISTRIBUTION LIST

<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Organization</th>
<th>No. of Copies</th>
<th>Organization</th>
</tr>
</thead>
</table>
| 12 | Administrator
 Defense Technical Info Center
 ATTN: DTIC-DDA
 Cameron Station
 Alexandria, VA 22304-6145 | 1 | Commander
 US Army Aviation Research
 and Development Command
 ATTN: AMSAV-E
 4300 Goodfellow Blvd
 St. Louis, MO 63120 |
| 1 | HQDA
 DAMA-ART-M
 Washington, DC 20310 | 1 | Director
 US Army Air Mobility Research
 and Development Laboratory
 Ames Research Center
 Moffett Field, CA 94035 |
| 1 | Commander
 US Army Materiel Development
 and Readiness Command
 ATTN: AMCDRA-NT
 5001 Eisenhower Avenue
 Alexandria, VA 22333-0001 | 1 | Commander
 US Army Communications -
 Electronics Command
 ATTN: AMSEL-ED
 Fort Monmouth, NJ 07703 |
| 1 | Commander
 Armament R&D Center
 US Army AMCOM
 ATTN: SMCAR-TSS
 Dover, NJ 07801 | 1 | Commander
 US Army Electronics Research
 and Development Command
 Technical Support Activity
 ATTN: DELSD-L
 Fort Monmouth, NJ 07703-5301 |
| 1 | Commander
 Armament R&D Center
 US Army AMCOM
 ATTN: SMCAR-TDC
 Dover, NJ 07801 | 1 | Commander
 US Army Missile Command
 ATTN: AMSMI-R
 Redstone Arsenal, AL 35898 |
| 1 | Commander
 US Army Armament, Munitions
 and Chemical Command
 ATTN: SMCAR-ESP-L
 Rock Island, IL 61299 | 1 | Commander
 US Army Missile Command
 ATTN: AMSMI-YDL
 Redstone Arsenal, AL 35898 |
| 1 | Director
 Benet Weapons Laboratory
 Armament R&D Center
 US Army AMCOM
 ATTN: SMCAR-LCB-TL
 Watervliet, NY 12189 | 1 | Commander
 US Army Tank Automotive
 Command
 ATTN: AMSTA-TSL
 Warren, MI 48090 |
<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Organization</th>
<th>No. of Copies</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Director</td>
<td></td>
<td>Dir, USAMSAA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>AMXSY-R, Bobby Bennett</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AMXSY-R, Harold Pasini</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AMXSY-R, Walter Mowchan</td>
</tr>
<tr>
<td>2</td>
<td>Commandant</td>
<td></td>
<td>Dir, USACSTA</td>
</tr>
<tr>
<td></td>
<td>US Army Infantry School</td>
<td></td>
<td>ATTN: STECS-MA-A, E. Jackson</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>STECS-MA-A, Vernon Visnaw</td>
</tr>
<tr>
<td>1</td>
<td>Commander</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>US Army Development & Employment Agency</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>AFWL/SUL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kirtland AFB, NM 87117</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Air Force Armament Laboratory</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ATTN: AFATL/DLODL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eg'\n AFB, FL 32542-5000</td>
<td>Aberdeen Proving Ground</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Dir. USAMSAA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ATTN: AMXSY-D</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AMXSY-MP, H. Cohen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Cdr. USATECOM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ATTN: AMSTE-TO-F</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AMSTE-EV-S, Larry West</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Cdr. CRDC: AMCCOM, Bldg E3516</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ATTN: SMCCR-RSP-A</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SMCCR-MU</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SMCCR-SPS-IL</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
USER EVALUATION SHEET/CHANGE OF ADDRESS

This Laboratory undertakes a continuing effort to improve the quality of the reports it publishes. Your comments/answers to the items/questions below will aid us in our efforts.

1. BRL Report Number ______________________ Date of Report ______________

2. Date Report Received ______________________

3. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which the report will be used.) ______________________

4. How specifically, is the report being used? (Information source, design data, procedure, source of ideas, etc.) ______________________

5. Has the information in this report led to any quantitative savings as far as man-hours or dollars saved, operating costs avoided or efficiencies achieved, etc? If so, please elaborate. ______________________

6. General Comments. What do you think should be changed to improve future reports? (Indicate changes to organization, technical content, format, etc.) ______________________

7. If indicating a Change of Address or Address Correction, please provide the New or Correct Address in Block 6 above and the Old or Incorrect address below.

Name ______________________
Organization ______________________
Address ______________________
City, State, Zip ______________________

(Remove this sheet, fold as indicated, staple or tape closed, and mail.)
END
DATE
FILMED
4-88
DTIC