TRIMER OF 15-DEHYDRO-PGB1 IMPROVES RECOVERY OF MITOCHONDRIAL FUNCTION AFT. (U) OREGON HEALTH SCIENCES UNIV PORTLAND L L WIDENER ET AL. 30 NOV 87

UNCLASSIFIED N00014-86-K-0042

F/G 6/15

NL
(U) Trimer of 15-dehydro-PGB₁ improves recovery of mitochondrial function after renal ischemia

Linda Widener, Dagmar Bartos, and Leena Mela-Riker

Annual

FROM 12/86 TO 11/87

Paper presented at the First International Conference on Shock, Montreal, Canada, June 11, 1987

The efficacy of (PGB₁)₃ in protecting renal mitochondrial function from ischemic reperfusion injury was firmly established in a series of experiments in rats. Renal ischemia was induced by unilateral closure of the renal artery with an arterial clip. After 48 minutes of ischemia the clip was opened to recover blood flow. At this time treated animals were given a bolus injection, I.P., of 2.5 mg/kg (PGB₁)₃. Sham controls received an injection of the vehicle. The animals were sacrificed 24 hours later, renal mitochondria were isolated and their function analyzed. (over)
Our data indicate that a bolus injection of (PGB₁)$_3$ given at the time of reflow provides significant improvement of mitochondrial function after 48 minutes of renal ischemia in the rat.

<table>
<thead>
<tr>
<th></th>
<th>State 3 Rate</th>
<th>[Cytochrome]</th>
<th>Ca$^{2+}$ uptake</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>moles O$_2$/mole aa$_3$/min</td>
<td>nmoles/mg Protein</td>
<td>nmoles/min/mg</td>
</tr>
<tr>
<td>Control</td>
<td>177±13</td>
<td>177±9</td>
<td>167±9</td>
</tr>
<tr>
<td>48 min Isch. +24 hrs Reperf.</td>
<td>59±19</td>
<td>45±3</td>
<td>45±13</td>
</tr>
<tr>
<td>-(PGB₁)$_3$</td>
<td>162±15</td>
<td>114±29</td>
<td>122±5</td>
</tr>
</tbody>
</table>

Cyclic mixtures of prostaglandin E2 are protective against mitochondrial functional failure after tissue ischemia. The active component of the PGE mixture is unknown. We used the trimer of 15-dehydro-PGB to test its protective effect in renal ischemia. Renal ischemia was induced by a unilateral closure of the renal artery in the rat. After a 45 min. ischemic period the arterial clip was opened to recover renal blood flow. At this time the treated animals received a bolus of 1.5 mg/kg 15-dehydro-PGB, IP. The untreated animals received an injection of the vehicle. The animals were sacrificed after 24 hours, renal mitochondria were isolated and their function analyzed. The data are shown in the Table.

<table>
<thead>
<tr>
<th></th>
<th>[CYTOCHROME] n moles/mg</th>
<th>STATE 3 RATE moles (g/mole)</th>
<th>STATE 4 RATE moles (g/mole)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>b</td>
<td>c</td>
<td>b</td>
</tr>
<tr>
<td>CONTROL</td>
<td>0.24±.03</td>
<td>0.22±.03</td>
<td>0.63±.1</td>
</tr>
<tr>
<td>ISCH 45 MIN</td>
<td>0.13±.02*</td>
<td>0.23±.002</td>
<td>0.30±.08*</td>
</tr>
<tr>
<td>2* - PGB</td>
<td>0.17±.04*</td>
<td>0.19±.03</td>
<td>0.47±1.06*</td>
</tr>
<tr>
<td>HRS + PGB</td>
<td>0.19±.01</td>
<td>0.22±.03</td>
<td>0.51±.05</td>
</tr>
</tbody>
</table>

These data indicate that a bolus injection of the trimer of 15-dehydro-PGB given at the time of reflow provides significant improvement of mitochondrial function after 45 min. of renal ischemia in the rat. Supported by Office of Naval Research.
Oligo-PGB Program

Annual, Final and Technical Reports

Investigators:

Dr. Richard E. Clark
Chief, Surgery Branch
NHLI, Building 10, 2R-242
National Institutes of Health
Bethesda, MD 20205

Dr. Giora Z. Feuerstein
Neurobiology Research Division
Uniformed Services University
of the Health Sciences
4301 Jones Bridge Road
Bethesda, MD 20814

Dr. Leena Mela-Riker
Department of Surgery
Oregon Health Sciences University
Portland, OR 97201

Dr. Dag K.J.E. von Lubitz
Department of Neurology
Georgetown Hospital
3800 Reservoir Road, N.W.
Washington, DC 20007

Dr. Thomas M. Devlin
Chairman, Department of Biological Chemistry
Hahnemann University
230 Broad Street
Philadelphia, PA 19102

Dr. Roger M. Loria
Department of Microbiology and Immunology
Virginia Commonwealth University
Box 678, MCV Station
Richmond, VA 23298-0001

Dr. George L. Nelson
Professor, Department of Chemistry
Saint Joseph's University
5600 City Avenue
Philadelphia, PA 19131

Dr. James A. Will
Research Animal Resources Center
119 Veterinary Science Bldg.
1655 Linden Drive
Madison, WI 53706

Administrators:

Dr. Jeannine A. Majde, Code 1141CB
Scientific Officer, Medical Materials Program
Office of Naval Research
800 North Quincy Street
Arlington, VA 22217-5000

Project Manager, Life Sciences Technology
Office of Naval Research, Code 125
800 North Quincy Street
Arlington, VA 22217-5000

Support Technologies Division
Office of Naval Technology, Code 223
800 North Quincy Street
Arlington, VA 22217-5000

Supporting Technologies Division
Office of Naval Technology, Code 223
800 North Quincy Street
Arlington, VA 22217-5000

James R. Delaney
Administrative Contracting Officer, ONR
Resident Representative
University of Washington
318 University District Bldg.
400 W. 45th Street
Seattle, WA 98105-6637

Administrator (2 copies) (Enclose DTIC Form 50)
Defense Technical Information Center
Cameron Station
Arlington, VA 22314

Final and Technical Reports Only (6 copies)

Director
Naval Research Laboratory
Attention: Technical Information Division
Code 2627
Washington, DC 20375
END

FILMED

MARCH, 1988

DTIC