THE PREPARATION OF TITANIUM NITRIDE AND TITANIUM CARBONITRIDE BY THE PRECERAMIC POLYMER ROUTE

by

Dietmar Seyferth and Gerard Mignani

To be published in

Journal of Materials Science Letters

Department of Chemistry
Massachusetts Institute of Technology
Cambridge, MA 02139

November 4, 1987

Reproduction in whole or in part is permitted for any purpose of the United States Government.

This document has been approved for public release and sale: its distribution is unlimited.
REPORT DOCUMENTATION PAGE

<table>
<thead>
<tr>
<th>Field</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>REPORT SECURITY CLASSIFICATION</td>
</tr>
<tr>
<td>1b</td>
<td>RESTRICTIVE MARKINGS</td>
</tr>
<tr>
<td>2a</td>
<td>SECURITY CLASSIFICATION AUTHORITY</td>
</tr>
<tr>
<td>3</td>
<td>DEClassIFICATION/DOWNGRADING SCHEDULE</td>
</tr>
<tr>
<td>4</td>
<td>PERFORMING ORGANIZATION REPORT NUMBER(S)</td>
</tr>
<tr>
<td>5</td>
<td>MONITORING ORGANIZATION REPORT NUMBER(S)</td>
</tr>
<tr>
<td>6a</td>
<td>NAME OF PERFORMING ORGANIZATION</td>
</tr>
<tr>
<td>6b</td>
<td>OFFICE SYMBOL (If applicable)</td>
</tr>
<tr>
<td>6c</td>
<td>ADDRESS (City, State, and ZIP Code)</td>
</tr>
<tr>
<td>7a</td>
<td>NAME OF MONITORING ORGANIZATION</td>
</tr>
<tr>
<td>7b</td>
<td>ADDRESS (City, State, and ZIP Code)</td>
</tr>
<tr>
<td>7c</td>
<td>SOURCE OF FUNDING NUMBERS</td>
</tr>
<tr>
<td>8</td>
<td>TITLE (Include Security Classification)</td>
</tr>
<tr>
<td>12</td>
<td>PERSONAL AUTHOR(S)</td>
</tr>
<tr>
<td>13a</td>
<td>TYPE OF REPORT</td>
</tr>
<tr>
<td>13b</td>
<td>TIME COVERED</td>
</tr>
<tr>
<td>14</td>
<td>DATE OF REPORT (Year, Month, Day)</td>
</tr>
<tr>
<td>15</td>
<td>PAGE COUNT</td>
</tr>
<tr>
<td>16</td>
<td>SUPPLEMENTARY NOTATION</td>
</tr>
<tr>
<td>17</td>
<td>COSATI CODES</td>
</tr>
<tr>
<td>18</td>
<td>SUBJECT TERMS</td>
</tr>
<tr>
<td>19</td>
<td>ABSTRACT</td>
</tr>
</tbody>
</table>

Abstract

The preparation of selected titanium nitrides in a stream of ammonia over titanium nitrides in a stream of ammonia leads to nitride products.
Paper on the Preparation of Titanium Nitride and Titanium Carbonitride by the Preceramic Polymer Route

Authors: Dietmar Seifert and Gerard Mignani

Type of Report: Technical Report

Date of Report: 1983-11-2

Page Count: 5

Subject Terms:
- Titanium Nitride
- Titanium Carbonitride

Abstract:

The study involves the preparation of titanium nitride and titanium carbonitride by the preceramic polymer route, which appears to be a promising method for producing these materials. The process involves the polymerization of titanium-containing precursors to form a precursor polymer, which is then converted into the final ceramic material through a series of post-treatment steps.

Department of Chemistry, Department of Chemistry

Address:
- Massachusetts Institute of Technology, Cambridge, MA 02139
- Massachusetts Institute of Technology, Cambridge, MA 02139
- Massachusetts Institute of Technology, Cambridge, MA 02139

Program Elements:
- N-00014-82
- K-0322
- N-11-018

Sponsor:

Contract No.: N-00014-82-K-0322

CoSAs:

- T. M. Baker
- G. M. Mignani

Office Symbol:

- Massachusetts Institute of Technology
- Massachusetts Institute of Technology
- Massachusetts Institute of Technology

Monitoring Organization:

- Department of Chemistry
- Department of Chemistry
- Department of Chemistry

Address:
- Massachusetts Institute of Technology, Cambridge, MA 02139
- Massachusetts Institute of Technology, Cambridge, MA 02139
- Massachusetts Institute of Technology, Cambridge, MA 02139

Publication Reference:

- Materials Science Letters
The Preparation of Titanium Nitride and Titanium Carbonitride by the
Precremic Polymer Route

Dietmar Seyferth* and Gerard Mignani**

Department of Chemistry
Massachusetts Institute of Technology
Cambridge, MA 02193 (USA)

Titanium nitride, TiN, is a very thermally stable (mp 2950°C) and a very hard (8-9 on the Moh scale) material. It is not attacked by acids (except hot aqua regia), but boiling alkalies decompose it. It is rapidly oxidized at high (~1200°C) temperatures by O₂, NO and CO₂ [1]. The conventional routes for the preparation of titanium nitride all involve high temperature chemistry [1].

The thermal decomposition of simple mononuclear titanium amides has been reported as an alternate route to titanium nitride [2]. Eq. 1 gives one example. Also, the ammonolysis of [(CH₃)₂N]₄Ti in liquid ammonia resulted in dimethylamine displacement and formation of a solid product of idealized formula Ti₃(N)₃(NH₂)₂[N(CH₃)₂] whose pyrolysis gave titanium nitride [3].

\[
(R₂N)₄ Ti \xrightarrow{300-500°C} TiN + \text{organic products} \quad (1)
\]

\(R = \text{C}_₂\text{H}_₅, \text{C}_₃\text{H}_₇, \text{C}_₄\text{H}_₉\)

We have developed useful routes for the preparation of silicon [4] and boron [5] carbonitrides and nitrides by the pyrolysis of suitable polymeric precursors, and we were interested in developing such an approach for the synthesis of titanium carbonitride and nitride. We report some preliminary results.

The amine exchange reaction of [(CH₃)₂N]₄Ti with various primary amines, RNH₂ (R = n-C₄H₉, n-C₆H₁₃, n-C₈H₁₇, CH₃OCH₂CH₂H₂) occurs in benzene solution at reflux, a reaction described by Bradley and Torrible in 1963 [6].

* Author to whom inquiries should be addressed.
** On leave from Rhône Poulenc Recherches, 1986.
With the unbranched primary amines the products are waxy red solids, average molecular weight greater than 1100, which are soluble in organic solvents. The IR and proton NMR spectra as well as the elemental analyses of these products could be rationalized in terms of Bradley's formulation of such materials as shown in formula I.

\[
\begin{align*}
\text{R} & \text{N} \\
\text{Ti} & \text{Ti} \\
(N(CH_3)_2) & (N(CH_3)_2)
\end{align*}
\]

although the presence of some cyclic structures could not be excluded. Pyrolysis of the red solid obtained when n-butylamine was the primary amine used in a stream of dry ammonia (room temperature to 250°C at 10°C per min.; hold for 0.1 hr.; 250°C to 1000°C at 5°C per min.; hold for 0.3 hr.) gave a golden-yellow solid residue (the color typical of TiN) in 32.3% (by weight) yield (calcd. for conversion of I, i.e., of [t(C_4H_9N)_2Ti]_x to TiN: 32.6%). The analysis of the ceramic residue (76.7% Ti, 22.1% N, 0.26% C, 0.9% O, 0.08% H) was in fairly good agreement for that required for TiN (77.4% Ti, 22.6% N).

These results indicate that during the pyrolysis in a stream of ammonia an amine displacement reaction takes place, with amido (NH_2) functions replacing C_4H_9N and terminal (CH_3)_2N substituents. At those temperatures and as the temperature is increased, thermal condensation processes then convert the intermediate titanium amides and imides to titanium nitride.

Similar reactions of [(CH_3)_2N]_4Ti with diamines were examined as well. Such reactions, carried out either in benzene solution at 80°C or with no solvent at 100-120°C using CH_3NHCH_2CH_2NHCH_3, C_2H_5NHCH_2CH_2NHCH_2H_5 and a commercial 85/15 mixture of CH_3NHCH_2CH_2NHCH_3 and CH_3NHCH_2CH_2NH_2 gave red, waxy solid products of low (225-350) average molecular weight (cryoscopy in benzene). A similar reaction with C_2H_5NH(CH_2)_3NHCH_2H_5 gave a red oil. Analyses of these products by fast atom bombardment mass spectrometry showed them to be a mixture of mainly the monotitanium species, II, but with also some higher oligomers, i.e., di, tri, etc nuclear
species, present as well. All of these products were soluble in organic solvents. In contrast, such reactions of ethylenediamine itself did not give soluble products.

\[\text{CH}_3 \text{CH}_2 \text{Ti} = \text{CH}_2 \text{N} \text{CH}_3 \]

Pyrolysis of these titanium compounds derived from diamines under a stream of ammonia again gave fairly pure TiN. The example of the CH$_3$NHCH$_2$CH$_2$NHCH$_3$ reaction product is typical. The red solid obtained in 61% yield (MW 234) in the reaction of 17.7 mmol of [(CH$_3$)$_2$N]$_4$Ti and 39.8 mmol of the diamine in 60 ml of benzene for 18 hr at reflux was pyrolyzed in a stream of ammonia (temperature program as previously noted). A yellow ceramic residue was obtained in 26.7% yield (calcd TiN yield for this product, 28.1%). The analytical data (74.2% Ti, 23.5% N, 1.4% C, 0.5% O) indicated the formation of fairly pure TiN. A product of somewhat higher molecular weight (325) was obtained in a similar reaction of the 85/15 CH$_3$NHCH$_2$CH$_2$NHCH$_3$/CH$_3$NHCH$_2$CH$_2$NH$_2$ mixture with [(CH$_3$)$_2$N]$_4$Ti (MW for Ti species is 220; for the Ti$_2$ species, 440). Pyrolysis to 1000°C under ammonia gave a yellow residue which contained 75.2% Ti, 22.5% N and only minor amounts of carbon and oxygen. Pyrolysis to 1500°C gave crystalline material whose powder X-ray diffraction lines matched those of authentic TiN.

When the pyrolysis of this precursor was carried out in a stream of argon to 1000°C, a black solid remained which contained 30.9% C in addition to Ti (45.5%) and N (9.9%). Obviously, a titanium carbonitride had been formed. The decomposition of the organonitrogen substituents provided carbon as well as nitrogen.

The approach which we describe is indeed a route to titanium nitride. The diamine-derived precursors at best are oligomeric, but the primary amine-derived materials are in the "preceramic polymer" molecular weight range and these merit further, more detailed investigation. A major drawback of these materials is the fact that their potential TiN content is quite low. For instance, in the case of the n-butylamine
product, 67.4% of the initial weight must be lost in the reaction with NH₃ in order to obtain the theoretical amount of TiN. Ideally, on the basis of ceramic yield considerations, similar products with methyl- or ethylamine would be better, but these appear to be insoluble in organic solvents (hence not readily processable) although they may find some application in TiN synthesis.

Acknowledgements. The authors are grateful to the Office of Naval Research and to Rhône-Poulenc Recherches for generous support of this work.
REFERENCES

 (c) D. Seyferth and G.H. Wiseman, U.S. patent 4,482,669 (Nov. 13, 1984).

<table>
<thead>
<tr>
<th>Office of Naval Research</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attn: Code 1113</td>
</tr>
<tr>
<td>800 N. Quincy Street</td>
</tr>
<tr>
<td>Arlington, Virginia 22217-5000</td>
</tr>
<tr>
<td>Dr. David Young</td>
</tr>
<tr>
<td>Code 334</td>
</tr>
<tr>
<td>NORDA</td>
</tr>
<tr>
<td>NSTL, Mississippi 39529</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Naval Weapons Support Center</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attn: Dr. Ron Atkins</td>
</tr>
<tr>
<td>Code 50C</td>
</tr>
<tr>
<td>Crane, Indiana 47522-5050</td>
</tr>
<tr>
<td>Dr. Bernard Douda</td>
</tr>
<tr>
<td>Naval Weapons Center</td>
</tr>
<tr>
<td>Attn: Dr. Ron Atkins</td>
</tr>
<tr>
<td>Code 50C</td>
</tr>
<tr>
<td>Crane, Indiana 47522-5050</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Naval Civil Engineering Laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attn: Dr. R. W. Drisko, Code L52</td>
</tr>
<tr>
<td>Port Hueneme, California 93401</td>
</tr>
<tr>
<td>Scientific Advisor</td>
</tr>
<tr>
<td>Commandant of the Marine Corps</td>
</tr>
<tr>
<td>Attn: Dr. Ron Atkins</td>
</tr>
<tr>
<td>Code 50C</td>
</tr>
<tr>
<td>Crane, Indiana 47522-5050</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Defense Technical Information Center</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attn: Dr. H. Singerman</td>
</tr>
<tr>
<td>Applied Chemistry Division</td>
</tr>
<tr>
<td>Annapolis, Maryland 21401</td>
</tr>
<tr>
<td>DTNSRDC</td>
</tr>
<tr>
<td>Attn: Dr. H. Singerman</td>
</tr>
<tr>
<td>Applied Chemistry Division</td>
</tr>
<tr>
<td>Annapolis, Maryland 21401</td>
</tr>
<tr>
<td>Mr. John Boyle</td>
</tr>
<tr>
<td>Materials Branch</td>
</tr>
<tr>
<td>Naval Ship Engineering Center</td>
</tr>
<tr>
<td>Philadelphia, Pennsylvania 19112</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Naval Research Laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attn: Dr. William Tolles</td>
</tr>
<tr>
<td>Superintendent</td>
</tr>
<tr>
<td>Chemistry Division, Code 6100</td>
</tr>
<tr>
<td>Naval Research Laboratory</td>
</tr>
<tr>
<td>Washington, D.C. 20375-5000</td>
</tr>
<tr>
<td>Dr. William Tolles</td>
</tr>
<tr>
<td>Superintendent</td>
</tr>
<tr>
<td>Chemistry Division, Code 6100</td>
</tr>
<tr>
<td>Naval Research Laboratory</td>
</tr>
<tr>
<td>Washington, D.C. 20375-5000</td>
</tr>
<tr>
<td>Naval Ocean Systems Center</td>
</tr>
<tr>
<td>Attn: Dr. S. Yamamoto</td>
</tr>
<tr>
<td>Marine Sciences Division</td>
</tr>
<tr>
<td>San Diego, California 91232</td>
</tr>
</tbody>
</table>
ABSTRACTS DISTRIBUTION LIST, 356B

Professor T. Marks
Department of Chemistry
Northwestern University
Evanston, Illinois 60201

Dr. Kurt Baum
Fluorochem, Inc.
680 S. Ayon Avenue
Azusa, California 91702

Dr. Ulrich W. Suter
Department of Chemical and Engineering
Massachusetts Institute of Technologies
Room E19-628
Cambridge, MA 02139-4309

Dr. William Bailey
Department of Chemistry
University of Maryland
College Park, Maryland 20742

Dr. J.C.H. Chien
Department of Polymer Science and Engineering
University of Massachusetts
Amherst, MA 01003

Professor G. Whitesides
Department of Chemistry
Harvard University
Cambridge, Massachusetts 02138

Dr. K. Paciorek
Ultrasystems, Inc.
P.O. Box 19605
Irvine, California 92715

Dr. Ronald Archer
Department of Chemistry
University of Massachusetts
Amherst, Massachusetts 01002

Professor D. Seyferth
Department of Chemistry
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Professor J. Moore
Department of Chemistry
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. V. Percec
Department of Macromolecular Science
Case Western Reserve University
Cleveland, Ohio 44106

Dr. Gregory Girolami
Department of Chemistry
University of Illinois
Urbana-Champaign, IL 61801

Dr. Ted Walton
Chemistry Division
Code 6120
Naval Research Lab
Washington D.C. 20375-5000

Professor Warren T. Ford
Department of Chemistry
Oklahoma State University
Stillwater, OK 74078

Professor H. K. Hall, Jr.
Department of Chemistry
The University Arizona
Tucson, Arizona 85721

Dr. Fred Wudl
Department of Chemistry
University of California
Santa Barbara, CA 93106

Professor Kris Matjaszewski
Department of Chemistry
Carnegie-Mellon University
4400 Fifth Avenue
Pittsburgh, PA 15213

Professor Richard Schrock
Department of Chemistry
Massachusetts Institute of Technology
Cambridge, MA 02139
ABSTRACTS DISTRIBUTION LIST, 356B

Professor A. G. MacDiarmid
Department of Chemistry
University of Pennsylvania
Philadelphia, Pennsylvania 19174

Dr. E. Fischer, Code 2853
Naval Ship Research and Development Center
Annapolis, Maryland 21402

Professor H. Allcock
Department of Chemistry
Pennsylvania State University
University Park, Pennsylvania 16802

Professor R. Lenz
Department of Chemistry
University of Massachusetts
Amherst, Massachusetts 01002

Professor G. Wnek
Department of Chemistry
Rensselaer Polytechnic Institute
Troy, NY 12181

Professor C. Allen
Department of Chemistry
University of Vermont
Burlington, Vermont 05401

Dr. Ivan Caplan
DTNSRDC
Code 0125
Annapolis, MD 21401

Dr. R. Miller
Almaden Research Center
650 Harry Road K918801
San Jose, CA 95120

Dr. William B. Moniz
Chemistry Division
Naval Research Laboratory
Washington, D.C. 20375-5000

Dr. Richard M. Laine
SRI International
333 Ravenswood Avenue
Menlo Park, California 94025

Dr. L. Buckley
Naval Air Development Center
Code 6063
Warminster, Pennsylvania 18974

Dr. James McGrath
Department of Chemistry
Virginia Polytechnic Institute
Blacksburg, Virginia 24061

Dr. Geoffrey Lindsay
Chemistry Division
Naval Weapons Center
China Lake, California 93555

Professor J. Salamone
Department of Chemistry
University of Lowell
Lowell, Massachusetts 01854

Dr. J. Griffith
Naval Research Laboratory
Chemistry Section, Code 6120
Washington, D.C. 20375-5000

Professor T. Katz
Department of Chemistry
Columbia University
New York, New York 10027

Dr. Christopher K. Ober
Department of Materials Science and Engineering
Cornell University
Ithaca, New York 14853-1501
DTC

3-1-88

FILED

DATED

END