BALANCED TECHNOLOGY INITIATIVE
BRIEFING TO INDUSTRY

AUGUST 26, 1987
Title: BALANCED TECHNOLOGY INITIATIVE BRIEFING TO INDUSTRY

Personal Author(s): Snowden, William E.

Abstract: The Balanced Technology Initiative is intended to provide additional support for the development of new technologies which have the potential to increase our conventional defense capabilities. As stated in Section 222 of the National Defense Authorization Act for FY 1987, the Balanced Technology Initiative was established to "expand research on innovative concepts and methods of enhancing conventional defense capabilities" and for related research to facilitate "restoration of the conventional defense technology base." Candidate programs were recommended by OSD organizations, Defense Agencies, the OJCS and by the individual services, and four thrust areas were developed to encompass the chosen programs. The major areas are: Smart Weapons Technology, intended to promote the advancement of technologies that can ultimately provide significant improvements in target acquisition and destruction capabilities for a broad range of munitions; RSTA/BMC3 technology, a category merging RSTA (reconnaissance, surveillance, and target acquisition) and BMC3 (battle management, communications, command and control), which addresses enabling technologies for advanced weapons, smart weapons, reconnaissance, and conventional warfare.
18. surveillance, target acquisition, target recognition, command and control systems, battle management, RSTA/BMC3, armor/antiarmor, microwaves, high power microwaves, HPM (high power microwaves)

19. obtaining, processing, transmitting, and using information essential to the effective deployment and utilization of conventional defense resources; Armor/Anti-armor Technology, intended to be both complementary and supplementary to the recently established cooperative DARPA/Army/Marine Corps program in this area; and High Power Microwaves (HPM), intended to develop a comprehensive understanding of the effects of HPM on tactical weapons systems to assure the survivability of U.S. assets and to place potentially vulnerable enemy systems at risk. In addition, a number of important projects not identifiable with the major thrust areas, but considered to have significant potential for enhancing conventional defense capabilities were included under a fifth category titled Special Technology Opportunities. This briefing highlights the differences between the Conventional Defense Initiative and the Balanced Technology Initiative and also provides descriptions of the BTI program categories, as well as five year funding profiles for specific projects within each category.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGENDA</td>
<td>1</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>3</td>
</tr>
<tr>
<td>ARMY PROJECTS</td>
<td>31</td>
</tr>
<tr>
<td>JOINT IR/LASER SEEKER</td>
<td>34</td>
</tr>
<tr>
<td>DIGITAL TOPOGRAPHIC SUPPORT SYSTEM</td>
<td>39</td>
</tr>
<tr>
<td>AIDED TARGET RECOGNIZATION</td>
<td>42</td>
</tr>
<tr>
<td>COMBAT VEHICLE COMMAND AND CONTROL</td>
<td>48</td>
</tr>
<tr>
<td>LIQUID PROPELLANT GUN</td>
<td>53</td>
</tr>
<tr>
<td>COILGUN TECHNOLOGY DEVELOPMENT</td>
<td>58</td>
</tr>
<tr>
<td>COMMAND ADJUSTED TRAJECTORY</td>
<td>63</td>
</tr>
<tr>
<td>GROUND LAUNCHED HELLFIRE</td>
<td>68</td>
</tr>
<tr>
<td>HIGH POWER MICROWAVES</td>
<td>71</td>
</tr>
<tr>
<td>TACTICAL MISSILE INTERCEPTOR TECHNOLOGY</td>
<td>74</td>
</tr>
<tr>
<td>NAVY PROJECTS</td>
<td>77</td>
</tr>
<tr>
<td>HIGH PERFORMANCE INFRARED SEEKER</td>
<td>79</td>
</tr>
<tr>
<td>SUBMARINE ANTI-TORPEDO WEAPON</td>
<td>82</td>
</tr>
<tr>
<td>UNDERSEA SURVEILLANCE</td>
<td>85</td>
</tr>
<tr>
<td>TARGET ACQUISITION FOR SHIP DEFENSE</td>
<td>88</td>
</tr>
<tr>
<td>FIBER OPTICAL DATA LINK FOR AIR LAUNCHED WEAPONS</td>
<td>91</td>
</tr>
<tr>
<td>FOLLOW THROUGH TORPEDO WARHEAD</td>
<td>93</td>
</tr>
<tr>
<td>AMPHIBIOUS ASSAULT COUNTERMINE SYSTEM</td>
<td>97</td>
</tr>
<tr>
<td>HIGH POWER MICROWAVES</td>
<td>100</td>
</tr>
<tr>
<td>HIGH ENERGY LASER FOR SHIP DEFENSE</td>
<td>103</td>
</tr>
</tbody>
</table>
AIR FORCE PROJECTS

<table>
<thead>
<tr>
<th>Project</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>MILLIMETER WAVE SEEKER DEMONSTRATION</td>
<td>109</td>
</tr>
<tr>
<td>AUTONOMOUS GUIDANCE FOR CONVENTIONAL WEAPONS</td>
<td>111</td>
</tr>
<tr>
<td>MULTI-SENSOR AUTOPROCESSOR TECHNOLOGY</td>
<td>115</td>
</tr>
<tr>
<td>HIGH POWER MICROWAVES</td>
<td>118</td>
</tr>
<tr>
<td>CRUISE MISSILE ADVANCED GUIDANCE</td>
<td>121</td>
</tr>
<tr>
<td>ADVANCED CLOSE AIR SUPPORT</td>
<td>124</td>
</tr>
</tbody>
</table>

DEFENSE AGENCY PROJECTS

DARPA

<table>
<thead>
<tr>
<th>Project</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>MULTI-MISSION SEEKER DEVELOPMENT</td>
<td>131</td>
</tr>
<tr>
<td>AUTOMATIC TARGET RECOGNITION FOR SMART WEAPONS</td>
<td>132</td>
</tr>
<tr>
<td>DEEP BATTLE WEAPON CONCEPT</td>
<td>135</td>
</tr>
<tr>
<td>GUIDED TACTICAL HYPER VELOCITY PROJECTILES</td>
<td>136</td>
</tr>
<tr>
<td>MONOLITHIC INFRARED FOCAL PLANE ARRAYS</td>
<td>139</td>
</tr>
<tr>
<td>EXPERT SYSTEM FOR MANUFACTURE OF SMART WEAPON COMPONENTS</td>
<td>142</td>
</tr>
<tr>
<td>TACTICAL USE OF NATIONAL TECHNICAL MEANS</td>
<td>145</td>
</tr>
<tr>
<td>OPTICAL SIGNAL PROCESSING TECHNOLOGY</td>
<td>146</td>
</tr>
<tr>
<td>ENHANCED KINETIC ENERGY WEAPONS</td>
<td>149</td>
</tr>
<tr>
<td>ADVANCED COMPOSITE GUN</td>
<td>152</td>
</tr>
<tr>
<td>SHORT RANGE ANTI-TANK WEAPON</td>
<td>155</td>
</tr>
<tr>
<td>ADVANCED MINE/COUNTERMINE TECHNOLOGY</td>
<td>157</td>
</tr>
<tr>
<td>ARMOR MATERIALS</td>
<td>160</td>
</tr>
<tr>
<td>ENHANCED COMPULATIONAL CAPABILITIES FOR ADVANCED WEAPONS</td>
<td>163</td>
</tr>
<tr>
<td>SYSTEM DEVELOPMENT</td>
<td></td>
</tr>
<tr>
<td>PENETRATOR/TARGET INTERACTION FLASH X-RAY FACILITY</td>
<td>166</td>
</tr>
<tr>
<td>ADVANCED SHORT TAKEOFF/VERTICAL LANDING TECHNOLOGY</td>
<td>167</td>
</tr>
<tr>
<td>ACTIVE OPTICAL COUNTERMEASURES</td>
<td>169</td>
</tr>
<tr>
<td>HIGH POWER/ENERGY DENSITY BATTERIES</td>
<td>172</td>
</tr>
<tr>
<td>SUPERCONDUCTING CERAMIC MATERIALS</td>
<td>175</td>
</tr>
</tbody>
</table>
AGENDA

INTRODUCTION
DR. RONALD L. KERBER
DEPUTY UNDER SECRETARY OF DEFENSE(R&AT)

BTI OVERVIEW
DR. WILLIAM E. SNOWDEN
SPECIAL ASSISTANT TO DUSD(R&AT)

ARMY BTI PROGRAM
MR. BRUCE B. ZIMMERMAN
DEPUTY ASSISTANT DIRECTOR OF RESEARCH
AND TECHNOLOGY

NAVY BTI PROGRAM
DR. FRANK E. SHOUP
DIRECTOR, TECHNOLOGY ASSESSMENT DIVISION

AIR FORCE BTI PROGRAM
MR. MICHAEL E. FLYNN
DEPUTY FOR SCIENCE & TECHNOLOGY

DARPA BTI PROGRAM
DR. JASPER LUPO
ASSISTANT DIRECTOR, SMART WEAPONS &
SENSORS DIVISION

DR. RICHARD A. REYNOLDS
DIRECTOR, DEFENSE SCIENCE OFFICE
INTRODUCTION

Two initiatives to focus increased attention on the enhancement of U.S. and Allied conventional defense capabilities were established by the 99th Congress. The Conventional Defense Initiative (CDI) was created "to provide an emphasis on improving the conventional weapons of the Armed Forces (and the testing of such weapons) and to enhance cooperation with the other member nations of the North Atlantic Treaty Organization." This latter objective is also being promoted by the NATO Cooperative Research and Development Program initiated in FY 1986. The Balanced Technology Initiative (BTI) was created to provide additional support for the development of "promising new technologies that could substantially advance our conventional defense capabilities." The two programs are intended to be complementary efforts that provide both near-term and long-term contributions to the effectiveness of conventional forces.

Specific projects to be included in the Conventional Defense Initiative program were identified by Congress. These efforts included 10 projects to be carried out by the Army and the continuation of NATO cooperative work initiated in FY 1986 by the Navy. Funds for these activities were appropriated directly to the responsible Services. Responsibility for the development of program details for the Balanced Technology Initiative was assigned to the Defense Research and
Engineering organization. Funds for this program were appropriated to the Office of the Secretary of Defense (OSD) for subsequent apportionment to the Services and the Defense Agencies.

As stated in Section 222 of the National Defense Authorization Act for Fiscal Year 1987, the Balanced Technology Initiative was established to "expand research on innovative concepts and methods of enhancing conventional defense capabilities" and for related research to facilitate "restoration of the conventional defense technology base." A detailed and substantive program plan has recently been developed that is consistent with those Congressional directives. This program plan has been described in detail in a classified report entitled "The Department of Defense Report on the Balanced Technology Initiative (U)", May 1987, prepared for submission to Congress. The report will be available later this year from the Defense Technical Information Center (DTIC), Cameron Station, Alexandria, Virginia 22304-6144. The purpose of this Briefing to Industry document is to provide an unclassified description of the BTI program to potential program participants.

BTI PROGRAM PLANNING PROCESS

A special planning committee, chaired by the Deputy Under Secretary of Defense for Research and Advanced Technology, was established to develop the Balanced Technology Initiative
program. The committee included representatives from the Research and Advanced Technology, Tactical Warfare Programs, Strategic and Theater Nuclear Forces, and International Programs and Technology organizations within the Office of the Under Secretary of Defense for Acquisition; and from the Office of the Under Secretary of Defense for Policy, the Defense Advanced Research Projects Agency (DARPA), the Strategic Defense Initiative Organization (SDIO), and the Organization of the Joint Chiefs of Staff.

Numerous projects for the BTI program were nominated by appropriate technical experts who are members of the organizations named above. These projects covered a broad range of activities, including advanced weapons concepts and important technology base work. Candidate project areas suggested by SDIO were presented as technology spinoff opportunities derived from recent SDI developments that clearly have relevance to conventional defense problems. These suggestions included projects in the areas of hypervelocity guns and projectiles, software development tools and secure software engineering, advanced electronic materials, high power microwave devices and damage models, high performance multiprocessors, advanced sensors and seekers, tactical lasers, communications systems components and security, intelligence interfaces, and kinetic energy and laser weapon lethality prediction and evaluation. The BTI program plan includes work in a number of these areas.
In addition, many other candidate projects were recommended by the Services. Specific BTI program recommendations and priorities were formally requested through the Assistant Secretary of the Army for Research, Development and Acquisition; the Assistant Secretary of the Navy for Research, Engineering and Systems; and the Assistant Secretary of the Air Force for Research, Development and Logistics. Extensive interactions between the committee and the Services representatives followed. Written program recommendations were received in late November 1986 and subsequently reviewed by the committee. Service briefings on these recommendations were presented in December 1986, and in January 1987. These briefings described the selection process and prioritization criteria used by each Service, and also provided requested information on related work in progress, program continuity beyond FY 1987, and coordination of proposed BTI projects with the other Services.

Overall, approximately 250 candidate projects nominated by OSD organizations, Defense Agencies, and the Services were considered in developing a detailed plan for the BTI program. The total FY 1987 cost of these candidate projects was more than $2 billion. Guidelines were developed to aid in the evaluation and selection process. Projects were required to be consistent with the intent of Congress as stated in Section 222 of the National Defense Authorization Act for Fiscal Year 1987. Emphasis was given to technology areas that addressed recognized critical conventional force needs; chemical, biological, and nuclear programs were generally excluded. Projects offering
both near-term and longer-term potential for enhancing conventional force capabilities were also emphasized. Preferred candidates were considered to include projects complementary to ongoing work that offered the possibility of high payoff in military effectiveness through additional funding. Joint programs (e.g., DARPA/Services, multi-Service, or involving international cooperation) were encouraged. Finally, emphasis was given to projects supporting a limited number of thrust areas for the overall program. The intent of this guideline was to assure that the BTI program could "make a difference" in a few technology areas critical to conventional defense missions.

BTI Program Categories

Four thrust areas were developed for the program: **Smart Weapons Technology**, intended to promote the advancement of technologies that can ultimately provide significant improvements in target acquisition and destruction capabilities for a broad range of munitions; **RSTA/BMC3 Technology**, a category merging two widely used acronyms (RSTA - for Reconnaissance, Surveillance, and Target Acquisition; and BMC3 - for Battle Management, Communications, Command, and Control) that addresses enabling technologies for obtaining, processing, transmitting, and using information essential to the effective deployment and utilization of
conventional defense resources; Armor/Anti-Armor Technology, intended to be both complementary and supplementary to the recently established cooperative DARPA/Army/Marine Corps program in this area; and High Power Microwaves (HPM), intended to develop a comprehensive understanding of the effects of HPM on tactical weapons systems to assure the survivability of U.S. assets and to place potentially vulnerable enemy systems at risk. In addition, a number of other important projects were also included in the program in a fifth category called Special Technology Opportunities. These projects were not identifiable with the major thrust areas but were considered to have significant potential for enhancing conventional defense capabilities. Descriptions of all of the 48 projects included in the BTI program are provided in the report to Congress, together with information related to milestones and funding. Total funding in the amount of $182 million has been allocated for these projects in FY 1987.

The following charts highlight the differences between the Conventional Defense Initiative and the Balanced Technology Initiative and also provide descriptions of the BTI program categories. Specific projects within each category, together with five year funding profiles for each project prepared in accordance with Congressional direction, are listed in the accompanying tables. It should be noted that the figures given for individual projects represent reasonable estimates considered appropriate for research and technology development efforts. However, actual figures
could changes as a result of program reviews and reevaluation of detailed work plans on a yearly basis.
DEPARTMENT OF DEFENSE
BALANCED TECHNOLOGY INITIATIVE PROGRAM

DR. WILLIAM E. SNOWDEN
SPECIAL ASSISTANT TO
DUSD (R&AT)
RECENT
U.S. DEFENSE INITIATIVES

STRATEGIC DEFENSE INITIATIVE (SDI)
• ESTABLISHED BY PRESIDENT (1983)
• TECHNOLOGY DEVELOPMENT FOR BALLISTIC MISSILE DEFENSE

AIR DEFENSE INITIATIVE (ADI)
• ESTABLISHED BY DEPARTMENT OF DEFENSE
• TECHNOLOGY DEVELOPMENT FOR AIR DEFENSE OF NORTH AMERICA (CMs, SLBMs, AIRCRAFT)

CONVENTIONAL DEFENSE INITIATIVE (CDI)
BALANCED TECHNOLOGY INITIATIVE (BTI)
• ESTABLISHED BY CONGRESS (1986)
• WEAPONS DEVELOPMENT/TESTING AND TECHNOLOGY DEVELOPMENT TO ENHANCE CONVENTIONAL DEFENSE CAPABILITIES
CONVENTIONAL DEFENSE INITIATIVE

- ESTABLISHED BY THE 99TH CONGRESS (FY 1987)
- CREATED "TO PROVIDE AN EMPHASIS ON IMPROVING THE CONVENTIONAL WEAPONS OF THE ARMED FORCES (AND THE TESTING OF SUCH WEAPONS) AND TO ENHANCE COOPERATION WITH THE OTHER MEMBER NATIONS OF THE NORTH ATLANTIC TREATY ORGANIZATION"
- $47M APPROPRIATED DIRECTLY TO ARMY FOR 10 SPECIFIC PROJECTS
- $30M APPROPRIATED DIRECTLY TO NAVY FOR NATO COOPERATIVE PROJECTS
CONVENTIONAL DEFENSE INITIATIVE

ARMY CDI PROJECTS (1987)

- GUARD-RESERVE UNIQUE R&D
- LIGHT ARMORED VEHICLE/WEASEL EVALUATION
- MINE FLAIL WHEELED VEHICLE
- GROUND LAUNCHED HELLFIRE
- STINGER SYSTEM SAFEGUARD
- TACTICAL RPV EVALUATION
- QUIET GENERATORS
- HELICOPTER AIR-TO-AIR MISSILE
- CLOSE-IN AIR DEFENSE
- MILAN II EVALUATION

FUNDS APPROPRIATED DIRECTLY TO ARMY ACCOUNTS
CONVENTIONAL
DEFENSE INITIATIVE

NAVY CDI PROJECTS (1987)

- NATO ANTI-AIR-WARFARE SYSTEM
- NATO SEA SPARROW SURFACE MISSILE SYSTEM
- ADVANCED SEA MINE
- NATO IDENTIFICATION SYSTEM
- NATO FRIGATE REPLACEMENT FOR THE 90S
- SURFACE SHIP TORPEDO DEFENSE
- INTERNATIONAL RDT&E SUPPORT

NATO COOPERATIVE PROGRAMS
FUNDS APPROPRIATED DIRECTLY TO NAVY ACCOUNT
BALANCED TECHNOLOGY INITIATIVE

- ESTABLISHED BY THE 99TH CONGRESS (FY 1987)

- INTENDED TO PROVIDE ADDITIONAL SUPPORT FOR THE DEVELOPMENT OF "PROMISING NEW TECHNOLOGIES THAT COULD SUBSTANTIALLY ADVANCE OUR CONVENTIONAL DEFENSE CAPABILITIES"

 - TO "EXPAND RESEARCH ON INNOVATIVE CONCEPTS AND METHODS OF ENHANCING CONVENTIONAL DEFENSE CAPABILITIES"

 - TO FACILITATE "RESTORATION OF THE CONVENTIONAL DEFENSE TECHNOLOGY BASE"

- $200M APPROPRIATED TO OSD FOR APPORTIONMENT TO THE SERVICES AND THE DEFENSE AGENCIES
BALANCED TECHNOLOGY INITIATIVE

PROGRAM PLANNING PROCESS

- CANDIDATE PROJECTS NOMINATED BY OSD ORGANIZATIONS, INCLUDING DEFENSE AGENCIES, AND SERVICES
- CRITERIA DEVELOPED TO AID IN EVALUATION OF MORE THAN 250 PROJECTS SUGGESTED
- EVALUATION/SELECTION PROCESS CARRIED OUT UNDER PRINCIPAL DIRECTION OF DUSD (R&AT)
- 5 PROGRAM CATEGORIES ESTABLISHED: INTENDED TO “MAKE A DIFFERENCE” IN A FEW TECHNOLOGY AREAS CRITICAL TO CONVENTIONAL DEFENSE MISSIONS
BALANCED TECHNOLOGY INITIATIVE

SDI TECHNOLOGY SPINOFF OPPORTUNITIES

- HYPERVELOCITY GUNS AND PROJECTILES
- OPTICAL AND RF SENSORS
- BMC3 SYSTEMS/COMPONENTS
- HIGH POWER MICROWAVES (HPM)
- LASERS FOR TACTICAL UTILITY
- KINETIC ENERGY AND LASER WEAPONS LETHALITY
- SOFTWARE DEVELOPMENT TOOLS
- ADVANCED ELECTRONIC MATERIALS
BALANCED TECHNOLOGY INITIATIVE

PROGRAM CATEGORIES

- SMART WEAPONS TECHNOLOGY
- RSTA/BMC3 TECHNOLOGY
- ARMOR/ANTI-ARMOR TECHNOLOGY
- HIGH POWER MICROWAVES (HPM)
- SPECIAL TECHNOLOGY OPPORTUNITIES
<table>
<thead>
<tr>
<th>CATEGORY</th>
<th>FY 87</th>
<th>FY 88</th>
<th>FY 89</th>
<th>FY 90</th>
<th>FY 91</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMART WEAPONS TECHNOLOGY</td>
<td>50</td>
<td>76</td>
<td>126</td>
<td>150</td>
<td>105</td>
</tr>
<tr>
<td>RSTA/BMC3 TECHNOLOGY</td>
<td>47</td>
<td>77</td>
<td>101</td>
<td>88</td>
<td>70</td>
</tr>
<tr>
<td>ARMOR/ANTI-ARMOR TECHNOLOGY</td>
<td>36</td>
<td>57</td>
<td>95</td>
<td>77</td>
<td>64</td>
</tr>
<tr>
<td>HIGH POWER MICROWAVES</td>
<td>15</td>
<td>15</td>
<td>20</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>SPECIAL TECHNOLOGY OPPORTUNITIES</td>
<td>34</td>
<td>63</td>
<td>51</td>
<td>64</td>
<td>54</td>
</tr>
<tr>
<td>TOTALS</td>
<td>182</td>
<td>288</td>
<td>393</td>
<td>379</td>
<td>293</td>
</tr>
</tbody>
</table>

*FUNDING REQUIREMENTS HAVE NOT BEEN ESTABLISHED
OVERALL OBJECTIVE: TO ACCELERATE DEVELOPMENT OF TECHNOLOGIES OF CRITICAL IMPORTANCE TO NEXT-GENERATION FIRE-AND-FORGET, AUTONOMOUS WEAPONS EMPLOYED BY CONVENTIONAL FORCES

• IMPROVE TARGET ACQUISITION, IDENTIFICATION, AND HIT CAPABILITIES; DEVELOP TARGET PRIORITIZATION SCHEMES

• FOR BOTH SHORT- AND LONGER-RANGE ENGAGEMENTS

• PROVIDE SIGNIFICANT FORCE-MULTIPLIER POTENTIAL

PRINCIPAL PROJECT AREAS

• ADVANCED SENSORS/SEEKERS

• AUTONOMOUS GUIDANCE/AUTOMATIC TARGET RECOGNITION (ATR)

• PRODUCTIBILITY OF COMPONENTS
<table>
<thead>
<tr>
<th>PROJECT</th>
<th>FY 87</th>
<th>FY 88</th>
<th>FY 89</th>
<th>FY 90</th>
<th>FY 91</th>
</tr>
</thead>
<tbody>
<tr>
<td>MILLIMETER WAVE (MMW) SEEKER DEMONSTRATION</td>
<td>4</td>
<td>6</td>
<td>12</td>
<td>15</td>
<td>*</td>
</tr>
<tr>
<td>HIGH PERFORMANCE INFRARED (IR) SEEKER</td>
<td>4</td>
<td>6</td>
<td>12</td>
<td>20</td>
<td>15</td>
</tr>
<tr>
<td>JOINT IR/LASER SEEKER</td>
<td>4</td>
<td>6</td>
<td>10</td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td>MULTI-MISSION SEEKER DEVELOPMENT</td>
<td>5</td>
<td>7</td>
<td>10</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>AUTONOMOUS GUIDANCE FOR CONVENTIONAL WEAPONS</td>
<td>8</td>
<td>10</td>
<td>15</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>_AUTOMATIC TARGET RECOGNITION (ATR) FOR SMART WEAPONS</td>
<td>5</td>
<td>8</td>
<td>12</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>SUBMARINE ANTI-TORPEDO WEAPON</td>
<td>6</td>
<td>8</td>
<td>12</td>
<td>20</td>
<td>15</td>
</tr>
<tr>
<td>DEEP BATTLE WEAPON CONCEPT</td>
<td>3</td>
<td>7</td>
<td>10</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>GUIDED TACTICAL HYPERVELOCITY PROJECTILES</td>
<td>6</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>MONOLITHIC IR FOCAL PLANE ARRAYS,</td>
<td>1</td>
<td>3</td>
<td>6</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>EXPERT SYSTEMS FOR MANUFACTURE OF SMART WEAPONS COMPONENTS</td>
<td>2</td>
<td>5</td>
<td>12</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>IR FOCAL PLANE ARRAY PRODUCIBILITY</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOTALS</td>
<td>50</td>
<td>76</td>
<td>126</td>
<td>150</td>
<td>105</td>
</tr>
</tbody>
</table>

FUNDING REQUIREMENTS HAVE NOT BEEN ESTABLISHED
OVERALL OBJECTIVE: TO ADVANCE TECHNOLOGIES IMPORTANT IN OBTAINING, PROCESSING, PASSING AND USING INFORMATION VITAL TO MAXIMIZING BATTLEFIELD PERFORMANCE OF CONVENTIONAL FORCES

- INFORMATION CAN PROVIDE A STABILIZING EFFECT IN TIMES OF CRISIS
- ENHANCE PRE-CONFLICT POSTURING OF DEFENSE FORCES AND POST-ATTACK RETALIATORY CAPABILITIES (OFFENSIVE/DEFENSIVE)
- FIND, FIX, TARGET, AND ENGAGE ENEMY FORCES AND ASSETS
- PROMOTE HIGH LEVELS OF ECONOMY OF FORCE

PRINCIPAL PROJECT AREAS
- SURVEILLANCE TECHNOLOGY
- TARGETING TECHNOLOGY
- INFORMATION MANAGEMENT
TABLE 3. RSTA/BMC3 TECHNOLOGY: PROJECTS AND FUNDING PROFILES

<table>
<thead>
<tr>
<th>PROJECT</th>
<th>FUNDING ($ MILLIONS)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FY 87</td>
</tr>
<tr>
<td>UNDERSEA SURVEILLANCE</td>
<td>20</td>
</tr>
<tr>
<td>TACTICAL USE OF NATIONAL TECHNICAL MEANS (TACNAT)</td>
<td>5</td>
</tr>
<tr>
<td>DIGITAL TOPOGRAPHIC SUPPORT SYSTEM (DTSS)</td>
<td>3</td>
</tr>
<tr>
<td>TARGET ACQUISITION FOR SHIP DEFENSE</td>
<td>4</td>
</tr>
<tr>
<td>AIDED TARGET RECOGNITION</td>
<td>5</td>
</tr>
<tr>
<td>FIBER OPTIC DATA LINK FOR AIR LAUNCHED WEAPONS</td>
<td>3</td>
</tr>
<tr>
<td>COMBAT VEHICLE COMMAND AND CONTROL (CVC2)</td>
<td>2</td>
</tr>
<tr>
<td>OPTICAL SIGNAL PROCESSING TECHNOLOGY</td>
<td>3</td>
</tr>
<tr>
<td>MULTI-SENSOR AUTOPROCESSOR TECHNOLOGY</td>
<td>2</td>
</tr>
<tr>
<td>TOTALS</td>
<td>47</td>
</tr>
</tbody>
</table>

*FUNDING REQUIREMENTS HAVE NOT BEEN ESTABLISHED
BALANCED TECHNOLOGY INITIATIVE
ARMOR/ANTI-ARMOR TECHNOLOGY

OVERALL OBJECTIVE: TO PROMOTE INCREASED SURVIVABILITY AND MORE EFFECTIVE RETALIATORY WARFIGHTING CAPABILITY FOR U.S. CONVENTIONAL FORCES

- EXPAND ONGOING WORK CONCERNED WITH THE DEVELOPMENT OF ADVANCED ARMOR AND ANTI-ARMOR WEAPONS SYSTEMS
- COMPLEMENTARY/SUPPLEMENTARY TO EXISTING DARPA/ARMY/USMC PROGRAM
- INCLUDES BOTH SYSTEM-SPECIFIC PROJECTS AND IMPORTANT TECHNOLOGY BASE ACTIVITIES

PRINCIPAL PROJECT AREAS

- ADVANCED GUNS AND PROJECTILES
- ADVANCED WEAPONS
- MINE/COUNTERMINE TECHNOLOGY
- MATERIALS/PHENOMENOLOGY/MODELLING
TABLE 4. ARMOR/ANTI-ARMOR TECHNOLOGY: PROJECTS AND FUNDING PROFILES

<table>
<thead>
<tr>
<th>PROJECT</th>
<th>FY 87</th>
<th>FY 88</th>
<th>FY 89</th>
<th>FY 90</th>
<th>FY 91</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENHANCED KINETIC ENERGY WEAPONS</td>
<td>3</td>
<td>6</td>
<td>12</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>LIQUID PROPELLANT GUN</td>
<td>2</td>
<td>6</td>
<td>8</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>ADVANCED COMPOSITE GUN</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>COILGUN TECHNOLOGY DEVELOPMENT</td>
<td>4</td>
<td>6</td>
<td>12</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>SHORT RANGE ANTI-TANK WEAPON (SRAW)</td>
<td>3</td>
<td>5</td>
<td>10</td>
<td>7</td>
<td>*</td>
</tr>
<tr>
<td>COMMAND ADJUSTED TRAJECTORY (CAT)</td>
<td>2</td>
<td>6</td>
<td>10</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>FOLLOW-THROUGH TORPEDO WARHEAD</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>GROUND-LAUNCHED HELLFIRE</td>
<td>3</td>
<td>8</td>
<td>10</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>ADVANCED MINE/COUNTERMINE TECHNOLOGY</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td>12</td>
</tr>
<tr>
<td>AMPHIBIOUS ASSAULT COUNTERMINE SYSTEM</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>ARMOR MATERIALS</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>ENHANCED COMPUTATIONAL CAPABILITIES FOR ADVANCED WEAPON SYSTEM DEVELOPMENT</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>PENETRATOR/TARGET INTERACTION FLASH X-RAY FACILITY</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOTALS</td>
<td>36</td>
<td>57</td>
<td>95</td>
<td>77</td>
<td>64</td>
</tr>
</tbody>
</table>

FUNDING REQUIREMENTS HAVE NOT BEEN ESTABLISHED
BALANCED TECHNOLOGY INITIATIVE
HIGH POWER MICROWAVES (HPM)

OVERALL OBJECTIVE: TO DEVELOP A COMPREHENSIVE UNDERSTANDING OF THE EFFECTS OF HPM ON TACTICAL WEAPONS SYSTEMS TO ENSURE SURVIVABILITY OF U.S. ASSETS AND TO HOLD POTENTIALLY VULNERABLE ENEMY SYSTEMS AT RISK

• DETERMINE SUSCEPTIBILITY OF U.S. AND FOREIGN WEAPONS SYSTEMS AND COMPONENTS TO HPM

• DEVELOP HARDENING TECHNOLOGY REQUIRED TO INCREASE SURVIVABILITY OF U.S. ASSETS

• DEVELOP HPM WEAPONS TECHNOLOGY FOR POSSIBLE USE ON TACTICAL BATTLEFIELDS OF THE FUTURE

WORK AREAS: EFFECTS TESTING, HARDENING, COMPONENTS DEVELOPMENT, PROPAGATION/PHENOMENOLOGY, AND METHODOLOGY
TABLE 5. HIGH POWER MICROWAVES: PROJECTS AND FUNDING PROFILES

<table>
<thead>
<tr>
<th>PROJECT</th>
<th>FY 87</th>
<th>FY 88</th>
<th>FY 89</th>
<th>FY 90</th>
<th>FY 91</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPM EFFECTS TESTING</td>
<td>7</td>
<td>6</td>
<td>8</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>HPM HARDENING</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>HPM COMPONENTS DEVELOPMENT</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>HPM PROPAGATION/PHENOMENOLOGY</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>HPM METHODOLOGY</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>TOTALS</td>
<td>15</td>
<td>15</td>
<td>20</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

FUNDING REQUIREMENTS HAVE NOT BEEN ESTABLISHED
TABLE 6.
SPECIAL TECHNOLOGY OPPORTUNITIES: PROJECTS AND FUNDING PROFILES

<table>
<thead>
<tr>
<th>PROJECT</th>
<th>FY 87</th>
<th>FY 88</th>
<th>FY 89</th>
<th>FY 90</th>
<th>FY 91</th>
</tr>
</thead>
<tbody>
<tr>
<td>TACTICAL MISSILE INTERCEPTOR TECHNOLOGY</td>
<td>13</td>
<td>32</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>HIGH ENERGY LASER FOR SHIP DEFENSE</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ENHANCED BLAST MUNITIONS</td>
<td>2</td>
<td>3</td>
<td>8</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>ASTOVL TECHNOLOGY</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ACTIVE OPTICAL COUNTERMEASURES (AOCM)</td>
<td>2</td>
<td>5</td>
<td>10</td>
<td>20</td>
<td>15</td>
</tr>
<tr>
<td>HIGH POWER/ENERGY DENSITY BATTERIES</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>SUPERCONDUCTING CERAMIC MATERIALS</td>
<td>2</td>
<td>5</td>
<td>10</td>
<td>20</td>
<td>15</td>
</tr>
<tr>
<td>CRUISE MISSILE ADVANCED GUIDANCE</td>
<td>3</td>
<td>7</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>ADVANCED CLOSE AIR SUPPORT TECHNOLOGY</td>
<td>3</td>
<td>5</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>TOTALS</td>
<td>34</td>
<td>63</td>
<td>51</td>
<td>64</td>
<td>54</td>
</tr>
</tbody>
</table>

*FUNDING REQUIREMENTS HAVE NOT BEEN ESTABLISHED
DOD SCIENCE AND TECHNOLOGY PROGRAM

• FUNDED AT $5.4 BILLION IN FY 1987

• KEY ELEMENTS OF PROGRAM
 • MILITARY SYSTEMS TECHNOLOGY (AERONAUTICS, PROPULSION, STRUCTURES, MATERIALS, ELECTRONICS, WEAPONS)
 • ENVIRONMENTAL SCIENCES
 • LIFE SCIENCES
 • ELECTRONIC DEVICES/VHSIC/MIMIC
 • COMPUTER SCIENCE
 • BASIC RESEARCH

• BTI PROGRAM: PROVIDES OPPORTUNITY TO INCREASE EMPHASIS IN A FEW IMPORTANT TECHNOLOGY AREAS CRITICAL TO CONVENTIONAL DEFENSE MISSIONS
ARMY BTI PROJECTS
ARMY BALANCED TECHNOLOGY INITIATIVE PROJECTS

Army participation in the BTI Program for FY 1987 involves work on 10 projects funded at a total of $41 million. Specific projects include the following:

- JOINT IR/LASER SEEKER
- DIGITAL TOPOGRAPHIC SUPPORT SYSTEM
- AIDED TARGET RECOGNIZATION
- COMBAT VEHICLE COMMAND AND CONTROL
- LIQUID PROPELLANT GUN
- COILGUN TECHNOLOGY DEVELOPMENT
- COMMAND ADJUSTED TRAJECTORY
- GROUND LAUNCHED HELLFIRE
- HIGH POWER MICROWAVES
- TACTICAL MISSILE INTERCEPTOR TECHNOLOGY

Details regarding these projects are provided in the following charts.
SINGLE ARMY POC:

DR. LOUIS M. CAMERON
DIRECTOR OF RESEARCH & TECHNOLOGY

ALTERNATE:

MR. BRUCE B. ZIMMERMAN
DEPUTY ASSISTANT DIRECTOR OF RESEARCH AND TECHNOLOGY (C4I/AI/ROBOTICS)
JOINT IR/LASER SEEKER
OVERALL OBJECTIVES:

• TO RETAIN SEMI-ACTIVE LASER (SAL) CAPABILITIES IN THE NEXT GENERATION OF IR BASED AUTONOMOUS PRECISION MUNITION SYSTEMS, IN PARTICULAR COPPERHEAD II

• TO DEVELOP SAL/IR TECHNOLOGY POTENTIALLY APPLICABLE TO OTHER DoD WEAPON SYSTEMS, i.e. NAVY SAL PROJECTILES, MORTARS, HELLFIRE

• TO DESIGN, FABRICATE, TEST, AND DEMONSTRATE THROUGH PROOF OF PRINCIPLE A SAL/IR OPTION SUITABLE TO FSED AND INSERTION INTO COPPERHEAD PRODUCTION BY 1995

RESPONSIBLE AGENCIES:

• OSD
• U.S. ARMY ARDEC
• PAUL J. KISATSKY
 U.S. ARMY ARDEC
 (201) 724-3130

PRINCIPAL POC:
Semi-Active Laser Infrared (SAL/IR) Seeker

Background:

- Need for improved seeker for 155mm Copperhead projectile
- Minimize dependence on "Man-in-the-Loop"
- Retain SAL capability for surgical strikes
- Need for autonomous operation against mass attack

Status:

- 2 contractors selected
- Anticipated award date 15 Nov 87
Planned SAL/IR
Operational Modes

REQUIRED

- PRESET SAL MODE; COMPARABLE PERFORMANCE TO COPPERHEAD I
- PRESET IR MODE, COMPARABLE TO CURRENTLY PROJECTED 2CIR PERFORMANCE SPECS

DESIRED

- DUAL MODE, SYNERGISTICALLY EMPLOYED TO IMPROVE PERFORMANCE OVER EITHER MODE USED INDIVIDUALLY
Semi-Active Laser-Infrared (SAL/IR) Seeker

Program Plan — 3 Phases
— 4 Years

PHASE I DESIGN, BUILD, TOWER-TEST (15 MO)
- BREADBOARD SEEKER
- BRASSBOARD ELECTRONICS
- LAB TEST
- HIGH G ANALYSIS
- TOWER TEST SEEKER DEMONSTRATION

PHASE II CAPTIVE FLIGHT TESTING/SYSTEM INTEGRATION (15 MO)
- G-TEST CRITICAL COMPONENTS
- RAIL GUN SEEKER TEST
- INTEGRATION INTO COPPERHEAD AIRFRAME
- INTEGRATION OF AUTOPILOT AND GUIDANCE AND CONTROL
- CAPTIVE FLIGHT TESTING OVER REALISTIC SCENARIOS

PHASE III PROJECTILE/SEEKER FLIGHT TEST (18 MO)
- CAPTIVE FLIGHT TEST OF G-HARDENED SEEKER
- HARDWARE-IN-THE-LOOP TESTS WITH INTEGRATED SEEKER
- INTEGRATION OF TELEMETRY
- PROJECTILE/SEEKER FIRINGS
SAL/IR Seeker Features

- Responds jointly to laser designated signature and intrinsic target IR signature
- Can be used in conventional or autonomous mode
- Can be used in joint mode for maximum reliability and CM resistance
- Will serve as baseline to prove viability of autonomous seeker without giving up "bird in the hand"
- Provides the necessary transition until all-up autonomy can be demonstrated
DIGITAL TOPOGRAPHIC SUPPORT SYSTEM (DTSS)

BTI OBJECTIVE

- TO FACILITATE STARTUP OF DTSS FULL SCALE DEVELOPMENT

OVERALL PROGRAM OBJECTIVES

- TO DEVELOP THE DTSS WHICH PROVIDES TERRAIN ANALYSIS INFORMATION IN MINUTES OR HOURS FOR DIVISIONS, CORPS AND HIGHER ECHELONS
- TO ESTABLISH STANDARDS FOR DIGITAL TERRAIN DATA AND DATA-ANALYSIS PRODUCTS
- TO ESTABLISH BASIS FOR AIRLAND BATTLEFIELD ENVIRONMENT (ALBE) AND ARMY/DARPA COMPUTER IMAGE GENERATION TECHNOLOGY IMPLEMENTATION
- TO DEVELOP THE QUICK RESPONSE MULTI-COLOR PRINTER (QRMP)

RESPONSIBLE AGENCIES

- JOINT TACTICAL FUSION PROGRAM OFFICE (JFTPO)
- U.S. ARMY ENGINEER TOPOGRAPHIC LABORATORIES (USAETL)

PRINCIPAL POC: MR. BRUCE K. OPITZ, USAETL, (202) 355-2850

ALTERNATE POC: MR. FRANCIS G. CAPECE, USAETL, (202) 355-2854
MAJOR PROGRAM ELEMENTS

- DEVELOP AN INTEGRATED TERRAIN ANALYSIS SOFTWARE PACKAGE
- DEVELOP A MAN-MACHINE INTERFACE FOR TERRAIN ANALYST
- INTEGRATE HARDWARE AND SOFTWARE INTO A FIELDABLE SYSTEM
- FIELD TO TERRAIN TEAMS STARTING IN 1992
- INITIATE DEVELOPMENT OF THE QRMP
SECOND GENERATION SIGNAL PROCESSING EQUIPMENT

TITLE: MULTI-FUNCTION TARGET ACQUISITION PROCESSOR (M-TAP)

OBJECTIVE: TO EXPLOIT THE AUTOMATIC TARGET ACQUISITION
CAPABILITIES AFFORDED BY INTEGRATING SECOND
GENERATION FLIR TECHNOLOGY WITH ADVANCED IMAGE
PROCESSING ALGORITHMS & EMERGING PROCESSING
DEVICES

APPROACH:

- DESIGN AND TEST THROUGH SIMULATION THE M-TAP ALGORITHMS
- PRODUCE AN M-TAP DEMONSTRATION UNIT WITH INSTRUMENTATION
 CAPABILITY FOR TESTING IN REAL TIME
- VALIDATE TECHNOLOGY MATURITY THROUGH LAB AND FIELD TESTS
- INTEGRATE WITH SECOND GENERATION SENSOR (SAIRS) FOR
 TECHNOLOGY DEMONSTRATION
- UNDERSTAND IN REAL-TIME ALGORITHM OPERATION
- FRAME TO FRAME INFORMATION USED IN TRACKING
- PROCESSOR WILL ACCEPT FEATURES FROM ADDITIONAL SENSORS
MULTISENSOR FEATURE FUSION

OBJECTIVE: DEMONSTRATE AND EVALUATE TARGET ACQUISITION ALGORITHMS BASED ON FUSION OF MULTISENSOR FEATURES

APPROACH:
- ESTABLISH FEASIBILITY IN SIMULATION OF FLIR WITH LADAR/MMW RADAR
- INTEGRATE ALGORITHM SUITES INTO NEAR REAL TIME HARDWARE
- EVALUATE PERFORMANCE IN FIELD TESTS

APPLICATION:
- PROVIDE AUTOMATIC TARGET RECOGNITION FOR LHX UPGRADE, AFV AND FUTURE ARMY WEAPONS SYSTEMS
AIDED TARGET RECOGNITION
TECHNOLOGY

MAJOR ELEMENTS OF A COMPREHENSIVE PROGRAM

- DIGITAL HARDWARE DEVELOPMENT
- PARALLEL ARCHITECTURES
- OPTICAL SIGNAL PROCESSING
- TARGET AND BACKGROUND MODELS (ANALYTIC)
- ALGORITHM SIMULATORS
- ANALYTIC PERFORMANCE MODELS
- PERFORMANCE MEASURES (METRICS)
- TEST TECHNIQUES
- DEMONSTRATION OF MULTI-SENSOR SYSTEMS.
AIDED TARGET RECOGNITION TECHNOLOGY

REPRESENTATIVE ATR CAPABILITIES OF INTEREST TO DOD

- REAL-TIME IMAGE PROCESSING HARDWARE
- ALGORITHMS WHICH AUTOMATICALLY FIND TARGETS FOR CUEING AN OPERATOR
- METHODS FOR FUSING MULTI-SENSOR INFORMATION
- ANALYTIC TECHNIQUES FOR SYNTHESIZING ALGORITHMS
- DEVELOPMENT OF TEST METHODOLOGIES FOR EVALUATING ATRs.
ARMY WEAPON PLATFORM

ATR INSERTION CANDIDATES

<table>
<thead>
<tr>
<th>PLATFORM</th>
<th>MISSION</th>
<th>CURRENT SENSORS</th>
<th>PROJECTED FUNCTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>AH-64</td>
<td>ATTACK HELICOPTER</td>
<td>TADS/PNVS (DAY TV, DVO, LRF/D LST, FLIRS)</td>
<td>MMW RADAR</td>
</tr>
<tr>
<td>AHIP</td>
<td>SCOUT HELICOPTER</td>
<td>MMS (FLIR, DAY TV, LST, LRF/D)</td>
<td></td>
</tr>
<tr>
<td>AQUILLA</td>
<td>RPV</td>
<td>DAY TV</td>
<td>SCANNED MINI FLIR FPA-BASED FLIR</td>
</tr>
<tr>
<td>M1</td>
<td>MAIN BATTLE TANK</td>
<td>DVO, TIS</td>
<td>MMW RADAR</td>
</tr>
<tr>
<td>M2/M3</td>
<td>INFANTRY FIGHTING VEHICLE</td>
<td>DVO, LOW-LIGHT-LEVEL TV</td>
<td>ELEVATED TARGET ACQUISITION SYSTEM</td>
</tr>
<tr>
<td>HELLFIRE</td>
<td>FIRE AND FORGET MISSILE SEEKER</td>
<td>SEMI-ACTIVE LASER SEEKER</td>
<td>FIRE AND FORGET IMAGING IR SEEKER</td>
</tr>
<tr>
<td>CORPS SUPPORT WEAPON SYSTEM</td>
<td>TERMINALLY GUIDED SUBMUNITION</td>
<td>-</td>
<td>IMAGING IR SEEKER</td>
</tr>
<tr>
<td>LHX</td>
<td>SINGLE SEAT ATTACK HELICOPTER</td>
<td>-</td>
<td>FLIR, DAY, TV, MMW RADAR, FPA-BASED THREAT WARNING</td>
</tr>
</tbody>
</table>
OVERALL OBJECTIVES

- TO DEVELOP AND DEMONSTRATE TECHNOLOGIES FOR AUTOMATING THE 'COCKPIT' OF GROUND COMBAT VEHICLES AND FOR PROVIDING THE NETWORKING OF VEHICLES AT THE INDIVIDUAL VEHICLE, Platoon, COMPANY AND BATTALION COMMANDER ECHELONS FOR PERFORMING EMBEDDED COMMAND AND CONTROL FOR THE GROUND COMBAT MANEUVER FORCE

- INTEROPERABILITY WITHIN THE U.S. ARMY AND AMONG NATO ALLIES

RESPONSIBLE AGENCIES: USATACOM

PRINCIPAL POC: MR. DONALD S. SARNA
USA TACOM
(313) 574-6160
BACKGROUND

- FUTURE BATTLEFIELD MANEUVER FORCE CHARACTERISTICS
 - SMALL SELF-SUFFICIENT ORGANIZATIONS
 - HIGHLY MOBILE
 - FIREPOWER INTENSIVE
 - EXTREMELY AGILE DISPERSION/MASS CAPABILITY
 - HIGHLY COORDINATED/SYNCHRONIZED

- COORDINATION/SYNCHRONIZATION AT BRIGADE AND HIGHER
 ECHELONS BY AUTOMATED C3I SYSTEMS BEING DEVELOPED
 UNDER THE ARMY COMMAND AND CONTROL SYSTEM (ACCS)

- DEFICIENT AT BATTALION AND BELOW ECHELONS WHICH
 REPRESENT THE CUTTING EDGE OF THE MANEUVER FORCE
 - CURRENT PRACTICE
 - VOICE RADIO
 - PAPER MAPS
 - PLASTIC OVERLAYS/GREASE PENCILS
COMBAT VEHICLE COMMAND & CONTROL (CVC2)

MAJOR PROGRAM AREAS

1. VEHICLE INTEGRATION
 - PHYSICAL
 - SURVIVABILITY
 - FIREPOWER
 - MOBILITY
 - ELECTRONIC
 - ELECTRICAL
 - ELECTRONICS
 - COMPUTER
 INTRA VEHICLE COMMUNICATIONS

2. SOLDIER MACHINE INTERFACE

3. COMBAT VEHICLE COMMAND & CONTROL FUNCTIONS i.e. BMS

4. INTER VEHICLE COMMUNICATIONS

5. INTEROPERABILITY REQMTS

STANDARDS
TARGETS OF OPPORTUNITY

- CVC2 INTEGRATION INTO MIAI BLOCK II ABRAMS TANK
- CVC2 INTEGRATION INTO THE STANDARD ARMY VETRONICS ARCHITECTURE (SAVA) FOR APPLICATION TO FUTURE COMBAT VEHICLES AND PRODUCT IMPROVEMENTS
- OPTIMIZATION OF SOLDIER MACHINE INTERFACE FOR FUTURE AND PRODUCT IMPROVED COMBAT VEHICLES
- STANDARDIZATION TO ACHIEVE CVC2 INTEROPERABILITY WITH NATO ALLIES
LIQUID PROPELLANT GUN

OVERALL OBJECTIVES

- DESIGN, FABRICATE, AND TEST FULL SCALE, HIGH PERFORMANCE LIQUID PROPELLANT GUNS FOR ANTI-ARMOR APPLICATIONS

- CONDUCT NECESSARY STUDIES, EVALUATIONS, AND PREPARATIONS TO SUPPORT FUTURE DEVELOPMENT AND FIELDING CONSISTENT WITH ANTI-ARMOR MODERNIZATION PLANS

RESPONSIBLE AGENCIES: BRL
 ARDEC

PRINCIPAL POC: DR. W.F. MORRISON
 BRL
 (301-278-6188)
LIQUID PROPELLANT GUN

PROGRAM RATIONALE AND SYSTEM ADVANTAGES

- Threat armors increasingly difficult to defeat
- Larger cannons delivering more kinetic energy provides direct approach
- Solid propellant approaches feasible;
 - Automation more difficult
 - Ammunition stowage reduced due to large charges required
- Advantages offered by an LP approach
 - Required performance can be obtained
 - Increased ammo stowage due to high packing efficiency
 - Automation is simplified since only the projectile is mechanically handled
 - LP pumped to the cannon from on-board location remote from the crew, enhancing survivability (low LP sensitivity)
 - Protected volume can be reduced, reducing system weight and profile
LIQUID PROPELLANT GUN

PROGRAM APPROACH

- BUILD ON ARTILLERY LP PROGRAM TECHNOLOGY
- 6-MONTH SYSTEM STUDIES (SEP 87)
- 120mm HARDWARE COMPONENT DEVELOPMENT (3Q FY88)
- LARGER CALIBER AS REQUIRED (FY90)
- RD&E CENTER INVOLVEMENT THROUGHOUT THE PROGRAM
LIQUID PROPELLANT GUN

- FST3+ CAPABILITY
- HIGH RATE OF FIRE
- 50% INCREASED STOWED LOAD
- LOW VULNERABILITY LIQUID PROPELLANT

MORE COMBAT-EFFECTIVE TANK
LIQUID PROPELLANT GUN

PROBLEMS OF INTEREST

- INNOVATIVE GUN PROPULSION CONCEPTS USING LP
- HIGH ENERGY, LOW VULNERABILITY LIQUID PROPELLANTS
- HIGH PRESSURE SEALS TECHNOLOGY FOR LP GUNS
- INVESTIGATION AND ANALYSIS OF HIGH PRESSURE COMBUSTION PROCESSES IN LP GUNS
- ANALYSIS OF COMPATIBILITY OF MATERIALS FOR USE IN LP GUNS
COILGUN TECHNOLOGY DEVELOPMENT

OVERALL OBJECTIVES

- DEMONSTRATE THE MATURITY OF COILGUN TECHNOLOGY FOR TACTICAL APPLICATION
- PROVIDE LEAP AHEAD PERFORMANCE FOR TACTICAL WEAPONS

RESPONSIBLE AGENCY:

- ARMY

PRINCIPAL POC:

- DR. TED GORA
 ARDEC
 (201) 724-4670
TACTICAL OBJECTIVES

INCREASE VELOCITY
- LONGER RANGE
- FASTER FLIGHT TIME
- IMPROVED PENETRATION

ELIMINATE PROPELLANTS
- REDUCE LOGISTIC BURDEN
- IMPROVE SURVIVABILITY
- EASE OF AUTOMATION

REDUCE PEAK G-LOAD ON PROJECTILE

REDUCE RECOIL

CONTINUOUS ZONING

FIELD HIGHLY RELIABLE WEAPON SYSTEMS
WITH LEAP AHEAD PERFORMANCE
MAJOR PROGRAM ELEMENTS

- 9 MJ SKID MOUNTED COILGUN (120mm GUN EQUIVALENT) FOR FY90 DEMO
- 15 MJ VEHICLE MOUNTED COILGUN FOR FY92 DEMO
- ACCELERATOR AND PULSE POWER TECHNOLOGY TO SUPPORT THE 9 & 15 MJ DEMONSTRATIONS
- ANALYSIS OF UTILITY OF COILGUNS FOR ARMOR, AIR DEFENSE, ARTILLERY AND TACTICAL MISSILE DEFENSE
PROGRAM SCOPE

PHASE I MULTI SHOT 9 MJ(120mm EQUIVALENT) DEMO STARTING
FY90

3 ROUNDS PER MINUTE

11.5 TON WEIGHT, MOVEABLE, INCL AUTOLOADER, FUEL, AMMO

SELF CONTAINED, NO UMBILICALS

2500-4000 METERS/SECOND

LAUNCH WEIGHTS OF 1-2.5 KG

CONCURRENT TECH BASE EFFORTS

PHASE II MOBILE, MULTI-SHOT 15 MJ(135mm EQUIVALENT) EM GUN
DEMO STARTING FY92

AFV P3I CANDIDATE

5 ROUNDS PER MINUTE

7-12 TONS-WEAPON MODULE, 55 TON CLASS VEHICLE

LAUNCH WEIGHTS 2-5KG AT 2500-4000 METERS/SECOND

FIRE CONTROL, UNGUIDED AND GUIDED PROJECTILES

.25 MIL DISPERSION
9MJ COILGUN SYSTEM

OBJECTIVE
BY 22 MAY 1989, FOR LESS THAN $8.5M, DEVELOP AND TEST A SLED-MOUNTED, COILGUN SYSTEM THAT FIRES 9MJ PROJECTILE PACKAGES EVERY 20 SEC FOR 3 MINUTES

CHARACTERISTICS
- LIGHTWEIGHT SYSTEM (11,000 KG)
- MINIMUM BARREL EROSION (200 Kamp current)
- HIGH EFFICIENCY (50% Turbine-muzzle)
- FIRES HIGH ASPECT RATIO PENETRATORS (L/D>30)

SCHEDULE

<table>
<thead>
<tr>
<th>Proof of Concept</th>
<th>Accelerator</th>
<th>Alternator</th>
<th>Prime Power</th>
<th>System Integration</th>
<th>Testing</th>
</tr>
</thead>
<tbody>
<tr>
<td>JAN 87</td>
<td>JAN 88</td>
<td>JAN 89</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
OVERALL OBJECTIVES:

- DEVELOP TECHNOLOGY FOR A COST EFFECTIVE COMMAND GUIDED ANTI ARMOR/ANTI HELICOPTER TANK LAUNCHED PROJECTILE
- LIVE FIRE DEMONSTRATE IMPROVEMENTS IN SYSTEM ACCURACY OF A COMMAND GUIDED PROJECTILE & ITS COMPATABILITY WITH GUN/WEAPON PLATFORM (TECHNOLOGY DEMONSTRATION)
- INCORPORATE COMMAND GUIDANCE TECHNOLOGY WITH IMPROVED PROJECTILE LETHALITY/FUZING MECHANISMS TO DEMONSTRATE BEST OPERATIONAL SYSTEM APPROACH TO DEFEATING TARGETS

RESPONSIBLE AGENCY:

- US ARMY, ARDEC

PRINCIPAL POC:

- MR. MODESTO BARBARISI
 ARDEC
 (201) 724-6264
Command Adjusted Trajectory
Fire Control System (CAT/FCS)
(COMMAND GUIDED MULTI PURPOSE PROJECTILE)

PROGRAM DESCRIPTION:

TO DEVELOP & DEMONSTRATE A LOW COST SMART WEAPON/PROJECTILE
CONCEPT TO GREATLY IMPROVE TANKS P31 AT LONG RANGES & GIVE THE
TANK A SELF DEFENSE CAPABILITY AGAINST MOVING AIRBORNE THREATS

TECHNICAL APPROACH:

- MANEUVERABLE PROJECTILE
- DATA LINK
- SMART FIRE CONTROL SYSTEM (TRACKS TARGET & PROJECTILE)
Command Adjusted Trajectory
Fire Control System (CAT/FCS)
(COMMAND GUIDED MULTI PURPOSE PROJECTILE)

BACKGROUND:

ARDEC SPONSORED TECH BASE PROGRAM 1983 – 1988. DEMONSTRATED THRU LIVE FIRE THE FOLLOWING KEY TECHNICAL ISSUES. (40MM DEMO)

PROJECTILE:

- CAN RECEIVE & EXECUTE COURSE CORRECTIONS
- STABILITY THRU IMPULSE THRUSTER COURSE CORRECTIONS
- COMPONENTS SURVIVE 45,000G GUN LAUNCH

FIRE CONTROL:

- REAL TIME PROJECTILE TRACKING
- REAL TIME COMPUTATION OF COURSE CORRECTIONS
- COMMAND MANEUVERS
Command Adjusted Trajectory
Fire Control System (CAT/FCS)
(COMMAND GUIDED MULTI PURPOSE PROJECTILE)

MAJOR ELEMENTS OF A COMPREHENSIVE PROGRAM

- DESIGN STUDIES, SIMULATIONS AND ANALYSIS
- REQUIREMENTS AND EFFECTIVENESS ANALYSIS
- COMPONENT DEVELOPMENT TESTING & SURVIVABILITY
- MANEUVERING PROJECTILE AERODYNAMIC EVALUATION AND TESTING
- LAB & FIELD TEST OF FIRE CONTROL/PROJECTILE COMPONENTS & SUB SYSTEMS
- LIVE FIRE SYSTEM TESTING TO SHOW IMPROVED ACCURACY & OPERATIONAL EFFECTIVENESS
Command Adjusted Trajectory
Fire Control System (CAT/FCS)
(COMMAND GUIDED MULTI PURPOSE PROJECTILE)

REPRESENTATIVE PROBLEMS OF INTEREST TO DOD

- REAL TIME PROJECTILE/TARGET TRACKING
- GUIDANCE ALGORITHMS/TECHNIQUES FOR MOST EFFECTIVE USE OF PROJECTILE CONTROL ENERGY
- ELECTRO-MAGNETIC DATA LINK BETWEEN GUN PLATFORM AND PROJECTILE AND ITS RELIABILITY IN ATMOSPHERIC/BATTLEFIELD/COUNTER MEASURES ENVIRONMENT
- PROJECTILE CONTROL TECHNIQUES
- PROJECTILE LETHALITY/FUZING TECHNIQUES TO SERVE IN A MULTI-TARGET MODE (GROUND/AIR)
OVERALL OBJECTIVE

- TO SATISFY THE IMMEDIATE NEED OF THE 9TH INFANTRY DIVISION WITH A LONG RANGE, LETHAL, HIGHLY MOBILE ANTI-ARMOR CAPABILITY BY INCORPORATING THE HELLFIRE MISSILE SYSTEM ON A HMMWV
- TO EVALUATE THE FEASIBILITY OF PROVIDING OTHER LIGHT FORCES THE SAME ANTI-ARMOR CAPABILITY AS THE 9TH ID

RESPONSIBLE AGENCY:

U.S. ARMY MISSILE COMMAND (MICOM) HELLFIRE PROGRAM OFFICE

PRINCIPLE POC: MAJ TERRY WHITTINGTON MICOM
(205) 876-8652/9771
GROUND LAUNCHED HELLFIRE

MAJOR ELEMENTS OF A COMPREHENSIVE PROGRAM

- MAXIMUM USE OF NONDEVELOPMENTAL ITEMS (NDI)
- MAXIMUM USE OF HELLFIRE PRODUCTION COMPONENTS
- MINIMIZE PROGRAM RISK BY USE OF TECHNOLOGY WELL WITHIN CURRENT STATE OF THE ART
GROUND LAUNCHED HELLFIRE

REPRESENTATIVE OPERATIONAL ISSUES OF INTEREST TO DOD

- ANALYSIS OF LONG RANGE, LETHAL, MOBILE, ANTI-ARMOR SYSTEM IN LIGHT FORCES
OVERALL OBJECTIVES

- TO BETTER UNDERSTAND THE EFFECTS OF AN HPM DIRECTED ENERGY WEAPON ON ARMY MATERIEL
- TO DEVELOP NEW TECHNOLOGY TO HARDEN ARMY MATERIEL AGAINST THE HPM THREAT
- TO DEVELOP NEW HPM COMPONENTS FOR HPM SIMULATION AND POSSIBLE SYSTEM APPLICATION

THIS IS A JOINT PROGRAM MANAGED BY THE PROGRAM IMPLEMENTATION PANEL OF THE OSD HPM EXECUTIVE STEERING GROUP

PRINCIPLE ARMY POC: DR. EDWARD A. BROWN
HARRY DIAMOND LABORATORIES
US ARMY LABORATORY COMMAND
(202) 394-4664
Structure of the National Bti HPM Program

<table>
<thead>
<tr>
<th></th>
<th>Army</th>
<th>Navy</th>
<th>Air Force</th>
<th>DNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effects Testing</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Hardening</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Components</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Propagation/Phenomenology</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Methodology</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
Army BTI Program in HPM

<table>
<thead>
<tr>
<th>Effects Testing:</th>
<th>Effects on Munitions, Fuels, Energetic Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Upgrade of Testing Capability</td>
</tr>
<tr>
<td></td>
<td>Effects Testing on Foreign Systems</td>
</tr>
<tr>
<td></td>
<td>Investigations of Bio-Effects</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hardening Technology:</th>
<th>Hardening Practices</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hardening Requirements</td>
</tr>
<tr>
<td></td>
<td>Coupling and Boundary Value Calculations</td>
</tr>
<tr>
<td></td>
<td>Scenario Engagement Model</td>
</tr>
<tr>
<td></td>
<td>RF Shielding Coatings</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Components Development:</th>
<th>High Efficiency Phase Locked Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Antenna Technology</td>
</tr>
<tr>
<td></td>
<td>Mode Conversion</td>
</tr>
<tr>
<td></td>
<td>Solid State Sources</td>
</tr>
</tbody>
</table>
TACTICAL MISSILE INTERCEPTOR TECHNOLOGY

OVERALL OBJECTIVES

- TO DEVELOP TECHNOLOGY FOR TERMINAL PHASE INTERCEPTION OF TACTICAL MISSILES

- TO DEVELOP ADVANCED TECHNOLOGY FOR GUIDANCE AND CONTROL SYSTEM, ASSOCIATED WARHEAD, AND FUZE

RESPONSIBLE AGENCIES:

HIMAD PEO
JTMD PROJECT OFFICE

PRINCIPAL POC:

MR. ROGER COMER
(205) 895-4384
HIMAD PEO
REDSTONE ARSENAL, AL 35898
TACTICAL MISSILE INTERCEPTOR TECHNOLOGY

MAJOR ELEMENTS OF A COMPREHENSIVE TACTICAL MISSILE INTERCEPTOR PROGRAM

- STUDIES AND ANALYSES OF US AND FOREIGN SEEKER TECHNOLOGY
- DEVELOPMENT AND DEMONSTRATION OF BRASSBOARD AND SIMULATION MODELS
- EXAMINE US & FOREIGN SYSTEM INTEROPERABILITY REQUIREMENT
- DEVELOPMENT AND DEMONSTRATION OF TACTICAL MISSILE TECHNOLOGY IN LIVE FIRE TESTING
- EXPERIMENTAL DEMONSTRATION / VALIDATION OF ADVANCED GUIDANCE SEEKER TECHNOLOGY
- EXPERIMENTAL DEMONSTRATION / VALIDATION OF ADVANCED FUZING TECHNOLOGY
- EXPERIMENTAL DEMONSTRATION / VALIDATION OF ADVANCED KINETIC-KILL WARHEAD TECHNOLOGY
TACTICAL MISSILE INTERCEPTOR TECHNOLOGY

REPRESENTATIVE TECHNOLOGY OF INTEREST

- ANALYSES OF TACTICAL MISSILE INTERCEPTOR TECHNOLOGY
- DESIGN AND EVALUATION OF GUIDANCE SEEKER TECHNOLOGY
- DESIGN AND EVALUATION OF WARHEAD FUZING TECHNOLOGY
- DESIGN AND EVALUATION OF KINETIC-KILL WARHEAD TECHNOLOGY
- ANALYSIS OF FOREIGN TECHNOLOGY APPLICABLE TO TACTICAL MISSILE INTERCEPTION
NAVY BALANCED TECHNOLOGY INITIATIVE PROJECTS

Navy participation in the BTI Program for FY 1987 involves work on 9 projects funded at a total of $45.8 million. Specific projects include the following:

- HIGH PERFORMANCE INFRARED SEEKER
- SUBMARINE ANTI-TORPEDO WEAPON
- UNDERSEA SURVEILLANCE
- TARGET ACQUISITION FOR SHIP DEFENSE
- FIBER OPTICAL DATA LINK FOR AIR LAUNCHED WEAPONS
- FOLLOW THROUGH TORPEDO WARHEAD
- AMPHIBIOUS ASSAULT COUNTERMINE SYSTEM
- HIGH POWER MICROWAVES
- HIGH ENERGY LASER FOR SHIP DEFENSE

Details regarding these projects are provided in the following charts.
OVERALL OBJECTIVE:

- DEVELOP AN INFRARED (IR) SEEKER FOR HYPERVELOCITY MISSILES

RESPONSIBLE AGENCY: NAVY

PRINCIPAL POC: CAPT McDOUGAL
NAVY NAVSEA 62Z3
(202) 692-0662
HIGH PERFORMANCE INFRARED (IR) SEEKER

REPRESENTATIVE IR SEEKER PROBLEMS OF INTEREST TO DOD

- DESIGN A RF/IR WINDOW WHICH ALLOWS THE IR SEEKER TO OPERATE IN LOCAL HIGH TEMPERATURE ENVIRONMENTS
- MULTI-SPECTRAL SENSOR INTEGRATION
- CLUTTER REJECTION TECHNIQUES
- ECCM
HIGH PERFORMANCE INFRARED (IR) SEEKER

MAJOR ELEMENTS OF A COMPREHENSIVE PROGRAM

- WIND TUNNEL TESTS OF ALTERNATIVE WINDOW MATERIALS
- DEVELOP METHODS TO ATTACH IR DOME TO EXISTING RADOME
- INVESTIGATIONS OF ALTERNATIVE DOME COOLING METHODS
- SOLICIT DESIGN APPROACHES FROM THREE INDUSTRY SOURCES
- DEVELOP AND TEST TWO PREFERRED DESIGN APPROACHES AGAINST ADVANCED TARGETS
- DOCUMENTATION PACKAGE FOR FULL SCALE ENGINEERING DEVELOPMENT
OVERALL OBJECTIVES:

- DEVELOP AND DEMONSTRATE AN ADVANCED HARD KILL ANTI-TORPEDO WEAPON CONCEPT COMPATIBLE WITH EXISTING ATTACK SUBMARINE COUNTERMEASURE LAUNCHING SYSTEMS

- DEVELOP THE TECHNICAL BASE FOR PRODUCING THE NEXT GENERATION TORPEDO HARD KILL SYSTEM CONCEPTS

RESPONSIBLE AGENCIES: NAVY
DARPA

PRINCIPAL POC: CAPT ED GRAHAM
NAVY NAVSEA 63B
(202) 692-8530
SUBMARINE ANTI-TORPEDO WEAPON

REPRESENTATIVE ANTI-TORPEDO WEAPON PROBLEMS OF INTEREST TO DOD

- DEFINITION OF TARGET SIGNATURES
- DETECTION METHODS OF THE INCOMING TORPEDO
- SELECTION OF GUIDANCE AND CONTROL, PROPULSION AND WARHEAD SUBSYSTEMS
- DEFINITION OF SUBMARINE LAUNCHER EFFECTS ON THE WEAPON
- LOCALIZATION ACCURACY REQUIRED
- EFFECTIVENESS OF WEAPON IN MULTIPLE TARGET AND COUNTERMEASURE ENVIRONMENTS
SUBMARINE ANTI-TORPEDO WEAPON

MAJOR ELEMENTS OF A COMPREHENSIVE PROGRAM

- RAPID PROTOTYPE (NAVY)
- TARGET STRENGTH TESTS
- DEVELOPMENT OF FIRE CONTROL SOLUTIONS
- GUIDANCE AND CONTROL DESIGN
- PROTOTYPE FABRICATION
- IN-WATER TEST AND EVALUATION
- DOCUMENTATION PACKAGE FOR FULL SCALE ENGINEERING DEVELOPMENT

- TECHNICAL BASE (DARPA)
- INDUSTRY INVESTIGATIONS OF CRITICAL SUBSYSTEM TECHNOLOGIES AND NEW SYSTEM DESIGN APPROACHES
OVERALL OBJECTIVE:

- SUPPLEMENT ONGOING UNDERSEA SURVEILLANCE RESEARCH TO HELP MAINTAIN A DEVELOPMENT PACE THAT IS TECHNOLOGY LIMITED IN THE AREAS OF PASSIVE AND ACTIVE ACOUSTICS

RESPONSIBLE AGENCY: NAVY

PRINCIPAL POC: RADM DORMAN
NAVY SPAWAR PD-80
(202) 697-4737
UNDERSEA SURVEILLANCE

REPRESENTATIVE UNDERSEA SURVEILLANCE PROBLEMS
OF INTEREST TO DOD

● GENERIC
 — DETECTION, LOCALIZATION, CLASSIFICATION, AND
 TRACKING OF QUIET SOVIET SUBMARINES AT LONG RANGES,
 SLOW SPEEDS, AND VARIOUS AT-SEA ENVIRONMENTS
 — MINIMIZING TIME LATE IN DETECTION REPORTING
 — REDUCING FALSE ALARMS
 — ENSURING SURVEILLANCE SYSTEMS’ SURVIVABILITY IN
 HEIGHTENED STAGES OF HOSTILITY
 — FULLY EXPLOITING EMERGING TECHNOLOGIES IN
 COMPUTERS, ARTIFICIAL INTELLIGENCE, FIBER OPTICS,
 POWER SOURCES, OCEAN ENGINEERING, SENSORS, ETC.
 — MAINTAINING A BALANCE BETWEEN PLATFORMS, SYSTEMS,
 AND AFFORDABILITY
 — DEVELOPING COMPETITIVE STRATEGIES

● SPECIFIC
 — PUSH PASSIVE ACOUSTICS TO ITS THEORETICAL LIMITS
 — DEVELOP A TECHNICAL BASE TO AUGMENT PASSIVE
 ACOUSTICS WITH ACTIVE ACOUSTICS
MAJOR ELEMENTS OF A COMPREHENSIVE PROGRAM

- PASSIVE ACOUSTICS
 - ANALYSIS OF AT-SEA TEST DATA TO EXPLOIT NON-TRADITIONAL SUBMARINE CHARACTERISTICS
 - DEVELOP AND TEST WIDER APERTURE ARRAYS, ARRAY GEOMETRIES, AND ARRAY SENSORS
 - ANALYZE ARRAY DATA LINKS AND DEVELOP MORE ROBUST APPROACHES

- ACTIVE ACOUSTICS
 - IDENTIFY AND EVALUATE PROMISING SOURCE TECHNOLOGIES
 - DEVELOP AND VALIDATE TRANSMISSION / REVERBERATION PATH MODELS
 - FORMULATE C2 METHODS FOR BOTH STRATEGIC AND TACTICAL APPLICATIONS
 - INCREASE THE CAPABILITY OF EXISTING SENSOR SYSTEMS TO BETTER COLLECT ACTIVE SIGNALS OF INTEREST
 - DEVELOP AND INSTALL AN OPEN OCEAN ACTIVE TEST RANGE
OVERALL OBJECTIVE:

- INVESTIGATE THE PERFORMANCE POTENTIAL OF A DUAL-BAND MILLIMETER WAVE RADAR SENSOR FOR SHORT RANGE ANTI-AIR WARFARE SELF DEFENSE OF SURFACE SHIPS AGAINST THE POSTULATED ANTI-SHIP MISSILE THREAT

RESPONSIBLE AGENCY: NAVY

PRINCIPAL POC: CAPT SOVEY
NAVY NAVSEA 62D
(202) 692-0648
TARGET ACQUISITION
FOR SHIP DEFENSE

REPRESENTATIVE TARGET ACQUISITION PROBLEMS
OF INTEREST TO DOD

- SENSOR PERFORMANCE AGAINST LOW OBSERVABLE, VARIABLE
 SPEED, HIGHLY MANEUVERING TARGETS IN AN AT-SEA HIGH
 ECM ENVIRONMENT
- MULTI-SPECTRAL SENSOR FUSION
- FIRE CONTROL/WEAPONS INTEGRATION
- SENSOR CUEING
- SHIPBOARD INTEGRATION
- SENSOR PERFORMANCE AGAINST VARYING THREAT DENSITIES
 AND AXES
TARGET ACQUISITION FOR SHIP DEFENSE

MAJOR ELEMENTS OF A COMPREHENSIVE PROGRAM

- DOCUMENT BASELINE SYSTEM PERFORMANCE AGAINST ADVANCED FUTURE THREATS
- OBTAIN AND UPGRADE SEVERAL EXISTING MM RADARS FOR USE IN AN AT-SEA SELF DEFENSE ROLE
- DEMONSTRATE MM WAVE RADAR PERFORMANCE USING LOW OBSERVABLE TARGETS IN AN AT-SEA ENVIRONMENT
- ANALYZE PAYOFF FROM INTEGRATING MM RADAR INTO PLANNED SENSOR SYSTEMS
- ANALYZE PAYOFF FROM ADDING BOTH A MM WAVE RADAR AND THE HYPERVELOCITY MISSILE TO THE PLANNED SELF DEFENSE SYSTEM
- DOCUMENTATION PACKAGE FOR FULL SCALE ENGINEERING DEVELOPMENT
OVERALL OBJECTIVE:

- DEMONSTRATE THE TECHNICAL FEASIBILITY AND OPERATION POTENTIAL OF A HIGH PERFORMANCE, FIBER OPTIC, COMMAND AND CONTROL DATA LINK SUITABLE FOR USE WITH EXISTING AND FUTURE NAVY AND AIR FORCE PRECISION GUIDED AIR-LAUNCHED WEAPONS

RESPONSIBLE AGENCIES: NAVY
USAF
ARMY

PRINCIPAL POC: CAPT CHALKLEY
NAVY NAVAIR 93
(202) 692-7439
FIBER OPTIC DATA LINK
FOR AIR LAUNCHED WEAPONS

REPRESENTATIVE FIBER OPTIC DATA LINK PROBLEMS
OF INTEREST TO DOD

- AERODYNAMIC PROPERTIES OF HIGH SPEED PAYOUT FIBER
 OPTIC DATA LINKS FROM POWERED AND UNPOWERED AIR
 LAUNCHED WEAPONS

- DEVELOPMENT OF COMPACT FIBER OPTIC BOBBINS AND
 MANUFACTURING METHODS FOR LOW PACKAGING OVERHEAD
 AND LONG RANGE

- RELIABILITY AND MAINTAINABILITY OF LONG LENGTH FIBERS
 STORED ON A BOBBIN IN VARIOUS ENVIRONMENTS

- SENSOR AND PROCESSING BENEFITS FROM THE USE OF FIBER
 OPTIC DATA LINKS
FIBER OPTIC DATA LINK FOR AIR LAUNCHED WEAPONS

MAJOR ELEMENTS OF A COMPREHENSIVE PROGRAM

- FIBER/SPOOL DEMONSTRATION IN TACTICAL ENVIRONMENTS USING GLIDE WEAPONS
- SHORT RANGE, ADVANCED FIBER/SPOOL DEMONSTRATION USING GLIDE WEAPONS
- SHORT RANGE, ADVANCED FIBER/SPOOL DEMONSTRATION USING POWERED WEAPONS
- LONG RANGE, ADVANCED FIBER/SPOOL DEMONSTRATION USING GLIDE WEAPONS
- LONG RANGE, ADVANCED FIBER/SPOOL DEMONSTRATION USING POWERED WEAPONS
- CONTINUALLY EVALUATE TRANSITION POTENTIAL AND DEVELOP ENGINEERING DEVELOPMENT PACKAGES AS REQUIRED

93
OVERALL OBJECTIVE:

- DEVELOP AND DEMONSTRATE A MORE LETHAL WARHEAD FOR THE MK-50 TORPEDO TO REPLACE THE SHAPED CHARGE CURRENTLY USED

RESPONSIBLE AGENCY: NAVY

PRINCIPAL POC: CAPT ED GRAHAM
NAVY NAVSEA 63B
(202) 692-8530
FOLLOW THROUGH
TORPEDO WARHEAD

REPRESENTATIVE TORPEDO WARHEAD PROBLEMS
OF INTEREST TO DOD

- WARHEAD LETHALITY
 - KNOWN THREAT TARGETS
 - ENSURING EFFECTIVENESS AGAINST
 FUTURE THREAT TARGET CHANGES

- WEIGHT AND SIZE RESTRICTIONS OF
 THE MK-50
MAJOR ELEMENTS OF A COMPREHENSIVE PROGRAM

- CONTINUATION AND EXPANSION OF ONGOING LIGHTWEIGHT GUN BARREL APPROACH FOR FIRING EXPLOSIVE CHARGE
- DEVELOPMENT OF FUZING DESIGN CONCEPT
- EVALUATION OF NOSE BREAKER DESIGNS
- DEVELOPMENT OF LETHALITY ENHANCING DEVICES
- DESIGN AND FABRICATE PROTOTYPE SYSTEM
- CONDUCT AT-SEA TESTS OF PROTOTYPE SYSTEM
- DOCUMENTATION PACKAGE FOR FULL-SCALE ENGINEERING DEVELOPMENT
OVERALL OBJECTIVE:

- ACCELERATE DEVELOPMENT OF THE SURF MINE CLEARING CONCEPT CALLED CATFAE (CATAPULT LAUNCHED FUEL-AIR EXPLOSIVE) FOR THE MARINES

RESPONSIBLE AGENCY: NAVY — MARINES

PRINCIPAL POC: LT COL GEORGE SOLHAN
COMMANDANT MARINE CORPS RDD-21
(202) 694-1411
AMPHIBIOUS ASSAULT COUNTERMINE SYSTEM

REPRESENTATIVE AMPHIBIOUS ASSAULT COUNTERMINE PROBLEMS
OF INTEREST TO DOD

● GENERAL
 - A MINE CLEARING CAPABILITY WHICH IS RAPID, CHEAP,
 REQUIRES MINIMAL LOGISTIC SUPPORT AND PERFORMS
 EFFECTIVELY FROM THE LAUNCH POINT TO THE BEACH

● CATFAE SPECIFIC
 - SAFELY TRANSITING FROM THE LAUNCH POINT TO THE
 SURF ZONE
 - FIRE CONTROL SYSTEM CAPABLE OF DELIVERING FAE
 ROUNDS IN A LINEAR OVERLAPPING PATTERN TO PRODUCE
 A BREACH LANE
 - ADEQUACY OF AAV (ASSAULT AMPHIBIOUS VEHICLE) TO
 SUPPORT THE WEIGHT OF THE CATFAE SYSTEM
 - MARKING THE CLEARED AREAS
 - SHIPBOARD STOWAGE OF FAE
 - OVERALL EFFECTIVENESS OF SYSTEM IN THE SURF ZONE
MAJOR ELEMENTS OF A COMPREHENSIVE PROGRAM

- TEST EFFECTIVENESS OF LANDING CRAFT TO SAFELY TRANSIT TO SURF ZONE

- DEVELOP A SECOND ADVANCED DEVELOPMENT MODEL TO ACCELERATE TESTING OF CATFAE

- CONDUCT TESTS USING PROTOTYPE CATFAE UNDER REALISTIC OPERATING CONDITIONS

- IDENTIFY P3I UPGRADES FOR CATFAE TO ADDRESS ADVANCED HARDENED MINES (CASES AND FUSES)

- INVESTIGATE SYSTEM APPROACHES TO THE GENERAL PROBLEM THROUGH THE BROAD AGENCY ANNOUNCEMENTS
OVERALL OBJECTIVES:

- CONDUCT A SYSTEMATIC AND COMPREHENSIVE INVESTIGATION OF HPM EFFECTS ON BOTH U.S. AND FOREIGN MILITARY EQUIPMENTS AND DEVELOP THE REQUIRED DATA BASE

- DEVELOP MODE CONVERTERS AND ANTENNAS NEEDED TO DIRECT SOURCE ENERGY ONTO TEST OBJECTS, TECHNIQUES FOR MODULATING MICROWAVE OUTPUT INTENSITY, AND CALIBRATED SOURCE DIAGNOSTICS

RESPONSIBLE AGENCIES: NAVY
ARMY
USAF
DNA

PRINCIPAL POC: CAPT FONTANA
NAVY SPAWAR PMW 145
(202) 692-5691
HIGH POWER
MICROWAVES — NAVY

REPRESENTATIVE HPM PROBLEMS OF INTEREST TO DOD

• SUSCEPTABILITY AS A FUNCTION OF ELECTRONIC TECHNOLOGIES, RANGES, AND DESIGN APPROACHES

• LETHALITY-PULSE WIDTH, PULSE REPETITION RATES NEEDED TO KILL ELECTRONICS

• HARDENING — WHAT TYPES OF SHIELDING ARE EFFECTIVE AND HOW COSTLY ARE THEY

• WEAPONIZATION POTENTIAL OF TECHNOLOGIES
MAJOR ELEMENTS OF A COMPREHENSIVE DOD PROGRAM

- EFFECTS TESTING
 - PREDICT EFFECTS OF A BROAD RANGE OF IRRADIATION CONDITIONS FOR FAMILIES OF U.S. NAVY AND FOREIGN ELECTRONICS
 - CONDUCT HPM EXPERIMENTS IN THE LAB AND AT THE CAPISTRANO TEST SITE
 - PERFORM POST EXPERIMENT ANALYSIS
 - ASSIST THE DEFINITION OF HPM FAILURE MODES AND WEAPONIZATION POTENTIAL

- HPM COMPONENTS DEVELOPMENT
 - DEMONSTRATE TRANSPORTABLE MODERATE AND HIGH POWER SOURCES FOR SEVERAL FREQUENCY REGIMES
 - DEVELOP REPEITIVELY PULSED RETARGETABLE DEVICES CONCENTRATING ON PULSED POWER METHODS AND STEERABLE ANTENNA
OVERALL OBJECTIVE:

- TO ASSESS THE POTENTIAL OF THE HIGH ENERGY LASER TO MEET FUTURE SURFACE SHIP REQUIREMENTS

RESPONSIBLE AGENCIES: NAVY SDIO

PRINCIPAL POC: CAPT FONTANA
NAVY SPAWAR PMW 145
(202) 692-5691
HIGH ENERGY LASER FOR SHIP DEFENSE

REPRESENTATIVE HIGH ENERGY LASER PROBLEMS OF INTEREST TO DOD

- ACQUISITION, TRACKING AND LETHALITY
 - MOVING TARGETS
 - HIGH SPEED TARGETS
 - MANEUVERING TARGETS
 - MULTIPLE TARGETS
 - PRESENTATION ANGLE
 - VARIOUS WEATHER CONDITIONS

- COST PER ENGAGEMENT

- SHIPBOARD COMPATIBILITY
HIGH ENERGY LASER FOR SHIP DEFENSE

MAJOR ELEMENTS OF A COMPREHENSIVE DOD PROGRAM

• PERFORM LETHALITY PREDICTIONS BASED ON GROUND TEST DATA

• VERIFY LETHALITY USING A HIGH ENERGY LASER AGAINST REALISTIC TARGETS AT WSMR

• CONDUCT AN ANALYSIS OF PROGRAM DEVELOPMENT COSTS AND COSTS OF MOST LIKELY COUNTERMEASURES
AIR FORCE BTI PROJECTS
AIR FORCE BALANCED TECHNOLOGY INITIATIVE PROJECTS

Air Force participation in the BTI Program for FY 1987 involves work on 6 projects funded at a total of $24.7 million. Specific projects include the following:

- MILLIMETER WAVE SEEKER DEMONSTRATION
- AUTONOMOUS GUIDANCE FOR CONVENTIONAL WEAPONS
- MULTI-SENSOR AUTOPROCESSOR TECHNOLOGY
- HIGH POWER MICROWAVES
- CRUISE MISSILE ADVANCED GUIDANCE
- ADVANCED CLOSE AIR SUPPORT

Details regarding these projects are provided in the following charts.
MILLIMETER WAVE (MMW) SEEKER DEMONSTRATION

OVERALL OBJECTIVES

- FREE-FLIGHT DEMONSTRATION OF LOW COST MMW SEEKER TECHNOLOGY MATED TO THE AGM-65 WEAPON FRAME
- TO DEMONSTRATE SURVIVABLE, ALL WEATHER STANDOFF ATTACK CAPABILITY AGAINST MOBILE BATTLEFIELD/SECOND ECHELON TARGETS

RESPONSIBLE AGENCIES:
SAF/AQQ
AFSC/XR
AD

PRINCIPAL POC:
LT COL JIM SLATON
SAF/AQQT
(202) 695-0328
MILLIMETER WAVE (MMW)
SEEKER DEMONSTRATION

THE PURPOSE OF THIS PROGRAM IS TO PROVIDE THE AIR
FORCE AN AIR-DELIVERED, ALL WEATHER,
AUTONOMOUSLY GUIDED, STANDOFF WEAPON FOR USE
AGAINST FIXED AND MOBILE AIR DEFENSE UNITS,
MOVING AND MASSED ARMOR, AND OTHER MOBILE

• COMPETITIVE PROGRAM TO CONDUCT FREE-FLIGHT
DEMONSTRATIONS OF PROTOTYPE MMW MAVERICKS

• TWO YEAR DEMONSTRATION PROGRAM TO LEAD TO
FULL SCALE DEVELOPMENT PROGRAM (IN PLANNING)
MAJOR ELEMENTS

- TWO CONTRACTOR (MINIMUM) COMPETITIVE APPROACH
- FABRICATION AND ASSEMBLY OF PROTOTYPE MMW SEEKER
- INTEGRATION OF SEEKERS ONTO AGM-65 WEAPON FRAME
- FREE-FLIGHT DEMONSTRATIONS (4-5 LAUNCHES EACH CONTRACTOR) PROTOTYPE MMW MAVERICKS AGAINST CHARACTERISTIC BATTLEFIELD ARRAYS
AUTONOMOUS GUIDANCE FOR
CONVENTIONAL WEAPONS

OVERALL OBJECTIVES

- INCORPORATE NEAR-TERM AUTONOMOUS GUIDANCE SYSTEM INTO THE GBU-24

- TO DEVELOP AN AUTONOMOUS GUIDED WEAPON (AGW) FOR FIXED TARGETS

REASONABLE AGENCIES: SAF/AQQ
 AFSC/XR AND SD
 AD/YH

PRINCIPAL POC: LT COL JIM SLATON
 SAF/AQQT
 (202) 695-0328
THE PURPOSE OF THIS PROGRAM IS TO PROVIDE THE AIR FORCE A DAY/NIGHT/ADVERSE WEATHER, LOCK-ON-AFTER-LAUNCH, STANDOFF WEAPON CAPABLE AGAINST FIXED TARGETS SUCH AS AIRFIELDS, BRIDGES, POWER PLANTS, AND POL FACILITIES. THREE TO FOUR YEAR FULL SCALE DEVELOPMENT (FSD) PROGRAM.
MAJOR ELEMENTS

- COMPETITIVE PROGRAMMATIC APPROACH

- DEVELOP AUTONOMOUS GUIDED WEAPON
 - NEAR-TERM IMAGING INFRARED SEEKER SYSTEM INCORPORATED INTO GBU-24
 - COMPATIBLE WITH BOTH BLU-109 (FIRST) AND MK-84 (SECOND) WARHEAD
OVERALL OBJECTIVES:
TO DEVELOP AN INTEGRATED AUTOMATIC TARGETING
CAPABILITY TO PROVIDE INCREASED WEAPON SYSTEM
SURVIVABILITY, HIGHER KILL-TO-PASS RATIO AND
INCREASED ACQUISITION/RECOGNITION PERFORMANCE.
TO DEMONSTRATE THAT THE SYNERGISTIC COMBINATION OF
MULTI-SENSOR SIGNATURES WILL IMPROVE DETECTION AND
CLASSIFICATION CONFIDENCES, REDUCE FALSE ALARMS,
AND IMPROVE OVERALL IMMUNITY TO COUNTERMEASURES
AND CAMOUFLAGE, CONCEALMENT AND DECEPTION
MEASURES.
RESPONSIBLE AGENCIES: ASD
PRINCIPAL POC: HENRY LAPP
AFWAL
(513) 255-5922
MULTI-SENSOR AUTOPROCESSOR TECHNOLOGY

BACKGROUND

- LABORATORY AUTOMATIC TARGET RECOGNIZERS HAVE DEMONSTRATED A LIMITED CAPABILITY.

- CHALLENGE REMAINS TO ENHANCE CURRENT CAPABILITY BY IMPROVING CLASSIFICATION PERFORMANCE, REDUCING FALSE ALARMS AND RELIABLY CUEING TARGETS IN COUNTERMEASURE AND CAMOUFLAGE, CONCEALMENT AND DECEPTION BATTLEFIELD ENVIRONMENT.

- LACK OF A CONCURRENTLY COLLECTED AND PROPERLY TRUTHED DATA BASE WITH INSTRUMENT QUALITY SENSORS IS THE PACING ISSUE LIMITING PROGRESS IN THE VALIDATION OF A VIABLE MULTI-SENSOR TARGETING TECHNOLOGY.
MULTI-SENSOR
AUTOPROCESSOR TECHNOLOGY

PLANS

- FABRICATE MULTI-SENSOR DATA COLLECTION SYSTEM
- LABORATORY AND AIRBORNE SENSOR CHARACTERIZATION
- COLLECT CONCURRENT MULTI-SENSOR DATA FOR DEVELOPMENT AND VALIDATION OF AUTOMATIC TARGET RECOGNIZERS. (FORWARD LOOKING INFRARED, SYNTHETIC APERTURE RADAR, MILLIMETER WAVE SENSORS AND CO2 LASER RADAR)
- OPTIMIZE MULTI-SENSOR AUTOMATIC TARGET RECOGNIZER ALGORITHMS (USAF / ARMY / NAVY, CONTRACTORS)
- DEMONSTRATE & VALIDATE A MULTI-SENSOR TARGETING APPROACH FOR CONVENTIONAL DEFENSE.
- GENERATE SYSTEM-LEVEL SPECIFICATIONS
AIR FORCE
HIGH POWER MICROWAVES

- OVERALL OBJECTIVES
 - QUANTIFY SUSCEPTIBILITY OF WEAPON SYSTEMS
 - DEVELOP HARDENING TECHNOLOGY
 - DEVELOP WEAPONIZATION TECHNOLOGY

- RESPONSIBLE AGENCIES: HQ AFSC
 AFWL
 RADC
 AFWAL

- PRINCIPAL POC: MAJOR WILLIAM C. DUNGAN
 HQ AFSC
 (301) 981-2554
AF HPM TECHNOLOGY PROGRAM
MAJOR PROGRAM EFFORTS

- DEVELOP RELIABLE SUSCEPTIBILITY/VULNERABILITY DATABASE
 - EFFECTS TESTING
 - MISSION CRITICAL COMPONENTS, SUBSYSTEMS, SYSTEMS
 - METHODOLOGY
 - DEVELOP STANDARDIZED TEST PROTOCOLS
 - VALIDATE PROCEDURES
 - PHENOMENOLOGY
 - UNDERSTAND ENERGY COUPLING MECHANISMS
- COMPONENTS DEVELOPMENT
 - SUPPORT EFFECTS EXPERIMENTS/WEAPONIZATION

119
NEED FOR A STRONG HPM PROGRAM

- LIMITED TESTING DEMONSTRATES SYSTEM SUSCEPTIBILITIES
- AF WEAPON SYSTEMS AT RISK
 - KNOWN SOVIET TECHNOLOGY/RESEARCH
 - UNKNOWN AF SYSTEM SUSCEPTIBILITIES/VULNERABILITIES
- ENHANCE MISSION CAPABILITIES
 - EXPLOIT POTENTIAL LETHALITIES
 - NEAR-TERM TECHNOLOGY
CRUISE MISSILE ADVANCED GUIDANCE (CMAG)

OVERALL OBJECTIVES

- DEVELOP / DEMONSTRATE MULTI-FUNCTION CRUISE MISSILE GUIDANCE
 - PRECISION TERMINAL HOMING
 - MIDCOURSE NAVIGATION
 - TERRAIN FOLLOWING / OBSTACLE AVOIDANCE
 - 3-D MOBILE TARGET CLASSIFICATION / SUBMUNITION FIRE CONTROL
 - STRATEGIC DAMAGE ASSESSMENT

- EXPLOIT LASER RADAR AND TARGET RECOGNITION PROCESSOR TECHNOLOGIES FOR MANNED AIRCRAFT APPLICATIONS

RESPONSIBLE AGENCIES: AFWAL
 RADC
 DMA

PRINCIPAL POC: MR RON KAEHR
 AFWAL/AVIONICS LABORATORY
 (513) 255-2713
BACKGROUND

• CMAG IS CONTINUATION OF DARPA/AFWAL 6.2 AUTONOMOUS TERMINAL HOMING PROGRAM (1976-84)
 • SELECTED BEST COMBINATION OF SUBSYSTEM TECHNOLOGY
 • DEMONSTRATION TECHNICAL FLEXIBILITY OF SELECTION APPROACH USING AIRBORNE SENSOR DATA AND NON-ROUTINE SIMULATIONS

• CURRENT 6.3A EFFORT (1984-88)
 • IMPROVE CO² LASER RADAR SENSOR/PROCESSOR CAPABILITY
 • CONDUCT REAL/TIME CAPTIVE FLIGHT TEST OF NAV/GUIDANCE FUNCTIONS
 • MAINTAIN COMPETITION AND TECHNOLOGY IMPLEMENTATION FLEXIBILITY
 • DEVELOP MISSION PLANNING APPROACHES COMPATIBLE WITH FORECASTED RECONNAISSANCE AND USER CAPABILITY
CRUISE MISSILE ADVANCED GUIDANCE (CMAG)

STATUS/PLANS
- CAPTIVE FLIGHT TESTING UNDER WAY
- EARLY RESULTS - BOTH SYSTEMS WORK
- PLANNING INITIATED FOR FOLLOW-ON PROTOTYPE
- POSSIBLE P3I TO NUMEROUS CRUISE MISSILES
- FREE-FLIGHT MISSILE DEMONSTRATION
- PAYOFFS: SUBSTITUTE CONVENTIONAL WEAPONS FOR NUCLEAR
- REDUCED COLLATERAL DAMAGE
- ROUTE FLEXIBILITY/INCREASED SURVIVABILITY
- REDUCED MISSION PLANNING TIME/COST

APPLICATION SPINOFFS BEING CONSIDERED
- TACTICAL 3-D RECONNAISSANCE SENSOR
- SENSOR/ATR CANDIDATE FOR - STRATEGIC RELOCATABLE TARGETS
- AUTOMATED NAVIGATION/WEAPON FIRE CONTROL FOR MANNED AIRCRAFT
OVERALL OBJECTIVES

- CONDUCT PHASED DEVELOPMENTS AND DEMONSTRATIONS THAT ADDRESS CAS/BAI REQUIREMENTS AND ISSUES, TO INCLUDE:
 - APPLICATION OF DIGITAL TERRAIN SYSTEM AND DATA LINK TO SURVIVABLE BATTLEFIELD PENETRATION
 - TECHNOLOGY APPLICATIONS FOR RAPID TARGET ACQUISITION AND WEAPON DELIVERY
 - APPLICATION OF AFTI/F-16 AIR-TO-AIR CAPABILITY TO CAS/BAI MISSION FOR SELF-DEFENSE

RESPONSIBLE AGENCY: AFWAL

PRINCIPAL POC: MR DICK SWORTZEL
AFWAL/FIGI
(513) 255-8253

124
CAS/BAI RELATIONSHIP - 1990'S

DISTINCTIONS ARE VANISHING BETWEEN CAS AND BAI AIRCRAFT REQUIREMENTS...
CAS / BAI TECHNOLOGY
FLIGHT TEST DEMONSTRATION

<table>
<thead>
<tr>
<th></th>
<th>FY87</th>
<th>FY88</th>
<th>FY89</th>
<th>FY90</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACFT UPGRADE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAS TECHNOLOGY DEV</td>
<td>REFURBISH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ATHS DATA LINK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MAV CAPABILITY</td>
<td></td>
<td></td>
<td>COCKPIT DISPLAYS</td>
</tr>
<tr>
<td>FLT TEST-INTEG/EVAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SITAN NAV</td>
<td>FLIR/LASER TGTING</td>
<td>MANEUVERING TF/TA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PASSIVE RANGE/HAT</td>
<td>MAV/HAVE FANG</td>
<td>ALL-TERR AMAS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HELMET SIGHT OPNS</td>
<td>RADAR DIRECTOR GUNNERY</td>
<td>"COVERT" OPNS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>STS DIRECTOR GUNNERY</td>
<td>ADV TERR SYS OPN</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DATA LINK OPN (ATHS)</td>
<td>FLIGHT INTERNETTING</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DEFENSE AGENCY BALANCED TECHNOLOGY INITIATIVE PROJECTS

Defence Agency participation in the BTI Program for FT 1987 involves work on 23 projects funded at a total of $70.5 million. Specific projects include the following:

DARPA

MULTI-MISSION SEEKER DEVELOPMENT
AUTOMATIC TARGET RECOGNITION FOR SMART WEAPONS
DEEP BATTLE WEAPON CONCEPT
GUIDED TACTICAL HYPERVELOCITY PROJECTILES
MONOLITHIC INFRARED FOCAL PLANE ARRAYS
EXPERT SYSTEM FOR MANUFACTURE OF SMART WEAPON COMPONENTS
TACTICAL USE OF NATIONAL TECHNICAL MEANS
OPTICAL SIGNAL PROCESSING TECHNOLOGY
ENHANCED KINETIC ENERGY WEAPONS
ADVANCED COMPOSITE GUN
SHORT RANGE ANTI-TANK WEAPON
ADVANCED MINE/COUNTERMINE TECHNOLOGY
ARMOR MATERIALS
ENHANCED COMPUTATIONAL CAPABILITIES FOR ADVANCED WEAPONS SYSTEM DEVELOPMENT
PENETRATOR/TARGET INTERACTION FLASH X-RAY FACILITY
ADVANCED SHORT TAKEOFF/VERTICAL LANDING TECHNOLOGY
ACTIVE OPTICAL COUNTERMEASURES
HIGH POWER/ENERGY DENSITY BATTERIES
SUPERCONDUCTING CERAMIC MATERIALS

DEFENSE PRODUCTION ENGINEERING SERVICES OFFICE

INFRARED FOCAL PLANE ARRAY PRODUCIBILITY INITIATIVE
DEFENSE NUCLEAR AGENCY
HIGH POWER MICROWAVES
OUSD (OFFICE OF MUNITIONS)
ENHANCED BLAST MUNITIONS TECHNOLOGY BASE DEVELOPMENT

Details regarding these projects are provided in the following charts.
OBJECTIVE:

- DEVELOP AND DEMONSTRATE AN ADVANCED IR SEEKER CAPABLE OF LONG RANGE TARGET ACQUISITION AND RECOGNITION

RESPONSIBLE AGENCIES:

DARPA
CNVEO

PRINCIPAL POC:

DR. JASPER LUPO
DARPA/TTO
(202) 694-2569

PROGRAM IS CLASSIFIED AND SOLE SOURCE
Overall objectives

- To develop mission enabling automatic target recognition technology for application to a large variety of smart weapon systems
- To advance the state of the art in processing signals from multiple sensor inputs by fusing the presented information and raising the perception level of systems attempting to understand images

Responsible agent: DARPA

Principal POC: Dr. Jasper Lupo, DARPA (202) 694-2569
- Major program elements
 - Fundamental studies will be conducted on:
 - Image processing
 - Target and background signature collection
 - Multi-sensor integration
 - Signal processing and decision-making software
 - Target prioritization schemes
 - Air system architectures
 - Development and testing will be conducted on the application of neural net processing to the imagery of multi-sensor suites
AUTOMATIC TARGET RECOGNITION
FOR SMART WEAPONS

- National defense needs addressed
 - Enabling technology will be developed to allow
 a variety of weapon systems to penetrate the
 camouflage, countermeasures, and deception
 of high value enemy targets

- Major program milestones
 - BAA on neural nets workshop
 Early FY 88
 - Multi-sensor suite initial flight
 Early FY 88
 - RFQ for ATR technology advancement
 Mid FY 88
 - Sensor flights against target models
 Mid FY 88
 - Initial test of neural net processing
 Late FY 88
 - Validate new simulation techniques
 FY 89
 - Develop and demonstrate sensor suites
 FY 90
 - Complete flight testing
 FY 91
DEEP BATTLE WEAPON CONCEPT

OBJECTIVE

• DEVELOP AND EVALUATE AN ADVANCED SENSOR FUZED DEEP BATTLE WEAPON FOR POTENTIAL DELIVERY BY TACTICAL SSM’s

• PROVIDE LARGER AREA SEARCH CAPABILITY THAN PRESENT SENSOR FUZED MUNITIONS

RESPONSIBLE AGENCIES:

DARPA
MICOM

PRINCIPAL POC:

DR. JASPER LUPO
DARPA/TTO
(202) 694-2569

PROGRAM IS CLASSIFIED AND SOLE SOURCE
GUIDED TACTICAL HYPERSONIC PROJECTILE

OVERALL OBJECTIVES

- To develop projectiles and associated fire control technologies capable of defeating enemy advanced armor and air targets with a mobile, hypervelocity gun weapon
- To develop and demonstrate the integrated projectile and fire control system and test it with conventional and hypervelocity guns

RESPONSIBLE AGENT: DARPA; ARDEC

PRINCIPAL POC: DR. JASPER LUPO, DARPA,
(202) 694-2569
GUIDED TACTICAL HYPERVELOCITY PROJECTILE

• MAJOR PROGRAM ELEMENTS
 • PROJECTILE DEVELOPMENT ENCOMPASSING
 – AERODYNAMICS AND HEATING
 – LAUNCH ENVIRONMENT
 – GUIDANCE AND CONTROL
 – WARHEADS AND FUZING
 • FIRE CONTROL ENCOMPASSING
 – AUTONOMOUS SEARCH AND ACQUISITION
 – SENSOR SUITE SELECTION
 – IDENTIFICATION OF FRIEND OR FOE
 – COMMAND GUIDANCE OF MULTIPLE PROJECTILES AGAINST MULTIPLE TARGETS
• **NATIONAL DEFENSE NEEDS ADDRESSED**

 • EXPLOITATION OF HYPERVELOCITY GUN TECHNOLOGY WILL BE ACHIEVED THROUGH DEVELOPMENT OF A NEW PROJECTILE AND APPROPRIATE FIRE CONTROL TO RAPIDLY DEFEAT ENEMY ARMOR AND AIR THREATS thus helping to counter numerical superiority on the conventional battlefield

• **MAJOR PROGRAM MILESTONES**

 • RFQ ISSUED FOR PROJECTILES AND FIRE CONTROL LATE FY87
 • DESIGN OF PROJECTILE AND FIRE CONTROL EARLY FY88
 • CRITICAL COMPONENT DEMONSTRATIONS MID FY89
 • SYSTEMS DEMONSTRATIONS EARLY FY92
MONOLITHIC INFRARED FOCAL PLANE ARRAYS (FPAs) DARPA

- Overall objectives
 - To demonstrate reproducible growth of high quality IR detector materials over large areas
 - To demonstrate "silicon-line" processing of monolithic FPA ICs in mercury-based alloys
 - To demonstrate feasibility of affordable and reliable monolithic IR focal plane arrays

- Responsible agencies: DARPA, AFOSR, ARO, NRL

- Principal POC: Dr. James Murphy, DARPA
 (202) 694-3145
Major elements of a comprehensive program

- Bulk and epitaxial growth of defect-free Hg-based alloys over large areas
- Materials characterization
- Design and modeling of detection and signal processing circuits
- Detector array fabrication and testing
- Signal processor fabrication and testing
- Monolithic detector array/signal processor module fabrication and testing
Representative DoD tactical applications for IRFAs

- Smart munitions (anti-armor, tank, ship, aircraft, etc.)
- Target acquisition (weapon sites, etc.)
- Surveillance (land, sea, air) (threat warning, search attack, intelligence)
- Navigation
- Active imaging
EXPERT SYSTEMS FOR MANUFACTURE
OF SMART WEAPONS COMPONENTS

- Overall objectives
 - Develop and demonstrate a fully integrated approach for the design, manufacture, and maintainability of smart weapons components and systems
 - Reduce manufacturing costs by at least 50 percent
- Responsible agency: DARPA
- Principal POC: Dr. Phillip A. Parrish
 DARPA (202) 694-1303
Representative problems of interest to DoD

- Cost reduction in manufacturing critical subassemblies
- Production of relatively low volumes of specific items economically
- Flexibility for fast turnaround on line
- Applications to AMRAAM, MLRL, Copperhead
Major elements of a comprehensive program

- Utilization of machine intelligence to develop new manufacturing concepts
 - Pattern recognition
 - Intelligent processing
 - Real time computer control
 - Robotics

- Development of methodology
 - Expert unit processes
 - Computer aided design
 - Automated in-process inspection and quality control
 - Flexible, reprogrammable work cells
TACTICAL USE OF NATIONAL TECHNICAL MEANS

OBJECTIVE

TO DEVELOP DATABASES AND TECHNOLOGIES

RESPONSIBLE AGENCIES:

DARPA
USAETL

PRINCIPAL POC:

DR. JUDITH DALY
DARPA/TTO
(202) 694-2394

PROGRAM IS CLASSIFIED AND SOLE SOURCE

145
Overall objective: Demonstrate the suitability of optical signal processing technology for demanding data handling applications.

Responsible agencies: DARPA, RADC, HDL, NRL, ONR

Principal POC: Dr. John Neff, DARPA,
(202) 694-3145
CRITICAL DEVICES: ANALOG MODULATORS
A/D CONVERTERS
2D SPATIAL LIGHT MODS.
HIGH DENSITY MEMORY
SMART DETECTOR ARRAYS
Early program goals (first three years)

- Define architectures for high bandwidth radar, wideband communications, database and knowledgebase processing, and electronics warfare
- Develop critical devices

Late program goals (last two years)

- "Fine-tune" devices
- Assemble three or four demonstrations
OVERALL OBJECTIVES

- DEVELOP KINETIC ENERGY PROJECTILES THAT HAVE A FIRST ROUND KILL CAPABILITY AT 3KM OR BEYOND AGAINST CURRENT OR PROJECTED ARMORED VEHICLES.
- DEMO WITH FIELDED 20mm GUN
- SCALABLE TO FIELDED 105mm GUN

RESPONSIBLE AGENCIES

DARPA
ARDEC

PRINCIPAL POC:

MAJ RANDY LUNDBERG
DARPA/TTO
(202) 694-8379
MAJOR ELEMENTS AND TECHNOLOGY ISSUES:

- EXTERNAL PROPULSION
 - LAUNCH SURVIVABILITY OF ROCKET OR RAMJET
 - ATTAINMENT OF LETHAL VELOCITY IN MINIMUM RANGE
 - ROCKET MASS FRACTION AND BURN RATE
 - RAMJET IGNITION AND ACCELERATION

- GUIDANCE AND CONTROL
 - G&C SYSTEM WEIGHT
 - FORWARD LOOKING SEEKERS
 - OBSCURATION OF COMMAND GUIDANCE TRACKER BY GUN BLAST AND BOOST PROPULSION

- LETHALITY
 - PENETRATOR CONFIGURATION AND WEIGHT
 - LAUNCH SURVIVABILITY OF ADVANCED PENETRATORS
ANTICIPATED PRODUCTIONS AND APPLICATIONS

- ADVANCE SOA OF PROPULSION, G&C, AND KE PENETRATORS OF GUN LAUNCHED PROJECTILES
 - COMPONENT TECHNOLOGIES APPLICABLE TO MISSILES

- DEMONSTRATION OF INTEGRATED PROJECTILE AND FIRE CONTROL SYSTEM THAT WILL SIGNIFICANTLY EXTEND THE EFFECTIVE RANGES OF DEPLOYED 120mm AND 105mm WEAPON SYSTEMS
• OVERALL OBJECTIVE:
 • TO DEMONSTRATE GREATLY IMPROVED LETHALITY IN GUN SYSTEMS BY EXPLOITING COMPOSITE MATERIALS AND COMPUTER DESIGN TECHNOLOGY. IMPROVEMENTS DESIRED ARE:
 - HIGHER PRESSURE
 - HOTTER PROPELLANTS
 - GREATER HEAT INPUT CAPABILITY
 - GREATER BARREL STIFFNESS
 - LOW BARREL EROSION

• RESPONSIBLE AGENCIES: DARPA, U.S. ARMY (ARDEC)

• PRINCIPAL POC: DR. GENE FARNUM, DARPA, (202) 694-1303
ADVANCED COMPOSITE GUN

• BENEFITS TO DoD ARMAMENT NEEDS
 • LONG RANGE, LONG BARREL LIFE, LIGHT ARTILLERY
 • HIGH VELOCITY, ACCURATE TANK CANNONS
 • EXTENDED RAPID-FIRE BURSTS FOR AIR DEFENSE CANNONS
 • LIGHTWEIGHT, SHORT TIME-OF-FLIGHT AIR-TO-AIR MACHINE GUNS
 • HIGH VELOCITY, ACCURATE ANTIARMOR AUTOMATIC CANNONS
 • LIGHTWEIGHT, RAPID FIRE, LONG BARREL LIFE MACHINE GUNS
• DEVELOPMENT PROGRAM LEADS TO A HIGH PERFORMANCE RAPID FIRE PROTOTYPE IN MEDIUM CALIBER IN FOUR YEARS

1) ADVANCED FINITE ELEMENT COMPUTER DESIGN WITH MULTILAYER COMPOSITE MATERIALS

2) MATERIAL SELECTION AND PROPERTY OPTIMIZATION
 – CERAMIC MATRIX COMPOSITES
 – REFRACTORY METAL ALLOYS AND COMPOSITES
 – HIGH TEMPERATURE POLYMER/GRAPHITE COMPOSITES

3) CONSTRUCT AND FIRE HIGH PERFORMANCE BARREL/BREECH TEST-BED

4) INCORPORATE THERMAL CONTROL, RECOIL SUPPRESSION AND HIGH-STRENGTH, LIGHTWEIGHT MATERIALS IN GUN SYSTEM DESIGN

5) BUILD PROTOTYPE CANNON FOR SERVICE EVALUATION
OVERALL OBJECTIVE:

- DESIGN AND TEST A LIGHTWEIGHT, SHORT-RANGE, SELF-DEFENSE, ANTI-TANK WEAPON CAPABLE OF DEFEATING CURRENT AND PROJECTED TANKS AT RANGES OF 300-500m.

RESPONSIBLE AGENCIES:

DARPA
MCDEC

PRINCIPAL POC:

MAJ RANDY LUNDBERG
DARPA/TTO
(202) 694-8379
SHORT-RANGE ANTI-TANK WEAPON (SRAW) PROJECT

TECHNICAL CHALLENGES

- MAJOR REDUCTIONS IN KEY COMPONENT WEIGHT AND VOLUME:
 - WARHEAD
 - PROPULSION
 - SENSOR/FUZE
 - CONTROL SYSTEM
 - LAUNCHER
- INTEGRATE EXISTING TECHNOLOGIES WHENEVER POSSIBLE TO REDUCE PRODUCTION COSTS

PROGRAM PLAN

- BRIEFING TO INDUSTRY — LATE FALL
- PHASE I — DETAILED DESIGNS
- PHASE II — CRITICAL TECHNOLOGY DEMONSTRATIONS
- PHASE III — SYSTEM INTEGRATION AND TEST
OVERALL OBJECTIVES

- To develop high payoff concepts and technologies for land mines and countermeasure operations
- Specific areas of initial focus include command and control links, anti-helicopter mines, standoff mine detection
- Briefing to industry given on July 23
- Responses due September 9

RESPONSIBLE AGENCIES: DARPA ARDEC BRDEC

PRINCIPAL POC: MR. TOM HAIFER
DARPA
(202) 694-8378
ANTICIPATED PRODUCTIONS AND APPLICATIONS

- COMMAND AND CONTROL LINK
- DENY ENEMY PASSAGE BUT PERMIT FRIENDLY PASSAGE
- INCREASE EFFECTIVENESS OF MINEFIELD
- PERMIT MINES TO FUNCTION AS INTELLIGENCE GATHERING DEVICES

- ANTI-HELICOPTER MINE
- DENY NAP-OF-THE-EARTH OVERFLIGHT BY ENEMY HELICOPTERS
- ATTACK ENEMY FORWARD AREA REFUEL/REARM POINTS
- DISRUPT ENEMY AIR BASE OPERATIONS

- MINE DETECTION SYSTEM
- PROVIDE SUFFICIENT WARNING OF MINE PRESENCE TO AVOID ENCOUNTER
- ALLOW DEMILITARIZATION OF MINE AREAS
- DISCOVER/INTERCEPT TERRORIST DEVICES
MAJOR ELEMENTS AND TECHNOLOGIES

- COMMAND AND CONTROL LINK
 - ENCRYPTION/SECURITY DEVICES
 - LOW PROBABILITY OF INTERCEPT COMMUNICATIONS
 - NETWORKING PROTOCOLS

- ANTI-HELICOPTER
 - PASSIVE OR COVERT GROUND SENSORS
 - WARHEADS/LETHAL MECHANISMS
 - NON-COOPERATIVE IFF

- MINE DETECTION SYSTEM
 - GROUND PENETRATING RADAR
 - NEUTRON ABSORPTION/RE RADATION TECHNIQUES
 - MULTISENSOR REAL TIME PROCESSING
• OVERALL OBJECTIVES

• TO IMPROVE UNDERSTANDING OF THE RESPONSE OF HIGH-Performance Ceramics TO Ballistic Impact

• TO DRAMATICALLY REDUCE THE COST OF HIGH Ballistic Performance Ceramic Armor

• TO DEVELOP IMPROVED LOW-COST ARMOR MATERIALS AND NOVEL High Performance Armor Concepts

• RESPONSIBLE AGENCIES: DARPA, ARO

• PRINCIPAL POC: DR. GENE FARNUM, DARPA, (202) 694-1303
ARMOR MATERIALS

- SERVICE NEED: HIGH MASS EFFICIENCY ARMOR AT LOW COST
 - EMERGING THREATS OF HEAVY METAL APFSDS PENETRATORS IN ALL CALIBERS FROM 7.62 TO 125 mm TANK GUN
 - NEW GUIDANCE TECHNOLOGY AND GREATER NUMBERS ARE INCREASING THE THREAT FROM ANTIARMOR MISSILES
 - "LIGHT" FIGHTING VEHICLES WILL NEED ARMOR TO DEFEAT THESE THREATS BUT CANNOT AFFORD THE ADDED WEIGHT OF METALLIC ARMOR
 - CERAMIC ARMOR SYSTEMS HAVE DEMONSTRATED HIGH MASS EFFICIENCY
 - BUT, FIGHTING VEHICLES CANNOT AFFORD THE CURRENT HIGH COST OF BALLISTIC CERAMICS
 - DEVELOPMENT OF EVEN BETTER ARMOR IS IMPEDED BY INADEQUATE UNDERSTANDING OF THE FAILURE OF HARD MATERIALS
• ADDRESSING THE PROBLEMS IN ADVANCED ARMORS
 • EXPERIMENTAL AND ANALYTICAL STUDIES OF FAILURE AND POST-
 FAILURE FLOW OF HARD MATERIALS
 • DEVELOPMENT OF NEW PROCESSING TECHNOLOGIES THAT WILL
 PRODUCE LOW-COST, NET-SHAPE CERAMIC ARMOR TILES
 • DEVELOPMENT OF MATERIALS AND CONCEPTS FOR LIGHTWEIGHT,
 HIGH-EFFICIENCY EXPLOSIVE REACTIVE ARMOR
 • DEVELOPMENT OF IMPROVED ARMOR MATERIALS BY TAILORED
 MICROSTRUCTURES, NEW CERAMIC "ALLOYS" AND
 CERAMIC/METAL COMPOSITES
ENHANCED COMPUTATIONAL CAPABILITIES
FOR ADVANCED WEAPON SYSTEM DEVELOPMENT

► Overall objectives
 • To develop improved understanding of the response of real materials to dynamic loading
 • To formulate physically-based constitutive models for describing such behavior for use in solving complex computational mechanics problems of interest to DoD

► Responsible agencies: DARPA, ONR, ARO

► Principal POC: Dr. Gene Farnum, DARPA, (202) 694-1303
Representative computational problems of interest to DoD

- Analyses of structural impacts at high velocities
- Design and evaluation of conventional munitions (e.g., shaped charges, EFPs, advanced mines)
- Analyses of penetrator/target interaction phenomena and performance of advanced armor systems
- Analyses of blast loading and effects on soils and structures
- Combustion and explosion phenomena
- Analyses related to the dynamic properties characterization of new materials and components being developed for military systems
Major elements of a comprehensive program
- Experimental studies and analyses
- Development of micromechanics models
- Development of compatible macroscopic material constitutive models
- Development of reliable numerical algorithms for implementing models in large-scale computer simulation programs
- Experimental verification/validation of advanced computational capabilities
- Demonstration of applicability to complex DoD problems
OBJECTIVE: TO ESTABLISH A HIGH-ENERGY FLASH X-RAY FACILITY TO BE USED IN STUDYING THE INTERACTION OF VARIOUS MUNITIONS WITH ADVANCED ARMOR SYSTEMS FOLLOWING IMPACT. A PULSED X-RAY MACHINE HAVING PEAK ENERGY IN THE RANGE OF 5-8 MeV WILL BE DEVELOPED, TOGETHER WITH SUPPORTING DIAGNOSTICS.

RESPONSIBLE AGENCY: DARPA

PRINCIPAL POC: MR. JOHN ENZMINGER
DARPA
(202) 694-2440
OBJECTIVE: TO ACCELERATE THE DEVELOPMENT OF
TECHNOLOGIES LEADING TO FLIGHT TEST
DEMONSTRATIONS OF THE MILITARY POTENTIAL
OF ASTOVL AIRCRAFT BY THE EARLY 1990'S

RESPONSIBLE AGENCY: DARPA

PRINCIPAL POC: MR. LARRY GETTSMA
DARPA
(202) 694-2723
ADVANCED SHORT TAKEOFF/VERTICAL LANDING (ASTOVL) TECHNOLOGY

WORK WILL SUPPORT A JOINT US/UK ASTOVL TECHNOLOGY COOPERATIVE R&D PROGRAM INITIATED IN FY 1986 AS PART OF THE NATO SPECIFIC PROGRAM ACTIVITIES:

• DEVELOPMENT OF AN INTEGRATED FLIGHT/PROPULSION CONTROL (IFPC) SYSTEM UNIQUE TO ASTOVL AIRCRAFT
• MODIFICATION OF HIGH THRUST-TO-WEIGHT ENGINES FOR ASTOVL PROPULSION
• JET-EFFECTS AND AERODYNAMIC STUDIES RELATED TO ADVANCED AIRFRAMES
OVERALL OBJECTIVE

• DEVELOP AND DEMONSTRATE TECHNOLOGY TO OVERCOME SIZE-PERFORMANCE GAP FOR FUTURE ANTI-SENSOR WEAPON

RESPONSIBLE AGENCIES: DARPA
LLNL

PRINCIPAL POC: DR. SHEN SHEY
DARPA
(202) 694-1959
ACTIVE OPTICAL COUNTERMEASURES

BTI PROGRAM BUILDS ON CURRENT DARPA INVESTMENTS

- SOLID STATE LASER TECHNOLOGY BASE
- SIMNET-D (AOCM)
- BASILISK SPECIFIC SCIENCE & TECHNOLOGY

MAJOR ELEMENTS OF BTI PROGRAM

- RAPID PROTOTYPING OF CRITICAL SUBSYSTEMS, WHEN APPROPRIATE
- DEVELOP AND EVALUATE BASILISK DEMONSTRATOR
UNCLASSIFIED

ACTIVE OPTICAL COUNTERMEASURES

REPRESENTATIVE TECHNOLOGIES OF INTEREST

- ADVANCED LASER GLASS AND CRYSTAL MATERIALS
- HIGH DAMAGE THRESHOLD OPTICAL COATINGS
- WAVELENGTH DIVERSITY TECHNIQUES AND MATERIALS
- COMPACT, RELIABLE, AFFORDABLE LASER SYSTEM DESIGN
- ADVANCED LASER SYSTEM TECHNOLOGY (RAM)
 - ADAPTIVE OPTICS
 - PHASE CONJUGATION
 - ACCURATE POINTING
 - COMPACT POWER SOURCE
 - COMPACT EFFICIENT COOLING
Overall objective

- Develop efficient high power/energy sources to meet high-performance operational requirements for military systems such as space platforms, advanced missiles and precision guided munitions

Responsible agencies: DARPA, AFWAL, ARO

Principal POC: Dr. F. W. Patten, DARPA, (202) 694-1303
HIGH POWER/ENERGY DENSITY BATTERIES

- Requirements
 - Compact
 - Lightweight
 - Low life cycle costs, maintenance
 - High reliability

- Expected capabilities compared to conventional battery systems
 - 10-20× increase in pulsed power
 - 10× reduction in weight and volume
Present DARPA-sponsored efforts
- Dynamic cell technology development
- Superionics
- Sodium/sulfur electrochemical cells

Trends
- Other candidates than sodium/sulfur and lithium/acid systems
- Potential battery/capacitor combination systems
SUPERCONDUCTING CERAMIC MATERIALS

► Overall objectives
 • Develop materials processing and fabrication approaches to producing thin film and bulk superconductors with transition temperatures at or above 90° Kelvin
 • The superconductors should have appropriate properties and shapes useful for large- and small-scale applications
 • Suitable demonstrations based on the proposed technical approach should lead as quickly as possible to manufacturing of devices, machines, and products of interest to the DoD

► Responsible agencies: DARPA, ONR
► Principal POC: Dr. Kay A. Rhyne, DARPA, (202) 694-1303
Representative applications of interest to DoD

- Thick and thin films
 - Primarily related to electronic devices
 - Computer interconnects and devices, sensors, detectors, millimeter waves components, power transmission (coatings), etc.

- Wires, filaments, tapes
 - Primarily large scale devices
 - Cavities, power transmission, energy storage magnets, small research magnets, accelerator magnets, NMR imaging magnets, fusion magnets, power generators and motors, etc.
Major elements of a comprehensive program

- Synthesis, processing, fabrication of materials in engineering shapes and sizes
 - Complete characterization
 - Component demonstration
 - Viability for use in advanced manufacturing scenario
- Materials should have electrical, magnetic, mechanical, etc. properties sufficient for application
- Shorten research and development time to production
- Contribute to a viable industrial base for fabrication and manufacturing
OVERALL OBJECTIVE:

- TO DEVELOP AND IMPLEMENT A NON-CONFIGURATION DEPENDENT MANUFACTURING PROCESS FOR IRFPAs TRANSPARENT TO RESEARCH AND DEVELOPMENT INNOVATIONS

RESPONSIBLE AGENCY: DOD PRODUCT ENGINEERING SERVICES OFFICE

PRINCIPAL POC: ROGER N. KOREN
DPESO
(703) 756-8994
INFRARED FOCAL PLANE ARRAY PRODUCIBILITY INITIATIVE (IRFPA)

REPRESENTATIVE IRFPA PRODUCIBILITY PROBLEMS OF INTEREST TO DOD

- NON-CONFIGURATION DEPENDENCY
- MATERIAL TECHNOLOGY INDEPENDENCY
- TRANSPARENCY TO INNOVATION
- SPECIAL TOOLS/TEST EQUIPMENT
- STANDARDS/METROLOGY
- MATERIAL HARDENING
- CAD/CAM/CIM STANDARDIZATION
INFRARED FOCAL PLANE ARRAY PRODUCIBILITY INITIATIVE (IRFPA)

BUILDING THE FOUNDATION FOR A COMPREHENSIVE PRODUCIBILITY PROGRAM

- OVERCOME LIMITATIONS IN CURRENT MANUFACTURING METHODS FOR IRFPAs ACROSS MATERIAL (PtSi, InSb, MCT, Si:X), OPERATING TEMPERATURE, AND WAVELENGTH
- IDENTIFY IRFPA STANDARDS/METROLOGY AND SPECIAL TOOLS/TEST EQUIPMENT REQUIREMENTS
- DEMONSTRATE APPLICATION OF CAD/CAM/CIM TO IRFPA
- RESOLVE COMMON PRODUCIBILITY ISSUES ACROSS MATERIAL, TEMPERATURE, WAVELENGTH, ETC.
- ESTABLISH BASELINE CONFIGURATION GUIDANCE FOR IRFPAs

FOLLOW-ON WORK FOR FY88-92 UNDER PE 72807D

- PARAMETER DEFINITION, PRODUCTION LINE DESIGN, AND FABRICATION FOR PtSi AND InSb AS NEAR TERM AND POTENTIALLY LOW-COST APPROACHES
- PARAMETER DEFINITION, PRODUCTION LINE DESIGN, AND FABRICATION FOR MCT AND Si:X AS CRITICAL BUT LESS MATURE MATERIALS
- WEAPON SYSTEM PROGRAM MANAGERS WILL CAPITALIZE ON PRODUCTION LINES AS THEIR REQUIREMENTS ARE REALIZED
HIGH POWER MICROWAVES

OBJECTIVE: TO SUPPORT ADDITIONAL WORK IN THE AREAS OF HPM EFFECTS TESTING, HPM COMPONENTS DEVELOPMENT, AND HPM PROPOGATION/PHENOMENOLOGY COMPLEMENTARY TO ONGOING DNA AND SERVICES ACTIVITIES

RESPONSIBLE AGENCY: DEFENSE NUCLEAR AGENCY

PRINCIPAL POC: MR. JON FARBER
DNA
(703) 325-7087
ENHANCED BLAST MUNITIONS
TECHNOLOGY BASE DEVELOPMENT

- OVERALL OBJECTIVES:
 - BUILD THE TECHNOLOGY BASE NEEDED FOR THE DESIGN AND
 DEVELOPMENT OF SAFE, RELIABLE, HIGH-YIELD, AND HIGH-
 EFFICIENCY BLAST WEAPONS BASED ON FUEL-AIR EXPLOSIVES
 - COMPILE AND DEVELOP A COMPREHENSIVE BLAST EFFECTS
 DATA BASE

- RESPONSIBLE AGENCY:
 - OUSD(A) TWP (OFFICE OF MUNITIONS)

- PRINCIPAL POC:
 - TOM HITCHCOCK, (202) 695-1453
ENHANCED BLAST MUNITIONS
TECHNOLOGY BASE DEVELOPMENT

BACKGROUND:

- FUEL-AIR EXPLOSIVE (FAE) WEAPONS ARE UNIQUELY SUITED TO MANY MISSIONS INCLUDING CLOSE-IN AIR SUPPORT, ANTI-PERSONNEL, MINE CLEARING, IMPULSE-SENSITIVE TARGETS SUCH AS FUEL DEPOTS, BUILDINGS & BUNKERS, AND MISSILE & RADAR SITES.

- CURRENTLY FAE WEAPONS ARE UNDERUTILIZED IN THE US BECAUSE:
 - POTENTIAL SAFETY HAZARDS FROM VOLATILE FUELS
 - MISPERCEPTIONS CONCERNING RELIABILITY OF CURRENTLY AVAILABLE FAE WEAPONS
 - EFFECTS OF LARGE FAE BOMBS ON AIRCRAFT PERFORMANCE
 - HIGHER COST OF CURRENT GENERATION (TWO-EVENT) FAE WEAPONS
 - LACK OF COMPELLING COMPREHENSIVE EFFECTS DATA BASE

- WORK TO BE COMPLETED WILL ADDRESS THESE PROBLEMS
ENHANCED BLAST MUNITIONS
TECHNOLOGY BASE DEVELOPMENT

• MAJOR PROGRAM ELEMENTS:
 • INCREASE FUEL SAFETY
 — DEVELOP FUELS THAT ARE EITHER NON-FLAMMABLE LIQUIDS, GELS, OR ALL-SOLID
 • BOOST WEAPON YIELD
 — CONDUCT A FUELS SCREENING STUDY TO IMPROVE BLAST YIELD.
 — INCREASE BLAST PRESSURE AGAINST HARDENED TARGETS BY DEVELOPING FUEL/OXIDIZER HYBRIDS
 • INCREASE WEAPON EFFICIENCY
 — MAXIMIZE THE FRACTION OF FUEL THAT DETONATES. OPTIMIZE THE CLOUD SHAPE.
 • SINGLE-EVENT FAE
 — DEVELOP AND TEST SPONTANEOUS DETONATION CONCEPTS
 • RE-EVALUATE EFFECTS OF BLAST MUNITIONS
 — COMPILE AND COMPLETE A COMPREHENSIVE BLAST EFFECTS DATA BASE
END
FILMED
FEB. 1988
DTIC