LIGHT ABSORPTION BY AN ATOM MOVING INSIDE A SPHERICAL BOX(U) STATE UNIV OF NEW YORK AT ALBANY DEPT OF CHEMISTRY I LAST ET AL. SEP 87 UBUFFALO/DC/87/TR-53
OFFICE OF NAVAL RESEARCH
Contract N00014-86-K-0043
TECHNICAL REPORT No. 53

Light Absorption by an Atom Moving Inside a Spherical Box
by
Isidore Last and Thomas F. George

Prepared for Publication
in
Chemical Physics Letters

Departments of Chemistry and Physics
State University of New York at Buffalo
Buffalo, New York 14260

September 1987

Reproduction in whole or in part is permitted for any purpose of the
United States Government.

This document has been approved for public release and sale;
it's distribution is unlimited.
Title: Light Absorption by an Atom Moving Inside a Spherical Box

Personal Authors: Isidore Last and Thomas F. George

Abstract:

The radiative transition for an atom moving inside a spherical box is considered in the terms of electronic-field states. By using the hopping model, an analytical expression is obtained by numerical integration of the time-dependent Schrödinger equation.
Light Absorption by an Atom Moving Inside a Spherical Box

Isidore Last* and Thomas P. George
Departments of Chemistry and Physics & Astronomy
239 Fronczak Hall
State University of New York at Buffalo
Buffalo, New York 14260

Abstract

The radiative transition for an atom moving inside a spherical box is considered in the terms of electronic-field states. By using the hopping model, an analytical expression is obtained for the transition probability. This expression is compared with results obtained by numerical integration of the time-dependent Schrödinger equation.

* Permanent address: Soreq Nuclear Research Center, Yavne 70600, Israel
I. Introduction

When the energy of an electronic transition in an atom depends on its distance to another atom or molecule, then a collisional radiative transition is possible whose frequency is different from that of the free atom. Collisional radiative transitions have been considered theoretically for both atom-atom [1-5] and atom-molecule [6-11] systems. The absorption or emission of a photon in a colliding system is conveniently described as a dynamical transition between electronic-field states which are built from the field-free states by using the rotating-wave approximation [7,12-14]. The limitations of this approximation and consequently the limitations of the description of collisional radiative transitions in terms of electronic-field states have been analyzed.15

A situation similar to that of a collisional radiative transition exists in the case of guest atom inside a solid matrix, so far as the levels of the guest atom depend on its position \(\mathbf{r} \) in the matrix. If the guest atom is moving, then a photon \(\hbar \omega \) can be absorbed when the atom goes through a surface formed by points with transition energy \(E_k - E_0 \) equal to the photon energy,

\[
E_k(\mathbf{r}_o) - E_0(\mathbf{r}_o) = \hbar \omega .
\]

(1)

The \(\hbar \omega \) absorption can be considered as a transition between electronic-field states with the avoided crossing at the surface \(\mathbf{r}_o \), in accordance with the theory of collisional radiative transitions. Assuming the host (matrix) atoms to be fixed, one describes the dynamics of the system as the semiclassical motion of the guest atom in a real three-dimensional space.

The thermal motion of an atom is of interest only for systems where the ground state energy \(E_0(\mathbf{r}) \) is not changing much inside some volume in the matrix. This is possible usually in a matrix containing relatively small guest atoms in
substitutional sites. An interesting example of such a system is represented by a xenon matrix containing Cl atoms which are obtained by photodissociation of Cl₂ or HCl molecules [16]. Since the Cl atom is smaller than a Xe atom, it has some freedom of motion inside a Xe cage [16-17]. This is supported by an experimental study of the radiative excitation of ionic states with electron transfer from the Xe matrix to the Cl atom [16]. According to semiempirical calculations performed by the diatomics-in-ionic states method [18], the ground state potential energy surface (PES) is almost flat inside a sphere with a radius of -1 Å and increases sharply at distances larger than 1.1-1.2 Å from the cage center [19]. This PES can be approximated by the simple model of a spherical box with a rigid wall of infinite energy.

The study of the photoabsorption by an atom moving in such a spherical box is the subject of this paper. A model of a spherical box may be a satisfactory approximation to any system where an atom is located in a cage of high symmetry. The absorption of light by an atom in a spherical box is described here as a transition between two electronic-field states. This transition is considered both by using the Landau-Zener formula and by solving the time-dependent semiclassical Schrödinger equation.

II. Spherical Box Model

Let us consider an atom inside a spherical box with a radius R₀. The ground state potential energy V₁ is assumed to be zero inside the box and infinity outside it. Consequently, the atom is moving freely inside the box until it collides with the wall of the box. We shall consider only the thermal motion of the atom, where collisions with the box wall are suggested to be strong enough to change the direction and the velocity of the motion in a random way. The atom can be excited by a photon to an excited electronic state V₂ for
which the PES is spherically symmetric. The excitation may involve also the electrons of surrounding atoms, like in the case of a Cl atom in a Xe cage as described above. The excited state PES is suggested to have the simple parabolic form

\[V_2 = V_c - (V_c - V_0)\frac{R^2}{R_0^2} \]

(2)

where \(V_c \) and \(V_0 \) are the energies in the box center (\(R = 0 \)) and at the edge of the box (\(R = R_0 \)), respectively. The excitation to the state \(V_2 \) is possible if the photon energy lies within the limits of the potentials \(V_0 \) and \(V_c \),

\[V_0 \leq \hbar \omega \leq V_c \]

(3)

The radiative coupling \(u \) between the ground and excited states is assumed to be constant.

The radiative transition between two electronic states will be described here in terms of the electronic-field PES \(W_1 \) and \(W_2 \) [7]. Taking into account that the ground state field-free PES is zero (\(V_1 = 0 \)), one obtains

\[W_{1,2} = \frac{1}{2}(V_2 + \hbar \omega) \pm \frac{1}{2}\sqrt{(V_2 + \hbar \omega)^2 + 4u^2} \]

(4)

The electronic-field PES have an avoided crossing at the spherical seam whose radius, according to Eq. (2) is,

\[R_s = \sqrt{\frac{V_c - \hbar \omega}{V_c - V_0}} R_0 \]

(5)
The radiative transition is described now as an adiabatic motion along the electronic-field PES \(W_1 \) or \(W_2 \), whereas the motion without radiative transition is described as diabatic motion with a nonadiabatic transition between the electronic-field PES in the region of the seam (5).

We shall assume the coupling terms to be small, so that the probability of the radiative transition between two successive collisions of the atom with the box wall is much smaller than unity. However, the coupling has to be strong enough to meet the criterion of the rotating-wave approximation [15]. In the present model this criterion is

\[\gamma = \frac{2\pi v|V_c - V_0|}{u\omega R_0} < 3 \]

In the case of a Cl atom in a Xe cage (\(R_0 = 1 \) Å, \(V_c - V_0 = 0.4\text{eV} \), \(\chi\omega = 3\text{eV} \), \(v = 100 \text{ m/s} \)) the condition \(\gamma = 3 \) is fulfilled for a relatively small lower boundary of the coupling, \(u_{\text{min}} = 2 \times 10^{-4} \text{ eV} \).

III. Transition Probability in the Landau-Zener Approximation

The probability of the radiative transition can be obtained by using the trajectory-hopping model [20-21] for the motion on electronic-field PES. In this model the transition is considered as a hopping between states which takes place when the trajectory crosses a seam, i.e., the crossing surface of the diabatic PES. The probability of hopping is calculated usually within the Landau-Zener approximation. In the present model the seam is a sphere with the radius given in (5). The trajectory, which has a form of a straight line, crosses the seam twice between two successive collisions with the box wall. The Landau-Zener transition probability for one crossing is
\[p = 1 - \exp\left(2\pi u^2 / (K |\frac{dV_2}{dn}| v_n)\right) \], \quad (7) \]

where \(\frac{dV_2}{dn} \) is the component of the potential energy derivative normal to the seam and \(v_n \) is the normal component of the velocity. Taking into account that \(P \) is assumed to be much smaller than unity, as well as the geometry of the seam crossings (Fig. 1), one obtains the following expression for the transition probability per one run between the box walls:

\[P_\beta = \frac{4\pi u^2}{vK \sqrt{2 \left| \frac{dV_s}{dR_s} \right|}} \frac{\cos \beta_s}{\left(\cos^2 \beta_s - \cos^2 \beta\right)^{1/2}}, \quad \beta < \beta_s \] \quad (8)

where \(\sqrt{\left| \frac{dV_s}{dR_s} \right|} \) is determined at the seam, \(\beta \) is the angle of motion, and \(\beta_s \) is the seam angle from the starting point (Fig. 1),

\[\beta_s = \sin^{-1}(R_s / R_0) \] \quad (9)

The transition probability per time unit is obtained as an average over the angle \(\beta \),

\[P = \int_0^{\pi/2} d\beta \ p_\beta \sin \beta / \int_0^{\pi/2} d\beta \ \tau_\beta \sin \beta \] \quad (10)

where \(\tau_\beta \) is the time of one run for a fixed angle \(\beta \),

\[\tau_\beta = 2R_0 \cos \beta / v \] \quad (11)
Combining Eqs. (8), (10) and (11) and taking into account that $p_\beta = 0$ for $\beta > \beta_0$ and that u is constant, one obtains an analytical expression for the transition probability:

$$P = \frac{4\pi^2}{\sqrt{R_0 K|\frac{dV}{dR}|}} \sin\beta \ln(\sec\beta + \tan\beta) . \quad (12)$$

The transition probability (12) does not depend on the atom velocity v. In the case of the parabolic potential given by (2), the seam angle (9) is determined from the equation

$$\sin\beta = \frac{R_s}{R_0} = \left[\frac{V_c - \hbar\omega}{V_c - V_0}\right]^\frac{1}{4} , \quad (13)$$

and the transition probability (12) becomes

$$P = \frac{u^2}{h(V_c - V_0)} G(\beta_0) , \quad (14)$$

$$G(\beta_0) = 2\pi \ln(\sec\beta_0 + \tan\beta_0) . \quad (15)$$

According to the last expression, the transition probability per time unit does not depend on the box radius R_0 and is inversely proportional to the potential difference $V_c - V_0$. Its dependence on the photon energy $\hbar\omega$ is expressed in a universal way as a function of the seam angle β_0 [see Eq. (13)].

For small $\sin\beta$, when the photon energy is close to the transition energy in the box center V_c, the transition probability is proportional to $\sin\beta$ or to the square root of the difference $V_c - \hbar\omega$:
As the photon energy approaches the lower limit of the potential V_0, the transition probability increases to infinity as the logarithm of the difference $\hbar\omega - V_0$,

$$
P = \frac{2\pi u^2}{\hbar(V_c-V_0)} \sin \beta_s = \frac{2\pi u^2 (V_c - \hbar\omega)^{\frac{1}{2}}}{\hbar(V_c-V_0)^{3/2}}.
$$

As will be shown later, this increase of P to infinity for $\hbar\omega$ close to V_0 is due to the Landau-Zener approximation.

IV. Transition Probability as the Solution of the Time-Dependent Schrödinger Equation

In the hopping model considered above, the transition takes place at the seam only with a probability determined by the Landau-Zener formula. These two assumptions are discarded within the framework of the "exact" semiclassical approach where the transition probability is determined by solving the time-dependent Schrödinger equation for the electronic states of an atom moving on classical trajectories [23]. The exact semiclassical transition probabilities may differ significantly from the Landau-Zener probabilities, as it was shown for the case of radiative transitions in atom-molecule collisions [24].

If the transition probability is much smaller than unity, as assumed above, then the amplitude of the final state, c_2, is determined by the integral [25]

$$
c_2(\tau) = -\frac{i}{\hbar} \int_0^\tau dt u \exp\left[\frac{i}{\hbar} \int_0^\tau dt' (V_2 - \hbar\omega)\right].
$$
For molecular collisions the transition probability is equal to the square of the amplitude c_2 at infinity. In the box model we shall assume that a collision with the box wall changes significantly the phase of the electronic states, and consequently the transition probability can be presented as a sum of the transition probabilities determined for separate free runs. This simplification allows us to express the transition probability per time unit in a similar way as in the Landau-Zener approximation [see Eq. (10)],

\[
\begin{align*}
 P &= \int_0^{\pi/2} d\beta |c_2(\tau_\beta)|^2 \sin \beta / \int_0^{\pi} d\beta \tau_\beta \sin \beta, \\
 \tau_\beta &= \text{free run time interval} \ (11).
\end{align*}
\]

where τ_β is the free run time interval (11). Substituting the expression for the potential (2) into the integral (19), one obtains the coefficient c_2 as a function of the angle β,

\[
c_2(\beta) = -\frac{\text{i}uR_0}{\hbar v} Q(\beta),
\]

\[
Q(\beta) = \int_0^{2\cos \beta} d\xi \exp(i\phi), \quad \xi = vt/R_0
\]

where ϕ is the phase,

\[
\phi = f[\cos^2 \beta_s + \cos \beta \xi - \frac{1}{3} \xi^2],
\]

\[
f = \frac{R_0(V_c - V_0)}{\nu \hbar}.
\]
Substituting Eq. (20) into (19), one obtains the transition probability as a function of the seam angle \(\beta_s \) [see Eq. (13)],

\[
P = \frac{u_2}{\mathcal{H}(V_c-V_0)} P_f(\beta_s),
\]

\[
P_f(\beta_s) = f \int_0^{\pi/2} d\beta |Q(\beta)|^2 \sin \beta.
\]

The exact semiclassical expression (24) is similar to the Landau-Zener expression (14) with the difference only in the dependence on the seam angle \(\beta_s \). In the case of the exact semiclassical approach, the function \(P_f \) which describes the dependence on \(\beta_s \) includes one parameter, namely the unitless value (23), whereas in the Landau-Zener case the corresponding function \(G \) does not include any parameters at all.

V. **Calculational Results**

The results of the numerical calculation of the function \(P_f \) which determines the exact semiclassical transition probability (24) are presented in Fig. 2 for three values of the parameter \(f \). According to these results, \(P_f \) does not depend on \(f \) within a wide range of seam angles \(\beta_s \) where it coincides with the function \(G \) of the Landau-Zener probability (14). When \(\beta_s \) is large, \(P_f \) first becomes a bit larger than the \(P \) function, but in the region close to 90° it begins to decrease whereas \(G \) increases to infinity. The smaller the parameter \(f \) is, the smaller is the angle \(\beta_s \) of the \(P_f \) maximum. The exact semiclassical transition probabilities per time unit for three atom velocities are presented in Fig. 3 together with the Landau-Zener probability.
The results of the calculation lead us to conclude that the transition probability for an atom in a spherical box with the potential (2) is determined by a simple analytical formula (14) within a wide interval of the seam angles β_s, for example $\beta_s < 70^\circ$ for $f = 75$ and $\beta_s < 80^\circ$ for $f = 1200$. These intervals of β_s cover 88% and 97% of the photon energy interval (3), respectively.

In order to describe analytically also the transition probabilities for μ close to the lower potential limit V_0 (β_s close to 90°), we suggest using Eq. (24) with an analytical expression for the function $F(\beta_s, f)$ which interpolates the exact semiclassical functions $F_f(\beta_s)$ presented in Fig. 2. The function which performs this interpolation in a satisfactory way was found to have the form

$$P(\beta_s, t) = 2\pi \ln \left(\frac{1 + \sin \beta_s}{\cos \beta_s + a_1 \phi_1 + a_2 \phi_2} \right),$$

(26)

where

$$\phi_1 = 1.8 \sin^{36} \beta_s - 0.8 \sin^{18} \beta_s,$$

(27)

$$\phi_2 = 1.8 \sin^{72} \beta_s - 0.8 \sin^{36} \beta_s,$$

(28)

$$a_1 = 0.85 \frac{75}{f}, \quad a_2 = 0.5 \frac{f}{1200}.$$

(29)

The formula (26) coincides almost completely with the Landau-Zener function (15), except for a small region of β_s close to 90° where it follows roughly the "exact" $F_f(\beta_s)$ functions. The differences between the interpolation function (26) and the $F_f(\beta_s)$ functions lie mostly in the limits of 20%.

We shall apply now the results of the spherical box exact semiclassical calculation to the case mentioned above for a Cl atom in a Xe cage. According
to the semiempirical treatment of this system [19], the low-energy absorption peak can be described roughly as a transition in the spherical box with radius \(R_0 = 1.2 \text{ \AA} \) and transition energies \(V_c = 3.95 \text{ eV} \) and \(V_0 = 3.54 \text{ eV} \). Substituting these box parameters together with the 50 K average velocity of \(v = 150 \text{ m/s} \) into Eq. (23), one obtains \(f = 500 \), which gives approximately the absorption maximum at \(\beta_s = 75^\circ \) and the half-intensity width \(55^\circ < \beta_s < 87^\circ \). These values correspond to \(\hbar \omega = 3.58 \text{ eV} \) and a line width of \(\Delta(\hbar \omega) = 0.15 \text{ eV} \), which are close to the experimental values \(\hbar \omega = 3.73 \text{ eV} \) and \(\Delta(\hbar \omega) = 0.16 \text{ eV} \) [19].

ACKNOWLEDGMENTS

This research was supported by the Air Force Office of Scientific Research (AFSC), United States Air Force, under Contract F49620-86-C-0009, the Office of Naval Research, and the National Science Foundation under Grant CHE-8620274. The United States Government is authorized to reproduce and distribute reprints for governmental purposes notwithstanding any copyright notation hereon.
References

Figure Captions

Fig. 1. Spherical box model. R_0 is the box radius, β_s the seam angle and B_1B_2 the atom trajectory.

Fig. 2. The function G (14) of the Landau-Zener probability (13) and the functions F_q (24) of the exact semiclassical probability (23). The F_q-functions are denoted by values of the parameter f (22).

Fig. 3. Transition probability per time unit as a function of photon energy for the following parameters of the model: box radius $R_0 = 1$ Å, the difference of the potential values $V_c - V_0 = 0.4$ eV, coupling energy $u = 0.001$ eV, and the atom velocities $v = 50, 200$ and 800 m/s ($f = 1216, 304, 76$). The transition probability obtained in the Landau-Zener approximation is denoted by L.Z. The exact semiclassical probabilities are denoted by the velocity values.
Figure 2

The graph shows the relationship between Seam angle and G, Ff values. The curves represent different values: 1200, 300, and 75. The x-axis represents the Seam angle ranging from 0 to 90 degrees, while the y-axis represents the values of G, Ff ranging from 0 to 28.
<table>
<thead>
<tr>
<th>No. Copies</th>
<th>No. Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Office of Naval Research</td>
<td>Dr. David Young</td>
</tr>
<tr>
<td>Attn: Code 1113</td>
<td>Code 334</td>
</tr>
<tr>
<td>800 N. Quincy Street</td>
<td>NORDA</td>
</tr>
<tr>
<td>Arlington, Virginia 22217-5000</td>
<td>NSTL, Mississippi 39529</td>
</tr>
<tr>
<td>Dr. Bernard Douda</td>
<td>Naval Weapons Center</td>
</tr>
<tr>
<td>Naval Weapons Support Center</td>
<td>Attn: Dr. Ron Atkins</td>
</tr>
<tr>
<td>Code 50C</td>
<td>Chemistry Division</td>
</tr>
<tr>
<td>Crane, Indiana 47522-5050</td>
<td>China Lake, California 93555</td>
</tr>
<tr>
<td>Naval Civil Engineering Laboratory</td>
<td>Scientific Advisor</td>
</tr>
<tr>
<td>Attn: Dr. R. W. Drisko, Code L52</td>
<td>Commandant of the Marine Corps</td>
</tr>
<tr>
<td>Port Hueneme, California 93401</td>
<td>Code RD-1</td>
</tr>
<tr>
<td>Defense Technical Information Center</td>
<td>U.S. Army Research Office</td>
</tr>
<tr>
<td>Attn: Dr. H. Singerman</td>
<td>Attn: CRD-AA-IP</td>
</tr>
<tr>
<td>Applied Chemistry Division</td>
<td>P.O. Box 12211</td>
</tr>
<tr>
<td>Annapolis, Maryland 21401</td>
<td>Research Triangle Park, NC 27709</td>
</tr>
<tr>
<td>DTNSRDC</td>
<td>Mr. John Boyle</td>
</tr>
<tr>
<td>Attn: Dr. H. Singerman</td>
<td>Materials Branch</td>
</tr>
<tr>
<td>Applied Chemistry Division</td>
<td>Naval Ship Engineering Center</td>
</tr>
<tr>
<td>Annapolis, Maryland 21401</td>
<td>Philadelphia, Pennsylvania 19112</td>
</tr>
<tr>
<td>Dr. William Tolles</td>
<td>Naval Ocean Systems Center</td>
</tr>
<tr>
<td>Superintendent</td>
<td>Attn: Dr. S. Yamamoto</td>
</tr>
<tr>
<td>Chemistry Division, Code 6100</td>
<td>Marine Sciences Division</td>
</tr>
<tr>
<td>Naval Research Laboratory</td>
<td>San Diego, California 91232</td>
</tr>
<tr>
<td>Washington, D.C. 20375-5000</td>
<td>Dr. David L. Nelson</td>
</tr>
<tr>
<td></td>
<td>Chemistry Division</td>
</tr>
<tr>
<td></td>
<td>Office of Naval Research</td>
</tr>
<tr>
<td></td>
<td>800 North Quincy Street</td>
</tr>
<tr>
<td></td>
<td>Arlington, Virginia 22217</td>
</tr>
<tr>
<td>Name</td>
<td>Institution</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Dr. J. E. Jensen</td>
<td>Hughes Research Laboratory</td>
</tr>
<tr>
<td>Dr. C. B. Harris</td>
<td>Department of Chemistry</td>
</tr>
<tr>
<td>Dr. J. H. Weaver</td>
<td>Department of Chemical Engineering and Materials Science</td>
</tr>
<tr>
<td>Dr. F. Kutzler</td>
<td>Department of Chemistry</td>
</tr>
<tr>
<td>Dr. A. Reisman</td>
<td>Microelectronics Center of North Carolina</td>
</tr>
<tr>
<td>Dr. D. DiLella</td>
<td>Chemistry Department</td>
</tr>
<tr>
<td>Dr. M. Grunze</td>
<td>Laboratory for Surface Science and Technology</td>
</tr>
<tr>
<td>Dr. R. Reeves</td>
<td>Chemistry Department</td>
</tr>
<tr>
<td>Dr. J. Butler</td>
<td>Naval Research Laboratory</td>
</tr>
<tr>
<td>Dr. Steven M. George</td>
<td>Stanford University</td>
</tr>
<tr>
<td>Dr. L. Interante</td>
<td>Chemistry Department</td>
</tr>
<tr>
<td>Dr. Mark Johnson</td>
<td>Yale University</td>
</tr>
<tr>
<td>Dr. Irvin Heard</td>
<td>Chemistry and Physics Department</td>
</tr>
<tr>
<td>Dr. W. Knauer</td>
<td>Hughes Research Laboratory</td>
</tr>
<tr>
<td>Dr. K. J. Klaubunde</td>
<td>Department of Chemistry</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ABSTRACTS DISTRIBUTION LIST, 056/625/629

Dr. G. A. Somorjai
Department of Chemistry
University of California
Berkeley, California 94720

Dr. J. Murday
Naval Research Laboratory
Code 6170
Washington, D.C. 20375-5000

Dr. J. B. Hudson
Materials Division
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. Theodore E. Madey
Surface Chemistry Section
Department of Commerce
National Bureau of Standards
Washington, D.C. 20234

Dr. J. E. Demuth
IBM Corporation
Thomas J. Watson Research Center
P.O. Box 218
Yorktown Heights, New York 10598

Dr. M. G. Lagally
Department of Metallurgical and Mining Engineering
University of Wisconsin
Madison, Wisconsin 53706

Dr. R. P. Van Duyne
Chemistry Department
Northwestern University
Evanston, Illinois 60637

Dr. J. M. White
Department of Chemistry
University of Texas
Austin, Texas 78712

Dr. D. E. Harrison
Department of Physics
Naval Postgraduate School
Monterey, California 93940

Dr. R. L. Park
Director, Center of Materials Research
University of Maryland
College Park, Maryland 20742

Dr. W. T. Peria
Electrical Engineering Department
University of Minnesota
Minneapolis, Minnesota 55455

Dr. Keith H. Johnson
Department of Metallurgy and Materials Science
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Dr. S. Sibener
Department of Chemistry
James Franck Institute
5640 Ellis Avenue
Chicago, Illinois 60637

Dr. Arnold Green
Quantum Surface Dynamics Branch
Code 3817
Naval Weapons Center
China Lake, California 93555

Dr. A. Wold
Department of Chemistry
Brown University
Providence, Rhode Island 02912

Dr. S. L. Bernasek
Department of Chemistry
Princeton University
Princeton, New Jersey 08544

Dr. W. Kohn
Department of Physics
University of California, San Diego
La Jolla, California 92037
ABSTRACTS DISTRIBUTION LIST, 056/625/629

Dr. F. Carter
Code 6170
Naval Research Laboratory
Washington, D.C. 20375-5000

Dr. Richard Colton
Code 6170
Naval Research Laboratory
Washington, D.C. 20375-5000

Dr. Dan Pierce
National Bureau of Standards
Optical Physics Division
Washington, D.C. 20234

Dr. R. Stanley Williams
Department of Chemistry
University of California
Los Angeles, California 90024

Dr. R. P. Messmer
Materials Characterization Lab.
General Electric Company
Schenectady, New York 22217

Dr. Robert Gomer
Department of Chemistry
James Franck Institute
5640 Ellis Avenue
Chicago, Illinois 60637

Dr. Ronald Lee
R301
Naval Surface Weapons Center
White Oak
Silver Spring, Maryland 20910

Dr. Paul Schoen
Code 6190
Naval Research Laboratory
Washington, D.C. 20375-5000

Dr. John T. Yates
Department of Chemistry
University of Pittsburgh
Pittsburgh, Pennsylvania 15260

Dr. Richard Greene
Code 5230
Naval Research Laboratory
Washington, D.C. 20375-5000

Dr. L. Kesmodel
Department of Physics
Indiana University
Bloomington, Indiana 47403

Dr. K. C. Janda
University of Pittsburgh
Chemistry Building
Pittsburgh, PA 15260

Dr. E. A. Irene
Department of Chemistry
University of North Carolina
Chapel Hill, North Carolina 27514

Dr. Adam Heller
Bell Laboratories
Murray Hill, New Jersey 07974

Dr. Martin Fleischmann
Department of Chemistry
University of Southampton
Southampton S09 5NH
UNITED KINGDOM

Dr. H. Tachikawa
Chemistry Department
Jackson State University
Jackson, Mississippi 39217

Dr. John W. Wilkins
Cornell University
Laboratory of Atomic and Solid State Physics
Ithaca, New York 14853
ABSTRACTS DISTRIBUTION LIST, 056/625/629

Dr. R. G. Wallis
Department of Physics
University of California
Irvine, California 92664

Dr. D. Ramaker
Chemistry Department
George Washington University
Washington, D.C. 20052

Dr. J. C. Hemminger
Chemistry Department
University of California
Irvine, California 92717

Dr. T. F. George
Chemistry Department
University of Rochester
Rochester, New York 14627

Dr. G. Rubloff
IBM
Thomas J. Watson Research Center
P.O. Box 218
Yorktown Heights, New York 10598

Dr. Horia Metiu
Chemistry Department
University of California
Santa Barbara, California 93106

Dr. W. Goddard
Department of Chemistry and Chemical Engineering
California Institute of Technology
Pasadena, California 91125

Dr. H. Hansma
Department of Physics
University of California
Santa Barbara, California 93106

Dr. J. Baldeschwieler
Department of Chemistry and Chemical Engineering
California Institute of Technology
Pasadena, California 91125

Dr. J. T. Keiser
Department of Chemistry
University of Richmond
Richmond, Virginia 23173

Dr. R. W. Plummer
Department of Physics
University of Pennsylvania
Philadelphia, Pennsylvania 19104

Dr. E. Yeager
Department of Chemistry
Case Western Reserve University
Cleveland, Ohio 41106

Dr. N. Winograd
Department of Chemistry
Pennsylvania State University
University Park, Pennsylvania 16802

Dr. Roald Hoffmann
Department of Chemistry
Cornell University
Ithaca, New York 14853

Dr. A. Steckl
Department of Electrical and Systems Engineering
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. G. H. Morrison
Department of Chemistry
Cornell University
Ithaca, New York 14853
END

DATE

FILMED

FEB.

1988