COMPARISON OF THE ROUGH SURFACE REFLECTION COEFFICIENT WITH SPECULARLY SCATTERED ACOUSTIC DATA U) NAVAL RESEARCH LAB WASHINGTON DC A R MILLER ET AL. 06 NOV 07

UNCLASSIFIED
Comparison of the Rough Surface Reflection Coefficient with Specularly Scattered Acoustic Data

ALLEN R. MILLER
Engineering Services Division

AND

EMANUEL VEGH
Radar Division

November 6, 1987

Approved for public release; distribution unlimited.
Secure

Comparison of the Rough Surface Reflection Coefficient with Specularly Scattered Acoustic Data

A comparison is made between a theoretically derived family of rough surface reflection coefficients and specularly scattered acoustic data.
CONTENTS

INTRODUCTION ... 1
COMPARISON OF $R(g, \epsilon)$ WITH ACOUSTIC DATA .. 2
CONCLUSION ... 3
REFERENCES ... 3
APPENDIX — Integral Representations for $\Phi_1[\alpha, \beta; \gamma, x, y]$.. 5
COMPARISON OF THE ROUGH SURFACE REFLECTION COEFFICIENT WITH SPECULARLY SCATTERED ACOUSTIC DATA

INTRODUCTION

Miller and Vegh [1] in treating reflection from the rough surface of the sea derived a one-parameter family of curves for the rough surface reflection coefficient or roughness factor R given by

$$R(g, \epsilon) = \epsilon^2 \exp \left[-2\epsilon^2 \eta^2 (2\pi g)^2 \right] I_0[2\epsilon^2 \eta^2 (2\pi g)^2]$$

$$+ (1 - \epsilon^2)^{1/2} \exp \left[-4\eta^2 (2\pi g)^2 \right]$$

$$- \frac{1}{2} \epsilon^2 (1 - \epsilon^2) \Phi_1[\frac{3}{2}, 1; 2; \epsilon^2, -4\epsilon^2 \eta^2 (2\pi g)^2]$$

where

$$g \equiv (\sigma/\lambda) \sin \psi$$

and

$$\eta \equiv [1 + \frac{\pi}{2} (1 - \epsilon^2)]^{1/2}$$

Here g is a measure of the effective surface roughness or simply surface roughness, $\epsilon (0 \leq \epsilon \leq 1)$ is the spectral width parameter, σ is the standard deviation of the water surface elevation, ψ is the grazing angle for specular reflection, λ is the wavelength of the incident radiation, and $I_0(x)$ is the modified Bessel function of order zero. The function $\Phi_1(\alpha, \beta; y; x, y)$ is a confluent hypergeometric function in two variables first defined in 1920 by P. Humbert [2, p. 58]. In the Appendix we derive an integral representation for Φ_1 that may be used for numerical computation.

$$R(g, \epsilon), \text{ given by Eq. (1), is essentially the Fourier transform of the probability density } D(y, \epsilon) \text{ for surface elevation } y \text{ where}$$

$$D(y, \epsilon) = \frac{\epsilon}{2\pi^{3/2} \eta \sigma} \exp \left(-\frac{y^2}{8\epsilon^2 \eta^2 \sigma^2} \right) K_0\left(\frac{y^2}{8\epsilon^2 \eta^2 \sigma^2}\right)$$

$$+ \frac{(1 - \epsilon^2)^{1/2}}{\pi^{3/2} \eta \sigma} \exp \left(-\frac{y^2}{4\eta^2 \sigma^2} \right) \left\{ \cos^{-1} \epsilon + \epsilon (1 - \epsilon^2)^{1/2} K_{\epsilon 0}(2\epsilon^2 - 1, y^2/8\epsilon^2 \eta^2 \sigma^2) \right\}$$

Here $K_0(x)$ is the MacDonald function or Bessel function of imaginary argument of order zero. $K_{\epsilon 0}(a, x)$ is an incomplete Lipschitz-Hankel integral of $K_0(x)$ and may be written in closed form either in terms of incomplete cylindrical functions [3] or in various ways in terms of Kampé de Fériet functions [4,5]; e.g.

$$K_{\epsilon 0}(a, z) = z K_0(z) A_1(a, z) + z^2 K_1(z) A_0(a, z)$$

Manuscript approved April 9, 1987.
where

\[A_1(a, z) \equiv F \begin{bmatrix} 0:1; & 1 \end{bmatrix}_{2:0;0} \begin{bmatrix} -: & 1/2; \ 1; \ a^2 z^2 \ z^2 \ \end{bmatrix}_{1/2, 3/2; \ -: \ -; \ 4 \ 4} \]

\[+ \frac{1}{2} a z F \begin{bmatrix} 0:2; & 1 \end{bmatrix}_{2:1;0} \begin{bmatrix} -: & 1,1; \ 1; \ a^2 z^2 \ z^2 \ \end{bmatrix}_{1,2; 3/2; \ -: \ -; \ 4 \ 4} \]

\[A_0(a, z) \equiv F \begin{bmatrix} 0:1; & 1 \end{bmatrix}_{2:0;0} \begin{bmatrix} -: & 1/2; \ 1; \ a^2 z^2 \ z^2 \ \end{bmatrix}_{3/2, 3/2; \ -: \ -; \ 4 \ 4} \]

\[+ \frac{1}{4} a z F \begin{bmatrix} 0:2; & 1 \end{bmatrix}_{2:1;0} \begin{bmatrix} -: & 1,1; \ 1; \ a^2 z^2 \ z^2 \ \end{bmatrix}_{2,2; 3/2; \ -: \ -; \ 4 \ 4} \]

\[D(y, \epsilon), \text{ given by Eq. (2), was derived in Ref. 1 by assuming that the water surface could be described locally by sinusoids with uniform phase distribution whose amplitude distribution is given by a density function derived by Rice [6] and by Cartwright and Longuet-Higgins [7]. Figure 1 gives graphs for } D(y, \epsilon), \text{ for various values of } \epsilon. \]

![Graph](image-url)

Fig. 1 - Density function \(D(y, \epsilon) \) for various values of the spectral width parameter \(\epsilon \)

COMPARISON OF R(g, \epsilon) WITH ACOUSTIC DATA

In 1980 DeSanto [8, p. 70, Fig. 5] compared \(R(g, \epsilon) \) with acoustic data from Clay, Medwin, and Wright [9]. Although \(R(g, \epsilon) \) was first derived in 1974 [10], a mathematically rigorous derivation was not obtained until 1984 [11]. In view of Eq. (1), it now appears appropriate to compare \(R(g, \epsilon) \) with
the aforementioned data. Whereas $R(g, 1)$ takes into account only the standard deviation, σ, of surface elevation, $R(g, \epsilon)$ is dependent on ϵ also and hence on the moments of the frequency energy spectrum $\Phi(s)$ of the surface through the equations [12, p. 346]

$$\epsilon^2 = (m_0 m_4 - m_2^2) / m_0 m_4$$

$$m_\nu \equiv \int_0^\infty s^\nu \Phi(s) \, ds \quad (m_0 = \sigma)$$

Figure 2 compares $R^2(g, 1/3)$ with the data given by Clay et al. in Fig. 5 of Ref. 9. $R^2(g, 1/3)$ appears to be in better agreement with this data than the multiple scattering theoretical result given in Fig. 5 of Ref. 8.

![Figure 2 — Comparison of the theoretical curve $R^2(g, 1/3)$ with experimental data](image)

CONCLUSION

One of the family of rough surface reflection coefficients agrees with acoustic data reasonably well; at least as well as the curve given previously by the multiple scattering model.

REFERENCES

Appendix

INTEGRAL REPRESENTATIONS FOR $\Phi_1[\alpha, \beta; y; x, y]$

The confluent double hypergeometric function Φ_1 is defined by

$$\Phi_1[\alpha, \beta; y; x, y] \equiv \sum_{m,n=0}^{\infty} \frac{(\alpha)_m \beta_n}{(y)_n} \frac{x^m}{m!} \frac{y^n}{n!} \quad |x| < 1, \ |y| < \infty$$

The definition of Φ_1 given in Erdélyi et al. [A1, p. 225] and Gradshteyn et al. [A2, 9.261, Eq. 1] is incorrect.

By using Ref. A3, p. 266

$$\frac{(\alpha)_p}{(\gamma)_p} = \frac{\Gamma(\gamma)}{\Gamma(\alpha) \Gamma(\gamma - \alpha)} \int_0^1 t^{\rho - \alpha - 1} (1 - t)^{-\alpha - 1} dt, \quad \text{Re} \gamma > \text{Re} \alpha > 0$$

with the definition of Φ_1 given above we obtain

$$\Phi_1[\alpha, \beta; y; x, y] = \frac{\Gamma(\gamma)}{\Gamma(\alpha) \Gamma(\gamma - \alpha)} \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \int_0^1 t^{m+n-\alpha-1} (1 - t)^{-\alpha - 1} (\beta)_m \frac{x^m y^n}{m! n!} dt$$

Now interchanging the integral sign and double sum and noting that

$$\sum_{n=0}^{\infty} \frac{(y)^n}{n!} = e^y, \quad \sum_{m=0}^{\infty} (\beta)_m \frac{(tx)^m}{m!} = (1 - tx)^{-\beta}$$

we obtain for $\text{Re} \gamma > \text{Re} \alpha > 0, \ |x| < 1, \ |y| < \infty$

$$\Phi_1[\alpha, \beta; y; x, y] = \frac{\Gamma(\gamma)}{\Gamma(\alpha) \Gamma(\gamma - \alpha)} \int_0^1 e^y (1 - xt)^{-\beta} (1 - t)^{-\alpha - 1} \rho^{-1} dt$$

In particular,

$$\Phi_1[3/2, 1; 2, x, y] = \frac{2}{\pi} \int_0^{\pi/2} e^{x t} \frac{\sin t}{(1 - xt) (1 - t)^{1/2}} dt$$

Now making the transformation $t = \sin^2 \theta$ and replacing x by ϵ^2 and y by $-\epsilon^2$ we obtain

$$\Phi_1[3/2, 1; 2; \epsilon^2, -\epsilon^2 y^2] = \frac{4}{\pi} \int_0^{\pi/2} \sin^2 \theta \frac{e^{\epsilon^2 \sin^2 \theta}}{1 - \epsilon^2 \sin^2 \theta} d\theta$$

For real ϵ, y the integrand here is nonnegative on the closed interval $[0, \pi/2]$ and has no singularities for $0 \leq \epsilon < 1$; the integral in Eq. (A1) is therefore suitable for numerical quadrature and Φ_1 may thereby be computed.
MILLER AND VEGH

It may also be shown [1, Eq. 15] that

\[\Phi_1[3/2, 1; 2; \varepsilon^2, -\varepsilon^2y^2] = \frac{2}{\varepsilon^2(1 - \varepsilon^2)^{1/2}} \left\{ e^{-\varepsilon^2} - 2 \int_0^{\infty} t e^{-t^2} J_0(2\varepsilon t) \operatorname{erf} \left[\frac{(1 - \varepsilon^2)^{1/2}}{\varepsilon} t \right] dt \right\} \]

(A2)

from which it follows that

\[\lim_{\varepsilon \to 1} \varepsilon^2 (1 - \varepsilon^2) \Phi_1[3/2, 1; 2; \varepsilon^2, -\varepsilon^2y^2] = 0 \]

Hence Eq. (1) is valid in the limit for \(\varepsilon = 1 \).

REFERENCES

END
Feb.
1988
DTIC