OUTLIER RESISTANT PREDICTIVE SOURCE ENCODING FOR A GAUSSIAN STATIONARY NO. (U) VIRGINIA UNIV CHARLOTTESVILLE DEPT OF ELECTRICAL ENGINEERING..

UNCLASSIFIED P KAZAKOS 18 SEP 87 UVR/525602/EE00/102 F/0 12/9 NL
OUTLIER RESISTANT PREDICTIVE SOURCE ENCODING
FOR A GAUSSIAN STATIONARY NOMINAL SOURCE

Submitted to:
Air Force Office of Scientific Research/NM
Building 410
Bolling Air Force Base
Washington, D.C. 20332-6448
Attention: Major Brian W. Woodruff, NM

 Submitted by:
P. Kazakos
Professor

Report No. UVA/525682/EE88/102
September 1987

DISTRIBUTION STATEMENT A
Approved for public release
Distribution Unlimited

SCHOOL OF ENGINEERING AND
APPLIED SCIENCE

DEPARTMENT OF ELECTRICAL ENGINEERING

UNIVERSITY OF VIRGINIA
CHARLOTTESVILLE, VIRGINIA 22901
Outlier Resistant Predictive Source Encoding For A Gaussian Stationary Nominal Source

A sequence of qualitatively robust predictive source encoders, for a Gaussian stationary source with outlier contaminated observation data, is proposed and analyzed. Performance measures include mean difference-sequence distortion and output entropy at the nominal Gaussian source, as well as breakdown point and influence function. The proposed sequence of predictive encoders attains strictly positive breakdown point and uniformly bounded influence function, at the expense of increased mean difference-squared distortion and differential entropy, at the Gaussian nominal source.
OUTLIER RESISTANT PREDICTIVE SOURCE ENCODING
FOR A GAUSSIAN STATIONARY NOMINAL SOURCE

Submitted to:
Air Force Office of Scientific Research/NM
Building 410
Bolling Air Force Base
Washington, D.C. 20332-6448
Attention: Major Brian W. Woodruff, NM

Submitted by:
P. Kazakos
Professor

Department of Electrical Engineering
SCHOOL OF ENGINEERING AND APPLIED SCIENCE
UNIVERSITY OF VIRGINIA
CHARLOTTESVILLE, VIRGINIA
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>II. PRELIMINARIES</td>
<td>2</td>
</tr>
<tr>
<td>III. THE PARAMETRIC APPROACH</td>
<td>6</td>
</tr>
<tr>
<td>IV. FINITE DIMENSIONALITY OBSERVATION SEQUENCES</td>
<td>9</td>
</tr>
<tr>
<td>V. ASYMPTOTICALLY LONG OBSERVATION SEQUENCES</td>
<td>20</td>
</tr>
<tr>
<td>VI. CONCLUSIONS</td>
<td>28</td>
</tr>
<tr>
<td>APPENDIX</td>
<td>29</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>39</td>
</tr>
</tbody>
</table>
I. INTRODUCTION

Predictive source encoding with distortion is considered, for an analog source, in the presence of an outlier model. In particular, a stationary Gaussian source is assumed, and observation data that are a mixture of source data and outlier data. The objective then is to design a sequence of predictive source encoders which attain satisfactory mean difference-squared distortion in both the presence and the absence of outlier data, subject to an output entropy constraint. As compared to the optimal at the Gaussian source sequence of predictive encoders, the tradeoff is increased mean difference-squared distortion and differential output entropy at the nominal Gaussian source, at the gain of good mean distortion performance in the presence of outliers. (For parametric source encoding studies, see [1]).
II. PRELIMINARIES

Let \([\mu, X, R]\) be a discrete-time, stationary and zero mean real source, where \(R\) denotes the real line, where \(X\) is the name of the source, and where \(\mu\) is its measure. Let \(X_i, i=1,2,\ldots\), denote random variables generated by the source, let \(x_i, i=1,2,\ldots\), denote realizations of those variables, and let \(X_i = [X_i, \ldots, X_j]^T\) and \(x_i = [x_i, \ldots, x_j]^T\) for \(j \geq i\). Let \(R^n\) denote \(n\) one-sided multiples of the real line. Let the measure \(\mu\) be known, and let us then call \([\mu, X, R]\) the nominal source.

We now consider the outlier model. Then, if \([\mu, Y, R]\) denotes the observation process, if \(Y_i\) denotes the \(i\)-th random variable generated by this process with \(y_i\) denoting its realization, and if \(Y_i\) and \(y_i\) denote vectors as in the above paragraph, we have:

\[
Y_i = (1-V_i)X_i + V_iZ_i, \quad i=1,2,\ldots
\]

(1)

where \(X_i\) is the \(i\)-th random variable generated by the nominal source, where \(\{Z_i\}\) is a sequence of random variables whose measure is unknown, and where the variables \(\{V_i\}\) are i.i.d. and binary, with:

\[
P(V_i = 0) = 1-\varepsilon, \quad P(V_i = 1) = \varepsilon
\]

(2)

for some \(\varepsilon\) such that \(0 \leq \varepsilon < 1\). The sequence \(\{V_i\}\) determines the contamination law, and the sequence \(\{Z_i\}\) corresponds to the contaminating process, which is not necessarily stationary. If \(\varepsilon = 0\), then the observation process is identical to the nominal source \([\mu, X, R]\).

We will assume that the nominal source and the sequence \(\{Z_i\}\) are both absolutely continuous. We then denote by \(f_0^m(y_i^m)\), the \(m\)-dimensional density function induced by the nominal source at the vector point \(y_i^m\). We denote by \(f_\varepsilon^m(y_i^m)\) the \(m\)-dimensional density function of the random vector \(Y_i^m\) at the vector point \(y_i^m\), where \(Y_i\) is as in (1) and \(V_i\) is as in (2). Let us define the following class of \(m\)-dimensional density functions:

\[
F_\varepsilon^m = \{f^m: f^m = (1-\varepsilon)^m f_0^m + [1-(1-\varepsilon)^m] h^m\}.
\]

(3)
where \(h^m \) is any \(m \)-dimensional density function.

It can be easily seen then that \(F^m_\varepsilon \in F^m_\varepsilon \). That is, \(F^m_\varepsilon \) is an enlargement of the class of \(m \)-dimensional densities that are generated by the outlier model in (1) and (2). An alternative form of the class \(F^m_\varepsilon \) is as follows:

\[
F^m_\delta = \{ f^m : f^m(y^m) - (1-\delta)f^m_0(y^m) \geq 0 ; \forall y^m \in \mathbb{R}^m \}
\]

where

\[
\delta = 1 - (1-\varepsilon)^m : 0 \leq \delta \leq 1
\]

Let \(C_\varepsilon \) denote the class of observation processes generated by the outlier model in (1) and (2), and let us signify a process \([\mu, Y, R]\) by its measure \(\mu \). Then, \(\mu \in C_\varepsilon \), means that the process \([\mu, Y, R]\) is contained in class \(C_\varepsilon \), and clearly \(\mu_0 \in C_\varepsilon \), where \(\mu_0 \) is the nominal source \([\mu_0, X, R]\).

We consider predictive source coding with distortion for the nominal source \(\mu_0 \), when the observation process \(\mu \) belongs to the class \(C_\varepsilon \). In particular, for every given infinite observation sequence \(y^m \), we wish to design a sequence \(\{v_{m,y^m}\}_{m \geq 1} \) of generally stochastic operations, such that \(v_{m,y^m} \) maps the datum \(x_{m+1} \) of the nominal source \(\mu_0 \). Let us denote by \(\{v_m\}_{m \geq 1} \), the sequence of the above operations when the infinite observation sequence \(y^m \) varies in \(\mathbb{R}^m \). Let us denote by \(\mu_{\{v_m\}} \) the process induced by \(\{v_m\}_{m \geq 1} \) when the observation sequences are generated by the process \(\mu \), where \(\mu \in C_\varepsilon \). Then, we are looking for sequences \(\{v_m\}_{m \geq 1} \), which satisfy the following properties:

(a) For every \(\mu \) in \(C_\varepsilon \), the entropy \(H(\mu_{\{v_m\}}) \) of the process \(\mu_{\{v_m\}} \) is bounded from above by a given finite number.

(b) There exists some constant \(D < E_{\mu_0} \{X^2\} \), such that for every \(\mu \) in \(C_\varepsilon \), the difference-squared mean distortion induced by the sequence \(\{v_m\}_{m \geq 1} \) is bounded from above by \(D \). That is, if for given
\(\mu \in C_\epsilon \), \(Z_{k+1} \) denotes the \((k+1)\)-th random element from the process \(\mu_{(v_m)} \), then,

\[
E_{\mu_{(v_m)}} \{ (X_{k+1} - Z_{k+1})^2 \} \leq D ; \forall \epsilon, \forall \mu \in C_\epsilon
\] \hspace{1cm} (6)

\(; \) where \(X_{k+1} \) is generated by the nominal source \(\mu_0 \).

(c) The sequence \(\{v_m\}_{m \geq 1} \) induces entropy and difference-squared mean distortion continuities at the nominal source \(\mu_0 \). That is, given \(\eta > 0 \), where exists \(\gamma > 0 \), such that if \(\mu \) is a process \(\gamma \)-close to \(\mu_0 \) in an appropriate measure, then

\[
| H(\mu_{(v_m)}) - H(\mu_{(v_m)}) | < \eta
\] \hspace{1cm} (7)

\[
E_{\mu_{(v_m)}} \{ (X_{k+1} - Z_{k+1})^2 \} - E_{\mu_{(v_m)}} \{ (X_{k+1} - W_{k+1})^2 \} < \eta ; \forall \epsilon
\] \hspace{1cm} (8)

\(; \) where in (8), \(X_{k+1} \) is generated by \(\mu_0 \), \(Z_{k+1} \) is generated by \(\mu_{(v_m)} \), and \(W_{k+1} \) is generated by \(\mu_{(v_m)} \).

Property (c) corresponds to qualitative robustness, see ([2],[3],[4],[5]), where the appropriate measure of closeness between the processes \(\mu_0 \) and \(\mu \) is the Prohorov distance with an empirical Prohorov metric, (see [4],[5]). If property (c) is satisfied, then the sequence \(\{v_m\}_{m \geq 1} \) is called qualitatively robust at \(\mu_0 \). From the results in [4] and [6], we conclude that \(\{v_m\}_{m \geq 1} \) is qualitatively robust at \(\mu_0 \) within the class of stationary processes \(\mu \), if it satisfies the following sufficient continuity conditions, where \(\Pi_\gamma \) denotes Prohorov distance with metric \(\gamma(x,y) \triangleq | x - y | \), and where \(\gamma(x^i, y^i) \triangleq \frac{| x_i - y_i |}{\Delta} \).

(A) **Pointwise continuity.** That is, given finite \(m \), given \(\eta > 0 \), given \(x_\epsilon \), there exists \(\delta > 0 \), such that

\[
y_\epsilon^\bullet : \gamma_m(x_\epsilon^\bullet, y_\epsilon^\bullet) < \delta \text{ implies } \Pi_\gamma(v_{m,x_\epsilon^\bullet}, v_{m,y_\epsilon^\bullet}) < \eta.
\]

(B) **Asymptotic continuity** at \(\mu_0 \). That is, given \(\zeta > 0 \), \(\eta > 0 \), there exist integers \(n_\epsilon \) and \(l \), some \(\delta > 0 \), and for each \(n > n_\epsilon \) some \(\Delta_\epsilon \in \mathbb{R}^n \) with \(\mu_\epsilon(\Delta_\epsilon) > 1-\eta \), such that for each \(x^n \in \Delta_\epsilon \) and \(y^n \) such that

\[
\inf \{ \alpha : \# [i : \gamma(x_i^{i+l-1}, y_i^{i+l-1}) > \alpha] \leq n \alpha \} < \delta, \text{ it is implied that } \Pi_\gamma(v_{n,x^n}, v_{n,y^n}) < \zeta.
\]

We point out that if for each given \(x^n \) and each \(n \), the operation \(v_{n,x^n} \) is deterministic, then the Prohorov distance \(\Pi_\gamma(v_{n,x^n}, v_{n,y^n}) \) reduces to \(| v_{n,x^n} - v_{n,y^n} | \).
From now on, we will assume that the nominal source is Gaussian, zero mean, and stationary, with given spectral density. In section III, we will outline the parametric version of our approach, when the observation process is known and predictive source encoding is sought. In section IV, we will design predictive encoding operations for finite dimensionalities of the observation sequences. In the same section, we will also study the performance of those operations, both at the nominal source and in the presence of contaminating processes. In section V, we will consider extensions of the operations found in section IV, for asymptotically long observation sequences. In the same section, we will also study performance issues of those extensions. In section VI, we draw some conclusions.
III. THE PARAMETRIC APPROACH

In this section, we consider the case where the nominal and the observation processes are both known and mutually dependent, and predictive encoding is sought, for entropy reduction. We will denote the nominal and the observation processes, \(\mu_0 \) and \(\mu \), respectively, and we will assume that they are absolutely continuous. We will then denote by \(f_{\mu}^{m}(y^m_1) \) the \(m \)-dimensional density function of the observation process, at the vector point \(y^m_1 \). We will denote by \(f_{\mu/k}^o(x \mid y^m_1) \) the conditional density at the point \(x \) of the datum \(x_{m+1} \) from the nominal process \(\mu_0 \), given the observation vector \(y^m_1 \) from the observation process \(\mu \). We will also adopt the difference-squared distortion criterion.

Given the above, let us initially assume that no entropy reduction is sought. Then, as well known, the sequence \(\{v_m\}_{m=1} \) of mappings that minimize mean distortion are deterministic and given by conditional expectations. That is, given \(m \) and \(y^m_1 \), we have

\[
v_{m,y^m_1} = E_{\mu/k} \{X_{m+1} \mid y^m_1\} = \int_{\mathbb{R}^m} x f_{\mu/k}(x \mid y^m_1) dx \Rightarrow m_{\mu/k}(y^m_1)
\]

and for \(Z_{k+1} \) denoting the \((k+1)\)-th element from the process \(\mu_{\{v_m\}} \), the induced by the operations in (9) mean distortion is:

\[
e_{m}(\mu_0, \mu) = E_{\mu_{\{v_m\}}} ((X_{k+1} - Z_{k+1})^2) = E_{\mu_0} \{X^2_{k+1}\} - \int_{\mathbb{R}^m} f_{\mu}^o(y^m_1) m^2_{\mu/k}(y^m_1) dy^m_1
\]

Let us now assume that in upper bound, \(\log M \), on the entropy of the process \(\mu_{\{v_m\}} \) is given. Then, we design a sequence \(\{v_m\}_{m=2} \) of stochastic mappings, as follows:

Step 1

We select a set \(\{A_i, 1 \leq i \leq M\} \) of intervals on the real line with \(A_i \cap A_j = \emptyset \) \(\forall i \neq j \). \(\bigcup_{1 \leq i \leq M} A_i = \mathbb{R} \), and

\[
\int_{A_i} f_{\mu_0}(x) dx = M^{-1}, \text{ where } f_{\mu_0}(x) \text{ is the one-dimensional density of the process } \mu_0, \text{ at the point } x.
\]
Step 2

Using the set \(\{A_i, i \leq i \leq M\} \) of Step 1, we design the sequence \(\{v_m\}_{m \geq 1} \) of stochastic mappings so that, given \(m \) and \(y_1^m \), the mapping \(v_{m,y_1^m} \) is a stochastic channel, mapping the sequence \(y_1^m \) onto a set \(\{v_i, 1 \leq i \leq M\} \) of scalar real values; it maps \(y_1^m \) onto \(v_i \), with probability:

\[
P_i(v_1^m) = \int_{A_i} f_{v_1^m}(x) 1_{y_1^m} \, dx
\]

The set \(\{v_i ; 1 \leq i \leq M\} \) is selected to minimize the mean difference-squared distortion. That is,

\[
D_{m,\mu,\mu}(\{v_i\}) = \int_{R^n} dy_1^m f_{v_1^m}(y_1^m) \sum_{i=1}^{M} P_{i,\mu,\mu}(y_1^m) \int_{R} (x-v_i)^2 f_{\mu,\mu}(x) 1_{y_1^m} \, dx = \inf_{\{a_i, 1 \leq i \leq M\}} D_{m,\mu,\mu}(\{a_i\})
\]

Then, it is easily found that,

\[
v_i = \left[\int_{R^n} dy_1^m f_{v_1^m}(y_1^m) P_{i,\mu,\mu}(y_1^m) \right]^{-1} \int_{R^n} dy_1^m f_{v_1^m}(y_1^m) P_{i,\mu,\mu}(y_1^m) m_{\mu,\mu}(y_1^m)
\]

\[
D_{m,\mu,\mu}(\{v_i\}) = E_{\mu,\mu} \{ X_m^2 \} - \sum_{i=1}^{M} \left[\int_{R^n} dy_1^m f_{v_1^m}(y_1^m) m_{\mu,\mu}(y_1^m) \right]^2 \geq c_m(\mu,\mu), \forall m
\]

; where \(c_m(\mu,\mu) \) is as in (10) and where \(m_{\mu,\mu}(y_1^m) \) is the conditional expectation in (9). Due to (14), we conclude that the stochastic mappings in Step 2 induce higher mean difference-squared distortion than that induced by the conditional expectations in (9), for the gain of reduced output entropy.

As the number \(M \) increases to asymptotically large values, the mean distortion \(D_{m,\mu,\mu}(\{v_i\}) \) approaches \(c_m(\mu,\mu) \), and the output entropy increases to the entropy of the nominal process.
Let the nominal process μ_0 be zero mean and stationary Gaussian with variance per datum r_0^2, and let the observation process μ be μ_0. Let then ρ_m^2 denote the mean-squared error induced by the optimal at μ_0 mean-squared one-step predictor, when the size of the observation vector is m. Let the interval A_i in (11) be (a_i, b_i), where $b_i > a_i$. Then, we easily find that the expressions in (13) and (14) take the following form, where $\phi(x)$ and $\Phi(x)$ denote respectively the density function and the distribution of the zero mean and unit variance Gaussian random variable, at the point x:

\[v_i = \left[r_0 - r_0^{-1} \rho_m^2 \right]^{-1} \left[\phi \left(\frac{b_i}{r_0} \right) - \phi \left(\frac{a_i}{r_0} \right) \right] \left(\Phi \left(\frac{b_i}{r_0} \right) - \Phi \left(\frac{a_i}{r_0} \right) \right) \]

(15)

\[D_{m, \mu, N}(v_i) = r_0^2 - r_0^{-2} (\rho_m^2)^2 \sum_{i=1}^{M} \left[\phi \left(\frac{b_i}{r_0} \right) - \phi \left(\frac{a_i}{r_0} \right) \right]^{-1} \left(\Phi \left(\frac{b_i}{r_0} \right) - \Phi \left(\frac{a_i}{r_0} \right) \right)^2 \]

(16)
IV. FINITE DIMENSIONALITY OBSERVATION SEQUENCES

In this section, we consider the outlier model, as exhibited by the observation process in (1) and (2), and we assume that the nominal process is stationary zero mean Gaussian. We then wish to design predictive encoding operations \(v_m \), for \(1 \leq m \leq l \), where \(l \) is some given finite integer. We want the designed operations to satisfy properties (a), (b), and (c) in section II. For given finite \(l \), we adopt a saddle-point game theoretic approach, based on the parametric scheme in section III. We first assume that the processes in the class \(C_\varepsilon \) in (1) and (2) are all absolutely continuous, and we denote by \(f_m(y_1^m) \) the \(m \)-dimensional density function of the nominal Gaussian process \(\mu_0 \), at the vector point \(y_1^m \). Then, given \(l \), we consider an enlargement, \(F^l_0 \), of the class of \(l \)-dimensional densities generated by the model in (1) and (2), as that in (4). In particular, we consider \(l \)-dimensional densities, \(f \), of the observation process, such that \(f \in F^l_0 \), where:

\[
F^l_0 = \{ f : f(y_1^m) - (1-\delta)f_0(y_1^m) \geq 0; \forall y_1^m \in \mathbb{R}^m \},
\]

\[
\int f(y_1^m) dy_1^m = 1
\]

\[
\delta = 1 - (1-\varepsilon)^l : 0 < \delta < 1
\]

Let an upper bound, \(\log M \), on the output entropy be given. Then, we wish to design predictive encoding operations which satisfy this bound for every process in class \(F^l_0 \), and which induce mean difference-squared distortion that is upper bounded by a given bound, for every \(f \in F^l_0 \). Our approach evolves from the parametric scheme in section III, and goes as follows:

Step 1

Select a set \(\{ A_i \}, 1 \leq i \leq M \) of intervals on the real line with \(\bigcap_{i \neq j} A_i = \emptyset, \bigcup_{1 \leq i \leq M} A_i = \mathbb{R} \), and

\[
\int_{A_i} f_0(x) dx = M^{-1}, \text{ where } f_0 \text{ is the one-dimensional density of the Gaussian nominal process } \mu_0, \text{ at the point } x.
\]
Step 2

Using the set \(\{ A_i, 1 \leq i \leq M \} \) in Step 1, and given a process \(\mu \) whose density function belongs to the class \(F^*_k \), we form the set \(\{ p_{i, \mu}, 1 \leq i \leq M \} \) of probabilities as follows,

\[
\text{Given } y_1^m \text{ in } \mathbb{R}^m: \quad p_{i, \mu}(y_1^m) = \frac{1}{A_i} \int f_{\mu, \mu}(x \mid y_1^m)dx, \quad 1 \leq i \leq M
\]

(19)

Let \(N_M \) denote the set of sets \(\{ a_i : 1 \leq i \leq M \} \) of \(M \) real numbers. We then consider the following class, \(D \), of mappings \(v_t = v_t(\mu, \{ a_i \}) \), that is generated by varying \(\mu \) in \(F^*_k \) and \(\{ a_i \} \) in \(N_M \):

Given \(\mu \) in \(F^*_k \) and \(\{ a_i \} \) in \(N_M \), given observation sequence \(y_1^m \), \(v_t, y \) maps the sequence \(y_1^m \) onto the value \(a_i \), with probability \(p_{i, \mu}(y_1^m) \), as in (19). Given \(\{ a_i \} \) in \(N_M \), given \(\mu_1 \) and \(\mu_2 \) in \(F^*_k \), let \(D_t(\mu_1, \mu_2, \{ a_i \}) \) denote the mean difference-squared distortion induced by the operation \(v_t(\mu_2, \{ a_i \}) \) in \(D \), at the observation process \(\mu_1 \). Then,

\[
D_t(\mu_1, \mu_2, \{ a_i \}) = \int_{\mathbb{R}^m} dy_1^m f_{\mu_1}(y_1^m) \sum_{i=1}^M p_{i, \mu_2}(y_1^m) \left[(x - a_i)^2 f_{\mu_1, \mu_2}(x \mid y_1^m) \right] dx
\]

(20)

We are then searching for a triple \((\mu_1 *, \mu_2 *, \{ v_t \}) \), such that \(\mu_1 * \in F^*_k \), \(\mu_2 * \in F^*_k \), \(\{ v_t \} \in N_M \), and:

\[
\forall \mu_1, \mu_2 \in F^*_k: \quad D_t(\mu_1, \mu_2 *, \{ v_t \}) \leq D_t(\mu_1 *, \mu_2 *, \{ v_t \}) \leq D_t(\mu_1 *, \mu_2 *, \{ a_i \}) \quad ; \quad \forall \{ a_i \} \in N_M
\]

(21)

Then, we select the \(v_t * = v_t(\mu_2 *, \{ v_t \}) \) encoding scheme for the class \(F^*_k \).

Remark If an encoding scheme \(v_t * = v_t(\mu_2 *, \{ v_t \}) \) in \(D \) exists, such that it satisfies (21), then it is guaranteed that the maximum mean difference-squared distortion that it induces in \(F^*_k \) is

\[
\sup_{\mu \in F^*_k} D_t(\mu, \mu_2 *, \{ v_t \}), \text{ subject to the existence of the latter supremum. By construction, the mapping } v_t *
\]

also attains maximum entropy in \(F^*_k \) that is bounded from above by \(\log M \).

Let \(f_{\lambda}(x \mid y_1^m) \) denote the conditional density of the Gaussian nominal process for the datum \(X_{m+1} \) at the point \(x \), given the past sequence \(y_1^m \) from the same process. Let \(f_{\lambda}(y_1^m) \) denote the \(m \)-dimensional density of the Gaussian nominal process at the vector point \(y_1^m \), and let \(Q_m \) be the \(m \)-dimensional autocovariance matrix of the process. Let us also then define:
\[m_\alpha(y_1^T) \Delta \int f_\alpha(x \mid y_1^T) \, dx \]
\[p_\alpha(y_1^T) \Delta \int f_\alpha(x \mid y_1^T) \, dx \]

We then express a theorem whose proof is in the Appendix.

Theorem 1

Given the class \(F_\delta^c \) in (17), and for every \(\delta: 0 \leq \delta < 1 \), the game in (21) has a solution \((\mu_1^*, \mu_2^*, \{v_i\})\). If \(f_j^*(y_j^i), j=1,2 \) denotes the \(l \)-dimensional density function of the process \(\mu_j^*, j=1,2 \) at the vector point \(y_j^i \), then this solution is as follows:

\[f^*(y_1^i) \Delta f_1^*(y_1^i) = f_2^*(y_1^i) = (1-\delta)f_\alpha(y_1^i) \max(1, \lambda_j^{-1} \{(y_1^i)^T Q_j^{-1} y_1^i\}^{1/2}) \]

; where, \(\lambda_j := \int f_j^*(y_1^i) \, dy_1^i = 1 \)

and for,

\[q_i(y_1^i) \Delta M^{-1} \left[\min(1, \lambda_j \{(y_1^i)^T Q_j^{-1} y_1^i\}^{-1/2}) + \right. \]

\[+ p_\alpha(y_1^i) \min(1, \lambda_j \{(y_1^i)^T Q_j^{-1} y_1^i\}^{-1/2}) \]

\[v_i = M(1-\delta) \int \int f_1^*(y_1^i) m_\alpha(y_1^i) q_i(y_1^i) \]

Then,

\[\forall \mu \in F_\delta^c \setminus D((\mu_1^*, \mu_2^*, \{v_i\}) \leq D((\mu_1^*, \mu_2^*, \{v_i\})) \Delta D_\text{\text{max}} = \]

\[= E_{\mu_i} \{X^2\} - (1-\delta)^2 M \sum_{i=1}^M \int \int f_1^*(y_1^i) m_\alpha(y_1^i) q_i(y_1^i) \]

The encoding scheme \(v_j^* \) is as follows:

Given an observation sequence \(y_1^i \), \(v_j^* \) maps it onto \(v_i \) with probability \(q_i(y_1^i) \).
Given l and M, an encoding scheme v_l consists of a set $\{a_i, 1 \leq i \leq M\}$ of values, and for every observation sequence y_l a set $\{p_i(y_l), 1 \leq i \leq M\}$ of probabilities, such that y_l is mapped onto a_i with probability $p_i(y_l)$. Given l, given some encoding scheme v_l, given an absolutely continuous observation process with arbitrary dimensionality densities, f, let $D_l(f, v_l)$ denote the mean difference-squared distortion induced when v_l is deployed, f is the density of the observation process, and a datum from the nominal Gaussian source is predictively encoded. Let v_o denote the optimal at the Gaussian observation process encoding scheme. That is, given an observation sequence y_l, v_o maps y_l onto u_l, with probability $p_o(y_l)$, where, given set $\{A_i, 1 \leq i \leq M\}$, $p_o(y_l)$ is as in (22), and where for $m_o(y_l)$ as in (22):

$$u_l = \left[\int_{A_i} f_0(x)dx \right]^{-1} \int_{\mathbb{R}^l} dy_l f_0(y_l)m_o(y_l)p_o(y_l)$$ \hspace{1cm} (27)

Let the common set $\{A_i, 1 \leq i \leq M\}$ be used by both the scheme v_o and the scheme v_l in Theorem 1, and let this set be such that $\int_{A_i} f_0(x)dx = M^{-1}$; V_i. Let f_0 denote the arbitrary dimensionality density of the nominal Gaussian source, and let $m_o(y_l)$ and $p_o(y_l)$ be as in (22) and $q_i(y_l)$ be as in (24). Then, by substitution, we easily obtain:

$$D_l(f_0, v_o) = E_{\mu_{\text{G}}} \{X^2\} - M \sum_{i=1}^{M} \left[\int_{\mathbb{R}^l} dy_l f_0(y_l)m_o(y_l)p_o(y_l) \right]^2$$ \hspace{1cm} (28)

$$D_l(f_0, v_l^*) = E_{\mu_{\text{G}}} \{X^2\} - (1-\delta)M \sum_{i=1}^{M} \left[\int_{\mathbb{R}^l} dy_l f_0(y_l)m_o(y_l)q_i(y_l) \right]^2 \cdot$$

$$\left[2 - (1-\delta)M \int_{\mathbb{R}^l} dy_l f_0(y_l)q_i(y_l) \right]$$ \hspace{1cm} (29)

Let I^l denote the l-dimensional vector whose elements are all equal to one. Let z denote some scalar real number, and let us then consider a density f, such that, $f(y_l) = (1-\xi)\gamma_0(y_l) + \zeta \delta(zI^l)$, where ξ given and such that $0 \leq \xi < 1$, where f_0 is the density of the Gaussian nominal source, and where $\delta(\cdot)$ denotes delta function. Given l, given an encoding scheme v_l, let $D_l(f_0, \xi, z, v_l)$ denote the mean difference-squared distortion induced by v_l, when the observation density is such that $f(y_l) = (1-\xi)\gamma_0(y_l) + \zeta \delta(zI^l)$ and a
datum from the Gaussian nominal source is predictively encoded. Then, for \(D_i(f_o, v_i)\) as in (28) and for \(D_i(f_o, v_i^*)\) as in (29), we obtain by substitution:

\[
D_i(f_o, \zeta, z, v_i^*) - D_i(f_o, v_i^*) \Delta V_i(f_o, \zeta, z, v_i^*) = \\
= \zeta M \sum_{i=1}^{M} \left[\int_{R'} dy_i f_o(y_i^1)m_o(y_i^1)p_{oi}(y_i^1) \right]^2 \left[1 + M p_{oi}(zI^i) \right] \tag{30}
\]

\[
D_i(f_o, \zeta, z, v_i^*) - D_i(f_o, v_i^*) \Delta V_i(f_o, \zeta, z, v_i^*) = \\
= \zeta (1-\delta) M \sum_{i=1}^{M} \left[\int_{R'} dy_i f_o(y_i^1)m_o(y_i^1)q_i(y_i^1) \right]^2 \left[2 - (1-\delta) M \int_{R'} dy_i f_o(y_i^1)q_i(y_i^1) + M(1-\delta)q_i(zI^i) \right] \tag{31}
\]

The functions in (30) and (31) represent changes in mean difference-squared distortion, when the observation process shifts from the one corresponding to the nominal source to a mixed process, which with probability \((1-\zeta)\) is the nominal source and which generates deterministic \(z\)-amplitude data with probability \(\zeta\). The rates of those changes at \(\zeta = 0\) are the Influence Functions, \(I_i(f_o, z, v_i^*)\) and \(I_i(f_o, z, v_i^{*})\), of respectively the encoding schemes \(v_i^*\) and \(v_i^{*}\), at the nominal source \(\mu_o\) and the amplitude value \(z\).

That is,

\[
I_i(f_o, z, v_i^*) \Delta \frac{dV_i(f_o, \zeta, z, v_i^*)}{d\zeta} \bigg|_{\zeta=0} = \\
= M \sum_{i=1}^{M} \left[\int_{R'} dy_i f_o(y_i^1)m_o(y_i^1)p_{oi}(y_i^1) \right]^2 \left[1 + M p_{oi}(zI^i) \right] \tag{32}
\]

\[
I_i(f_o, z, v_i^{*}) \Delta \frac{dV_i(f_o, \zeta, z, v_i^{*})}{d\zeta} \bigg|_{\zeta=0} = \\
= (1-\delta) M \sum_{i=1}^{M} \left[\int_{R'} dy_i f_o(y_i^1)m_o(y_i^1)q_i(y_i^1) \right]^2 \left[2 - (1-\delta) M \int_{R'} dy_i f_o(y_i^1)q_i(y_i^1) + M(1-\delta)q_i(zI^i) \right] \tag{33}
\]

Given \(l\), given an encoding scheme \(v_i\), given the nominal density \(f_o\), given \(z\) and \(\zeta\), let us consider the mean difference-squared distortion \(D_i(f_o, \zeta, z, v_i)\). Let us allow the value \(l=1\) to go to infinity, and let us then find the maximum value \(\zeta\) for which \(D_i(f_o, \zeta, \pm\infty, v_i) \leq E_{\mu_o}(X^2)\). This latter value is the
Breakdown Point of the encoding scheme \(v_I \), at \(\mu_0 \). It represents the highest frequency of extreme amplitude, \((\pm \infty)\), deterministic outlier values that the encoding scheme can tolerate, before it becomes useless; that is, before the observation sequences provide no information about the source data. We now express a lemma, whose proof is in the Appendix.

Lemma 1

Given \(M \), consider a set \(\{ A_i, 1 \leq i \leq M \} \) of intervals on the real line with \(A_i \cap A_j = 0; \forall i \neq j, \bigcup_{1 \leq i \leq M} A_i = \mathbb{R} \), and \(\int_{A_i} f_o(x)dx = M^{-1} \), where \(f_o(x) \) is the one-dimensional density of the Gaussian nominal source. Let in addition \(A_1 = (-\infty, -a) \) and \(A_M = (a, \infty) \) for \(a > 0 \). Let \(v_I^* \) be the optimal at the Gaussian process encoding scheme, and let \(v_I^{**} \) be as in Theorem 1. Then, given \(I \), the breakdown points \(\zeta_I^* \) and \(\zeta_I^{**} \) of the schemes \(v_I^* \) and \(v_I^{**} \), respectively, are given by the following expressions.

\[
J^*_I = \left[1 + MP^2_0 \left(\sum_{i=1}^{M} P^2_{oi} \right)^{-1} \right]^{-1} \tag{34}
\]

\[
\zeta^{*}_{I} = \left[1 + (1-\delta) \left[\sum_{i=1}^{M} Q^2_{oi} \left(\sum_{i=1}^{M} Q^2_{oi} \left(2-(1-\delta)M \right) \int_{Y} dy_{i} f_{o}(y_{i}) q_{i}(y_{i}) \right) \right]^{-1} \right]^{-1} \tag{35}
\]

where, for \(m_o(y_{i}) \) and \(p_{ao}(y_{i}) \) as in (22) and \(q_{i}(y_{i}) \) as in (24),

\[
P_{oi} = \int_{Y} dy_{i} f_{o}(y_{i}) m_{o}(y_{i}) p_{oi}(y_{i}) \tag{36}
\]

\[
Q_{oi} = \int_{Y} dy_{i} f_{o}(y_{i}) m_{o}(y_{i}) q_{i}(y_{i}) \tag{37}
\]

Remarks For finite dimensionalities of the observation sequence, the encoding operation \(v_I^* \) clearly satisfies the pointwise continuity property (A) in section II; thus, it is qualitatively robust. As exhibited by expression (24) in Theorem 1, for \(\left((y_{i})^{T} Q^{-1}_{I} y_{i} \right)^{1/2} \) relatively small, the operation \(v_I^* \) maps sequences \(y_{i} \) onto the set of values in (25), using the optimal at the Gaussian nominal source conditional probabilities. As \(\left((y_{i})^{T} Q^{-1}_{I} y_{i} \right)^{1/2} \) increases, however, the operation \(v_I^* \) uses a mixture of such
mapping probabilities, and asymptotically, \((y_i^T Q_i^{-1} y_i) \to \infty\), it maps the sequences \(y_i\), using the unconditional nominal density function \(f_{\mu_i}(x)\). Thus, it disregards extreme observation values, offering protection to data outliers, at the expense of reduced mean difference-squared performance at the nominal source.

Asymptotic Performance

Let us assume that the number of values onto which observation sequences \(y_i\) are mapped is asymptotically large. That is, \(M \to \infty\). We are then interested in the performance of the encoding schemes \(v_i^o\) and \(v_i^*\), for given finite \(l\). From expressions (28), (29), (30), (31), (32), and (33), and taking limits, we find:

Define, the scalars \(A_l\) and \(\rho_l\) as follows:

\[
A_l : \int dy_i f_{\mu_i}(y_i^T y_i m_{\nu_i}(y_i^T) = A_l f_{\mu_i}(x)
\]

\[
\rho_l^2 = E_{\mu_i} [(X_{i+1} - m_{\nu_i}(X_i)]^2)
\]

Then,

\[
\lim_{M \to \infty} D_l(f_o, v_i^o) = (1-A_l^2) E_{\mu_i} [X^2]
\]

\[
\lim_{M \to \infty} (D_l(f_o, v_i^o) - D_l(f_o, v_i^*)) = \xi A_l^2 \left[(1+\rho_l^2) \frac{1}{\xi} E_{\mu_i} [X^2] + \rho_l m_{\nu_i}(x_i) \right]
\]

Define,

\[
q(x, y_i) = \Delta [1 - \min(1, \lambda_i (y_i^T y_i)^{1/2})] f_{\mu_i}(x)
\]

\[
+ \min(1, \lambda_i (y_i^T y_i)^{-1/2}) f_{\mu_i}(x y_i)
\]

Then,

\[
\lim_{M \to \infty} D_l(f_o, v_i^*) = E_{\mu_i} [X^2] - 2(1-\delta) \int f_{\mu_i}^{-1}(x) \int dy_i f_{\mu_i}(y_i m_{\nu_i}(y_i^T q(x, y_i))
\]
\[+ (1-\delta)^2 \int_{\mathbb{R}} dx f_o^2(x) \left(\int_{\mathbb{R}'} dy' f_o(y') q(x,y') \right) \left(\int_{\mathbb{R}'} dy f_o(y') m_o(y') q(x,y') \right)^2 \geq \\
\geq (1-A_1^2)E_{\mu_o}(X^2) \tag{42} \]

\[\lim_{M \to \infty} \{ D_t(f_o, \zeta, z, v_t^*) - D_t(f_o, v_t^*) \} = \]

\[= \zeta (1-\delta) \int_{\mathbb{R}} dx f_o^{-1}(x) \left(\int_{\mathbb{R}'} dy' f_o(y') m_o(y') q(x,y') \right)^2 \\
- \zeta (1-\delta)^2 \int_{\mathbb{R}} dx f_o^{-2}(x) \left(\int_{\mathbb{R}'} dy' f_o(y') q(x,y') \right) \left(\int_{\mathbb{R}'} dy f_o(y') m_o(y') q(x,y') \right)^2 \\
+ \zeta (1-\delta)^2 \int_{\mathbb{R}} dx f_o^{-2}(x) q(x,z l^t) \left(\int_{\mathbb{R}'} dy f_o(y') m_o(y') q(x,y') \right)^2 \tag{43} \]

From the above expressions, and noting that \(\lim_{l |z| \to \infty} q(x,z l^t) = f_o(x) \), we also find, denoting by \(Q_l \) the \(lxl \) autocovariance matrix of the nominal Gaussian source:

Define,

\[c_l = \Delta = ((l^t)^T Q_l^{-1} l^t)^{-1/2} \tag{44} \]

Then,

\[\lim_{M \to \infty} I_t(f_o, z, v_t^*) = A_1^2 \left\{ (1+p_3^2)E_{\mu_o}(X^2) + z^2 \rho_1 \sigma_o^2(l^t) \right\} \tag{45} \]

\[= (1-\delta) \left(2 + (1-\delta) \left\{ 1 - \min(1, \lambda_1 z l^{-1}) \right\} \right) \int_{\mathbb{R}} dx f_o^{-1}(x) \left(\int_{\mathbb{R}'} dy' f_o(y') m_o(y') q(x,y') \right)^2 \\
+ (1-\delta)^2 \min(1, \lambda_1 c_t l z^{-1}) \int_{\mathbb{R}} dx f_o^{-2}(x) f_o(x l z t^t) \left(\int_{\mathbb{R}'} dy f_o(y') m_o(y') q(x,y') \right)^2 \\
- (1-\delta)^2 \int_{\mathbb{R}} dx f_o^{-2}(x) \left(\int_{\mathbb{R}'} dy f_o(y') q(x,y') \right) \left(\int_{\mathbb{R}'} dy f_o(y') m_o(y') q(x,y') \right)^2 \tag{46} \]

\[\lim_{M \to \infty} \zeta_t^0 = 0 \tag{47} \]

\[\lim_{M \to \infty} \zeta_t^* = \{ 1 + (1-\delta) \left(\int_{\mathbb{R}} dx f_o^{-1}(x) \left(\int_{\mathbb{R}'} dy f_o(y') m_o(y') q(x,y') \right)^2 \right) \} \]
Let us define,

\[m'_I \Delta \max_{y'_1, (y'_1)' \in \mathcal{D}, y'_1 \neq y'_1'} 1 m_0(y'_1) \]

(49)

Then, we can express the following lemma, whose proof is in the Appendix.

Lemma 2

The limit influence function in (46), and the limit breakdown point in (48), that the encoding operation \(v_1^* \) induces, are bounded as below:

\[
\lim_{M \to \infty} I_l(f_o, z, v_1^*) \leq (1-\delta)(3-\delta)4\lambda_r^2 m_I^2 - (1-\delta)^2 \int dx f_o^{-1}(x) \left[\int_{y'} fn_0(y'_1) q(x, y'_1) \int_{y'} fn_0(y'_1) m_o(y'_1) q(x, y'_1) \right]^2 \nonumber
\]

(50)

\[
\frac{2\delta}{1+\delta} \leq \lim_{M \to \infty} \zeta_{v_1^*} \leq (1+\delta)4\lambda_r^2 m_I^2 + (1-\delta) \int dx f_o^{-1}(x) \left[\int_{y'} fn_0(y'_1) m_o(y'_1) q(x, y'_1) \right]^2 \nonumber
\]

(51)

Thus, asymptotically, \((M \to \infty)\), the optimal at the nominal source encoding operation has breakdown point zero, and quadratic influence function. On the other hand, the operation \(v_1^* \) has then uniformly bounded influence function and strictly positive breakdown point. **Remarks** As compared to the optimal at the nominal source operation \(v_1^* \), the operation \(v_1^* \) is asymptotically, \((M \to \infty)\), superior in terms of breakdown point and influence function performances. This is at the expense of mean difference-squared distortion and differential entropy performances, at the nominal Gaussian source. Indeed, as it can be easily seen, asymptotically, \((M \to \infty)\), the process induced by \(v_1^* \) and the Gaussian measure \(\mu_o \) has higher differential entropy than the process induced by \(v_1^* \) and \(\mu_o \). In addition,
\[\lim_{M \to \infty} D_I(f_0, v_1^*) > \lim_{M \to \infty} D_I(f_0, v_{\ldots}^*), \text{ and from (26) we conclude:} \]

\[\lim_{M \to \infty} D_I(f_0, v_1^*), \quad \forall f \in F_0^b \]

Given \(l \), let \(H_\mu(v_l) \) denote the differential entropy induced asymptotically, \((M \to \infty)\), by the encoding scheme \(v_l \) at the observation process \(\mu \). Let \(H_{\mu, \zeta, \alpha}(v_l) \) denote the differential entropy induced asymptotically, \((M \to \infty)\) by \(v_l \), when the observation sequence is generated by the nominal source \(\mu_\alpha \), with probability \((1-\zeta)\), and it consists of deterministic, amplitude-\(z \) data, with probability \(\zeta \). Let \(\rho_l \) be as in \((38)\), and let us define,

\[\begin{align*}
E_{\mu} [X^2] &\quad \sigma^2 \quad \rho_l^2
\end{align*} \]

Then, we can express the following lemma, whose proof is in the Appendix.

Lemma 3

Let \(\mu \) be some absolutely continuous observation process. Given \(l \), let \(f(y_l^1) \) denote the density function of this process, at the vector point \(y_l^1 \). For,

\[\begin{align*}
B_\mu(v_l^1) &= 2^{-1} \left \{ \int_{R^l} dy_l^1 f(y_l^1)[1-g(y_l^1)]g(y_l^1)[1+\ln(1+\rho_l^2)+\ln(1+\rho_l^2)+\ln(2\pi \rho_l^2)]m_\alpha^2(y_l^1) \right \} \\
&\quad -[\ln(\sigma_l)] \left \{ \int_{R^l} dy_l^1 f(y_l^1)[1-g(y_l^1)] \right \} \\
&\quad -[\ln(\sigma_l)] \left \{ \int_{R^l} dy_l^1 f(y_l^1)[1-g(y_l^1)] \right \}
\end{align*} \]

the differential entropies \(H_\mu(v_l^1) \) and \(H_{\mu, \zeta, \alpha}(v_l^1) \) are bounded from above as follows:

\[H_\mu(v_l^1) \leq 2^{-1}[1 + \ln(2\pi \rho_l^2)] + B_\mu(v_l^1) \]

\[H_{\mu, \zeta, \alpha}(v_l^1) \leq 2^{-1}[1 + \ln(2\pi \rho_l^2)] + (1-\zeta)B_\mu(v_l^1) + \]

18
\[+ \xi^{-1} g(zl') (1 - g(zl')) (1 + \sigma_l^2 + \sigma_l^2 + p_l^2 (1 + \sigma_l^2) z^2 m_0^2 (l')) \]
\[- \xi (1 - g(zl')) \ln \sigma_l \] (56)

For \(|z| \to \infty \), we find a tighter bound on \(H_{\mu, \zeta, z} (v_{l}^*) \), as follows:

\[
\lim_{|z| \to \infty} H_{\mu, \zeta, z} (v_{l}^*) = (1 - \xi) H_{\mu_l} (v_{l}^*) - \xi \int_{\mathbb{R}} d\mu_{l} (x) \ln \mu_{l} (x) \leq \\
 \leq (1 - \xi) 2^{-1} [1 + \ln 2 \pi \rho_l^2] + \xi 2^{-1} [1 + \ln 2 \pi \rho_l^2] + (1 - \xi) B_{\mu_l} (v_{l}^*) \\
= 2^{-1} [1 + \ln 2 \pi \rho_l^2] + (1 - \xi) B_{\mu_l} (v_{l}^*) - \xi \ln \sigma_l
\] (57)

We note that the differential entropy \(H_{\mu_l} (v_{l}^*) \) induced asymptotically, \((M \to \infty)\), at the nominal source by the optimal at the nominal predictive operation \(v_{l}^* \) is bounded as follows:

\[H_{\mu_l} (v_{l}^*) = 2^{-1} [1 + \ln 2 \pi \rho_l^2] \] (58)

Also,

\[H_{\mu_l, \zeta, z} (v_{l}^*) = 2^{-1} [1 + \ln 2 \pi \rho_l^2] ; \quad \forall \zeta, z
\] (59)

We point out that when the nominal Gaussian source is \(k \)-order Markov, then we select \(l = k \), and we deploy the predictive operation \(v_{k}^* \) in Theorem 1, for \(l = k \).
V. ASYMPTOTICALLY LONG OBSERVATION SEQUENCES

In this section, we consider the same outlier model and the same Gaussian source, as in section IV, but we include asymptotically long observation sequences. In the presence of such sequences, the precise modelling of the observation processes that evolve from the outlier model in (1) and (2) is an impossible task. On the other hand, enlargements of the class of observation processes, as those in (17), misrepresent the actual class when long observation sequences are considered. In fact, when the length \(l \) of the observation sequences tends to infinity, the class \(F_2^l \) in (17) represents the case where the observation process is the nominal source, with probability \((1-\delta) \), and it is some other process, with probability \(\delta \); that is, no data mixing is then included, and the outlier model is not then a member of the class. For non-Markovian Gaussian nominal source, and asymptotically long observation sequences, we thus extend the predictive operations of section IV ad hocly, but in an intuitively satisfactory fashion.

Given \(l \) finite, given \(k \), given the observation sequence \(y^l \), and for \(Q_l \) denoting the \(l \)-dimensional autocovariance matrix of the nominal Gaussian source, let us define,

\[
a_{i,\ell}(y^l) \Delta \left\{ y_{[i+1]}^{[\ell]} \right\}^T Q_l^{-1} y_{[i+1]}^{[\ell]} : 0 \leq i \leq k-1
\]

For \(\lambda_l \) as in (23) in Theorem 1, let us also define,

\[
z_{[i+1]}^{[\ell]}(y^l) \Delta \min \left\{ 1, \frac{\lambda_l}{a_{i,\ell}(y^l)} \right\} y_{[i+1]}^{[\ell]}
\]

\[
\begin{bmatrix} z_1(y^l) \cdots z_{k-1}(y^l) \\ z_{[k]}(y^l) \end{bmatrix}^T = \begin{bmatrix} z_1(y^l) & \cdots & z_{k-1}(y^l) \end{bmatrix}
\]

Let us now consider the following two mapping densities, that map the observation sequence \(y^l \) onto the real line, for predictive encoding of the datum \(X_{k+1} \) from the nominal source:

\[
q(x, y^l) \Delta \sum_{m=0}^{k-1} \sum_{l \in Y^l} \prod_{j=m+1}^{m} \min \left\{ 1, \frac{\lambda_l}{a_{j,\ell}(y^l)} \right\} \prod_{j=m+1}^{k-1} \left[1-\min \left\{ 1, \frac{\lambda_l}{a_{j,\ell}(y^l)} \right\} \right]
\]

\[
: \left| f_\ell(x | y_{[m+1]}^{[\ell]}, l \leq m) - f_\ell(x) \right| + f_\ell(x)
\]
The mapping density in (62) is an intuitively pleasing extension of the operation v_t^* in Theorem 1, but very complex, both in terms of implementation and in terms of analysis. In addition, it does not provide a clear indication as to the mapping values, when their number M is finite. The mapping density in (63) is much simpler. It also has intuitively pleasing characteristics as well: For $\lambda_t \to \infty$, it converges to the optimal at the nominal source mapping. It also disregards extreme data values, using the unconditional density $f_0(x)$ in its mapping, when $k^{-1} \sum_{i=0}^{k-1} \min \left(1, \frac{\lambda_t}{a_i(y_i^k)} \right) \to 0$. In addition, $q^*(x, y_i^k)$ provides easy extensions of the mapping values in (25), when M is finite. In conclusion, we propose the following predictive encoding scheme for non Markovian Gaussian nominal sources, and arbitrarily long observation sequences:

Encoding Scheme

Given M, select a set $\{A_i, 1 \leq i \leq M\}$ of intervals on the real line with $A_i \cap A_j = \emptyset ; \forall i \neq j$,

$$\bigcup_{1 \leq i \leq M} A_i = \mathbb{R}, \text{ and } \int_{A_i} f_0(x) dx = M^{-1}, \forall i.$$

Select some finite natural number l, and given $\delta : 0 \leq \delta < 1$, find the positive constant λ_l, as in (23).

Then, given k, given an observation sequence y_i^l, map y_i^l onto v_i^* with probability $q^*(y_i^l)$, where for $p_\alpha(y_i^m)$ as in (22), for $z_i^l(y_i^l)$ as in (61), and for $a_i,l(y_i^l)$ as in (60), the values $\{v_i^*, 1 \leq i \leq M\}$ and the probabilities $q_i^*(y_i^l)$ are as follows:

$$q_i^*(y_i^l) = M^{-1} \left[1 - k^{-1} \sum_{j=0}^{k-1} \min \left(1, \frac{\lambda_l}{a_i,l(y_i^l)} \right) \right] +$$

$$+ k^{-1} \sum_{j=0}^{k-1} \min \left(1, \frac{\lambda_l}{a_i,l(y_i^l)} \right) p_\alpha \left(z_i^l(y_i^l) \right)$$

(64)
\[v_i^* = M(1-\delta) \int_{\mathbb{R}^l} dy_1 f_o(y_1^l) m_o(y_1^l) q_*(y_1^l) \]

Remarks Given \(l \), given length \(kl \) of observation sequences, we will denote the above encoding scheme \(v_{l,k}^* \). We will denote by \(\{v_{l,k}^*, k \geq 1\} \) the sequence of encoders evolving from \(v_{l,k}^* \), for varying \(k \) values. We note that the scheme utilizes \(l \)-size disjoint blocks of observed data, where \(l \) may be considered as a design parameter. In addition, it bounds disjoint \(l \)-size blocks of data in \(p_o(z_1^l(y_1^l)) \), for all \(i \). This is in contrast to the scheme in section IV, and is needed for asymptotic, \((k \to \infty) \), qualitative robustness.

We now express a lemma, whose proof is in the Appendix.

Lemma 4

Let \(\{b_m\} \) be the one step prediction coefficients of the nominal Gaussian source, when \(m \)-size observation sequences are given. Let \(\{b_m\} \) be such that, \(\sum_{i=1}^{M} |b_m| < c^* < \infty \). Then, the sequence \(\{v_{l,k}^*, k \geq 1\} \) of predictive encoders is qualitatively robust at the nominal Gaussian source. That is, it satisfies both continuity conditions (A) and (B) in section II.

Let \(D_{l,k}(f_o, v_{l,k}^*) \) denote the mean difference-squared distortion induced by the encoding scheme \(v_{l,k}^* \), at the nominal Gaussian source. Let \(D_{l,k}(f_o, \zeta, v_{l,k}^*) \) denote the mean difference-squared distortion induced by \(v_{l,k}^* \), when the \(l \)-dimensional observation density is such that,
\[
\int y_1^l f_o(y_1^l) + \zeta \delta(z_1^l) \]
and let then \(\zeta_{l,k}^* \) be the breakdown point of \(v_{l,k}^* \). Given \(M \), we then easily find by substitution, and as in section IV:

\[
D_{l,k}(f_o, v_{l,k}^*) = F_{l,k} \left[X^2 \right] - (1-\delta) M \sum_{i=1}^{M} \left[\int_{\mathbb{R}^l} dy_1 f_o(y_1^l) m_o(y_1^l) q_*(y_1^l) \right]^2.
\]
\[
\left[2 - (1-\delta)M \int_{\mathbb{R}^u} dy_1^k f_0(y_1^k) q_t^*(y_1^t) \right] \\
\]

\[
D_{l,1}(f_0,\xi,z, v_{l,1}^*) = \sum_{i=1}^{M} \left[\int_{\mathbb{R}^t} dy'_i f'_0(y'_1) m_0(y'_1) q'_t(y'_1) \right]^2 [2 - (1-\delta)M \int_{\mathbb{R}^t} dy'_i f'_0(y'_1) q'_t(y'_1) \\
+ M(1-\delta)q_t^*(y''_1)] \\
\]

\[
\zeta_{l,1}^* = \left[1 - (1-\delta) \sum_{i=1}^{M} (Q_{ai}^*)^2 \left[\frac{1}{\sum_{i=1}^{M} (Q_{ai}^*)^2 [2 - (1-\delta)M \int_{\mathbb{R}^t} dy'_i f'_0(y'_1) q'_t(y'_1)]} \right]^{-1} \right]^{-1} \\
\]

where,

\[
Q_{ai}^* = \int_{\mathbb{R}^t} dy'_i f'_0(y'_1) m_0(y'_1) q'_t(y'_1) \\
\]

Let us define, for \(\{a_{j,l}(y_1^l)\} \) as in (60) and \(z_1^l(y_1^l) \) as in (61),

\[
q^*(x,y_1^l) = \left[1 - k^{-1} \sum_{j=0}^{k-1} \min \left\{ 1, \frac{\lambda_l}{a_{j,l}(y_1^l)} \right\} \right] f_0(x) \\
+ k^{-1} \sum_{j=0}^{k-1} \min \left\{ 1, \frac{\lambda_l}{a_{j,l}(y_1^l)} \right\} f_0(x z_1^l(y_1^l)) \\
\]

Then, if \(I_{l,k}[f_0,\xi,v_{l,k}^*] \) denotes the influence function of the operation \(v_{l,k}^* \), and in parallel to the expressions (42), (43), and (48) in section IV, we find the following asymptotic, \((M \to \infty)\), expressions:

\[
\lim_{M \to \infty} D_{l,k}(f_0, v_{l,k}^*) = E_{\mu_0} \{ X^2 \} - 2(1-\delta) \int_{\mathbb{R}} dx f_0^{-1}(x) \left[\int_{\mathbb{R}^u} dy_1^k f_0(y_1^k) m_0(y_1^k) q^*(x,y_1^t) \right]^2 \\
+ (1-\delta)^2 \int_{\mathbb{R}} dx f_0^{-2}(x) \left[\int_{\mathbb{R}^u} dy_1^k f_0(y_1^k) q^*(x,y_1^t) \right] \left[\int_{\mathbb{R}^u} dy_1^k f_0(y_1^k) m_0(y_1^k) q^*(x,y_1^t) \right]^2 \\
\]
\[\lim_{M \to \infty} I_{1,1}(f_0, z, v_{1,1}^*) = 2(1-\delta) \left[\int_R dx f_0^{-1}(x) \left[\int_R dy f_0(y_1) m_0(y_1) q^*(x, y_1) \right] \right]^2 \]

\[- (1-\delta)^2 \int_R dx f_0^{-2}(x) \left[\int_R dy f_0(y_1) q^*(x, y_1) \right] \left[\int_R dy f_0(y_1) m_0(y_1) q^*(x, y_1) \right]^2 \]

\[+ (1-\delta)^2 \int_R dx f_0^{-2}(x) q^*(x, z_1) \left[\int_R dy f_0(y_1) m_0(y_1) q^*(x, y_1) \right]^2 \]

\[\lim_{M \to \infty} \xi_{1,1}^* = \{ 1 + (1-\delta) \left[\int_R dx f_0^{-1}(x) \left[\int_R dy f_0(y_1) m_0(y_1) q^*(x, y_1) \right] \right]^2 \cdot \left(\int_R \left[\int_R dy f_0(y_1) m_0(y_1) q^*(x, y_1) \right]^2 \left[2f_0^{-1}(x) - (1-\delta)f_0^{-2}(x) \int_R dy f_0(y_1) q^*(x, y_1) \right]^{-1} \right) \}^{-1} \] (72)

Remarks The asymptotic expressions in (72) and (73) correspond to \(l \)-size observation blocks and asymptotically many mapping values \(\{ v_i^* \} \). For \(l \)-order Markov nominal Gaussian sources, those expressions represent the asymptotic, \((M \to \infty) \), influence function and breakdown point induced by the encoding scheme \(\{ v_{l,k}^* \} \) at the nominal source, for any \(k \). Comparing expressions (71), (72), and (73), with expressions (42), (43), and (48), in section IV, we can draw the following conclusions:

The encoding scheme in Theorem 1 induces smaller mean difference-squared distortion at the nominal source, than the scheme \(v_{l,1}^* \) does. However, the breakdown point of the former is generally smaller than the breakdown point of the latter. The influence function of \(v_{l,1}^* \) is bounded, and it converges to its bound slower than the scheme in Theorem 1 does.

If \(H_{\mu_e}(v_{l,1}^*) \) denotes the differential entropy induced by the scheme \(v_{l,1}^* \) at the nominal source, and for \(B_p(v_i^*) \) as in (54), \(g(y_1^1) \) as in (53), and \(p_l \) as in (38), we find via methods as those in the proof of Lemma 3:

\[H_{\mu_e}(v_{l,1}^*) \leq 2^{-1} \left[1 + \ln 2 \pi p_l \right] + B_p(v_i^*) + \]

24
From the results in Lemma 3, in conjunction with (74), we conclude:

The scheme \(v_{1,1}^* \) induces lower differential entropy at the nominal source, than the scheme in Theorem 1 does.

Limiting Behavior

The sequence \(\{v_{i,k}^*, k \geq 1\} \) of encoders in this section was designed especially for non-Markovian nominal Gaussian sources, and asymptotically long observation sequences. Thus, the study of its performance characteristics for \(k \to \infty \) is important. We will perform such studies, for the case where the mapping values \(\{v_i^*\} \) are asymptotically many; that is, for \(M \to \infty \). We first express a theorem, whose proof is in the Appendix.

Theorem 2

The influence function
\[
I_{l,k}(f, z, v_{l,k}^*)
\]
is uniformly bounded from above, for every \(z \) and every \(k \). The breakdown point
\[
\lim_{M \to \infty} \zeta_{l,k}^*
\]
is uniformly bounded from below by a strictly positive constant, for every \(k \).

In view of Theorem 2, we remind the reader that the optimal at the nominal source predictive encoding operation induces asymptotic, \((M \to \infty) \), breakdown point equal to zero, and unbounded quadratic asymptotic, \((M \to \infty) \), influence function, for every dimensionality of the observation sequence. As \(k \) increases, the asymptotic, \((M \to \infty) \), mean difference-squared distortion induced by the sequence \(\{v_{l,k}^*\} \) of encoders at the nominal source, decreases monotonically, but remains uniformly higher than that induced by the optimal at the nominal sequence of predictive encoders. Given \(k \), the former is given by expression (71), where the latter is given by expression (39) in section IV. Let \(H_{l,k}(v_{l,k}^*) \) denote the differential entropy induced by the encoding scheme \(v_{l,k}^* \) at the nominal source. Then, we express a
Lemma, whose proof is in the Appendix. For p_j as in (38) and r_o and σ_t as in (53), we first define,

$$G_{k,t}(y_l^l) = k^{-1} \sum_{j=0}^{k-1} \min \left\{ 1, \frac{\lambda_j}{a_{j,t}(y_l^l)} \right\}$$ \hspace{1cm} (75)$$

Lemma 5

For $g(y_l^l)$ as in (53), and for,

$$D(v_{l,k}^*) = \frac{1}{2} \int_{R^l} dy_{l}^l f_o(y_l^l) G_{k,t}(y_l^l) \left[\frac{1 - G_{k,t}(y_l^l)}{\sigma_{kl}^2 + \sigma_{kl}^2} + \right.$$

$$+ r_o^2(1+\sigma_{kl}^2)\sigma_{kl}^2(\xi_k(y_l^l))^2 - 2 \int_{R^l} \left[\ln \sigma_{kl} + \int_{R^l} dy_{l}^l f_o(y_l^l) g(y_l^l) \right]$$

$$- \left[\ln \sigma_{kl} \left[1 - \int_{R^l} dy_{l}^l f_o(y_l^l) g(y_l^l) \right] - \right.$$ \hspace{1cm} (76)$$

The differential entropy $H_{\mu_0}(v_{l,k}^*)$ is bounded as follows:

$$H_{\mu_0}(v_{l,k}^*) \leq \frac{1}{2} \left[1 + \ln 2 \pi \rho_{kl}^2 \right] + D(v_{l,k}^*)$$ \hspace{1cm} (77)$$

If $\{b_{im}\}$ are the one step prediction coefficients of the nominal Gaussian source when m-size observation sequences are given, and if $\sum_{i=1}^{M} b_{im} < \infty$, then there exists $c_i^* < \infty$, such that,

$$|m_0(\xi_k(y_l^l))| \leq \lambda_i c_i^*.$$ Then, we find a looser upper bound on $H_{\mu_0}(v_{l,k}^*)$, as follows:

$$H_{\mu_0}(v_{l,k}^*) \leq \frac{1}{2} \left[1 + \ln 2 \pi \rho_{kl}^2 \right] + C(v_{l,k}^*)$$ \hspace{1cm} (78)$$

where

$$C(v_{l,k}^*) = \frac{1}{2} \left[\sigma_{kl}^2 + \sigma_{kl}^2 + r_o^2(1+\sigma_{kl}^2)\sigma_{kl}^2(c_i^*)^2 - 2 \int_{R^l} \left[dy_{l}^l f_o(y_l^l) g(y_l^l) - \right.$$

$$- \left[\ln \sigma_{kl} \left[1 - \int_{R^l} dy_{l}^l f_o(y_l^l) g(y_l^l) \right] - \right.$$ \hspace{1cm} (79)$$
Remarks The differential entropy $H_{\mu_k}(\nu_{ik,*})$ decreases monotonically with increasing k, and remains strictly higher than the differential entropy induced by the optimal at the nominal predictive encoder, at the nominal source, (given k, the latter equals $\frac{1}{2} \left[1 + \ln 2 \pi p_{ik}^2 \right]$). In the $\lim_{k \to \infty}$, the bound in (78) can be as small as the asymptotic mean-squared error, $\lim_{n \to \infty} \lambda_n^2$, of the optimal at the nominal source one-step predictor allows. This depends on the spectral characteristics of the nominal Gaussian source.
VI. CONCLUSIONS

In this paper, we considered predictive encoders with distortion, for entropy reduction. We considered a stationary and Gaussian nominal source and we designed and analyzed qualitatively robust predictive encoders, for resistance to data outliers. Our encoders offer protection against outlier values, at the expense of increased distortion and differential entropy, at the nominal source.
APPENDIX

Proof of Theorem 1

Let \(\mu_1 \) and \(\mu_2 \) be given, and let \(f_1 \) and \(f_2 \) denote their corresponding densities. Let \(f_{\mu_1}(x,y_1^i) \) denote joint density of the datum \(X_{m+1} \) from the nominal process, at the point \(x \), and the random vector \(Y_1^i \) from the observation process at the vector point \(y_1^i \). Then, from class \(F_\delta \) we conclude:

\[
\begin{align*}
 f_{\mu_1}(x,y_1^i) &= (1-\delta)f_0(x,y_1^i) + \delta \nu(x) \left[f_2(y_1^i) - (1-\delta)f_0(y_1^i) \right] \quad \text{(A.1)} \\
 f_{\mu_2}(x,y_1^i) &= f_{\mu_1}(x,y_1^i) \left[1 - \frac{(1-\delta)f_0(y_1^i)}{f_2(y_1^i)} \right] f_0(x) + \\
 &\quad + \frac{(1-\delta)f_0(y_1^i)}{f_2(y_1^i)} f_0(x, y_1^i) \quad \text{(A.2)}
\end{align*}
\]

Let us define,

\[
 p_{1,2}(y_1^i) = \int f_{\mu_1}(x, y_1^i) dx = M^{-1} \left[1 - \frac{(1-\delta)f_0(y_1^i)}{f_2(y_1^i)} \right] + \frac{(1-\delta)f_0(y_1^i)}{f_2(y_1^i)} p_{1,2}(y_1^i) \quad \text{(A.3)}
\]

Let us define,

\[
 b_{1,2}^{(1,2)} = (1-\delta) \left[\int dy_1 f_1(y_1^i)p_{1,2}(y_1^i) \right]^{-1} \int dy_1 f_0(y_1^i)m_0(y_1^i)p_{1,2}(y_1^i) \quad \text{(A.4)}
\]

Then, we easily find,

\[
 \mathcal{D}_{1}[\mu_1, \mu_2, \{b_{1,2}^{(1,2)}\}] = \mathbb{E}_{\mu_2}[X^2] - (1-\delta)^2 \sum_{i=1}^{M} \left[\int dy_1 f_1(y_1^i)p_{1,2}(y_1^i) \right]^{-1}.
\]

\[
 \left[\int dy_1 f_0(y_1^i)m_0(y_1^i)p_{1,2}(y_1^i) \right]^2 \leq \\
 \leq \mathcal{D}_{2}(\mu_1, \mu_2, \{a_i\}) : \ast\{a_i\} \in \mathcal{V}_M \quad \text{(A.5)}
\]

29
\[\sum_{i} \left[\int dy' f_i(y') p_{i2}(y') \right]^{-1} \left[\int dy' f_0(y') m_o(y') p_{i2}(y') \right]^2 \geq \]
\[\geq \sum_{i} \left[\int dy' f_i(y') p_{i2}(y') \right]^{-1} \sum_{i} \left[\int dy' f_0(y') m_o(y') p_{i2}(y') \right]^2 = \]
\[= \sum_{i} \left[\int dy' f_0(y') m_o(y') p_{i2}(y') \right]^2 \]
(A.6)

with equality in (A.6) if \(f_1(y') = f_2(y') \); \(\forall y' \in \mathbb{R}^d \). From (A.6) and (A.5) we conclude,
\[D_\mu \left(\mu_1, \mu_2, \{ b^{(1,2)} \} \right) \leq D_\mu \left(\mu_2, \mu_2, \{ b^{(2,2)} \} \right) = \]
\[= E_{\mu_2} (X^2) - (1-\delta)^2 M \sum_{i=1}^M \left[\int dy' f_0(y') m_o(y') p_{i2}(y') \right]^2 \]
(A.7)

where,
\[b^{(2,2)} = (1-\delta) M \int dy' f_0(y') m_o(y') p_{i2}(y') \] (A.8)

Now, \(\sup_{\mu \in \mathcal{P}_d} D_\mu \left(\mu_2, \mu_2, \{ b^{(2,2)} \} \right) \) corresponds to \(\inf_{\mu \in \mathcal{P}_d} M \sum_{i=1}^M \left[\int dy' f_0(y') m_o(y') p_{i2}(y') \right]^2 \).

Application of calculus of variation gives that \(f^* \) in (23) attains the latter infimum. The proof of the theorem is now complete.

Proof of Lemma 1

From (24), we have \(\lim_{z \to z^*} q_i(z) = M^{-1}; \forall i \). Also, \(\lim_{z \to z^*} p_i(z) = \begin{cases} 1 & i=1,M \\ 0 & \text{otherwise} \end{cases} \).

Substituting the above in (30) and (31), in conjunction with (28) and (29), we find that
\[D_i(f_0, \xi, \pm \infty, v^*) \leq E_{\mu_2} (X^2); \forall \xi \leq \xi^* \text{ and } D_i(f_0, \zeta, \pm \infty, v^*) \leq E_{\mu_2} (X^2); \forall \zeta \leq \zeta^*. \]

Proof of Lemma 2

We easily conclude, for \(q(x, y') \) as in (41):
\[q(x, y') < f_0(x) + f_0(x | y') \]
and thus.
Also,

\[2f_0^{-1}(x) - (1-\delta)f_0^2(x) \int dy'_0(y'_1)q(x,y'_1) > 2\delta f_0^{-1}(x) \]
(A.9)

\[\int dy'_0(y'_1)m_n(y'_1)q(x,y'_1) \leq \]
\[f_0(x) \int dy'_0(y'_1)m_n(y'_1) \min(1,\lambda_1((y'_1)^TQ^{-1}y'_1)^{-1/2}) + \int dy'_0(y'_1)m_n(y'_1) \min(1,\lambda_1((y'_1)^TQ^{-1}y'_1)^{-1/2}) f_0(x,y'_1) \]
\[\leq 2\lambda_m f_0(x) \]
(A.10)

Applying (A.9) to (48), we find,

\[\lim_{M \to \infty} \zeta^*_M > \frac{2\delta}{1+\delta} \]
(A.11)

Applying (A.10) to (48) and (46), we find,

\[\lim_{M \to \infty} \zeta^*_M < (1+\delta)4\lambda_m^2 m_1^2 \int dy'_0(y'_1)q(x,y'_1) \left[\int dy'_0(y'_1)m_n(y'_1)q(x,y'_1) \right] \leq \]
\[f_0(x) \int dy'_0(y'_1)m_n(y'_1) \min(1,\lambda_1((y'_1)^TQ^{-1}y'_1)^{-1/2}) f_0(x,y'_1) + \int dy'_0(y'_1)m_n(y'_1) \min(1,\lambda_1((y'_1)^TQ^{-1}y'_1)^{-1/2}) f_0(x,y'_1) \]
\[= (1-\delta)(3-\delta)4\lambda_m^2 m_1^2 \]
\[- (1-\delta)^2 \int dy'_0(y'_1)q(x,y'_1) \left[\int dy'_0(y'_1)m_n(y'_1)q(x,y'_1) \right] \]
\[= (1-\delta)^2 (3-\delta)4\lambda_m^2 m_1^2 \]
(A.12)

\[\lim_{M \to \infty} l_1(f_0, x, v_t^*) \leq (1-\delta)4\lambda_m^2 m_1^2 \left[3-\delta-(1-\delta)\min(1,\lambda_1c_1z_1^{-1}) \right] \]
\[+ (1-\delta)^2 4\lambda_m^2 m_1^2 \min(1,\lambda_1c_1z_1^{-1}) \]
\[- (1-\delta)^2 \int dy'_0(y'_1)q(x,y'_1) \left[\int dy'_0(y'_1)m_n(y'_1)q(x,y'_1) \right] \]
\[= (1-\delta)(3-\delta)4\lambda_m^2 m_1^2 \]
(A.13)

Proof of Lemma 3

Clearly, for \(q(x,y'_1) \) as in (41), we have,

\[-H_t(v_t^*) \geq \int dy'_0(y'_1) \left[\int dx q(x,y'_1) \sigma q(x,y'_1) q(x,y'_1) \right] \]
(A.14)
where,

\[\int d\mathbf{x}q(x,y') \log q(x,y') = \left[1 - \min(1, \lambda_y \{ (y')^T Q^{-1} y' \}^{-1/2}) \right] \int d\mathbf{x}_0(x) \log q(x,y') + \min(1, \lambda_y \{ (y')^T Q^{-1} y' \}^{-1/2}) \int d\mathbf{x}_0(x) \log q(x,y') \] (A.15)

Let us define,

\[g(y') \triangleq \min(1, \lambda_y \{ (y')^T Q^{-1} y' \}^{-1/2}) \] (A.16)

\[\sigma_y^2 \triangleq \mathbb{E}_{\mu_x}(X^2) \] (A.17)

Then, from (A.15) and the convexity of the logarithmic function, we obtain:

\[C(y') \triangleq \int d\mathbf{x}q(x,y') \log q(x,y') = [1 - g(y')] \int d\mathbf{x}_0(x) \log q(x,y') + \]

\[+ g(y') \int d\mathbf{x}_0(x \mid y') \log q(x,y') \geq \]

\[\geq [1 - g(y')]^2 \int d\mathbf{x}_0(x) \log f_0(x) + [1 - g(y')] g(y') \int d\mathbf{x}_0(x) \log f_0(x \mid y') + \]

\[+ [1 - g(y')] g(y') \int d\mathbf{x}_0(x \mid y') \log f_0(x) + g^2(y') \int d\mathbf{x}_0(x \mid y') \log f_0(x \mid y') \]

\[= -2^{-1} [1 - g(y')]^2 [1 + \log 2\pi \sigma_y^2] - 2^{-1} g^2(y') [\log 2\pi \sigma_y^2 + 1] - \]

\[-2^{-1} g(y') [1 - g(y')] [\log 2\pi \sigma_y^2 + \log 2\pi \sigma_y^2 + \rho \sigma_y^2 (1 + m_0^2(y'))] + r_0^2 \rho \sigma_y^2 + m_0^2(y')] \]

\[= -2^{-1} \{1 + \log 2\pi \sigma_y^2 + 2^{-1} [1 - g(y')] [\log \sigma_y^2 - \]

\[-2^{-1} g(y') \} [1 - g(y')] [\log \sigma_y^2 - \]

\[-2^{-1} g(y') [1 - g(y')]] -1 + \sigma_y^2 + \sigma_y^2 + \rho \sigma_y^2 (1 + \sigma_y^2) m_0^2(y')] \]

(A.18)
where, \(\log \) is the natural logarithm \(\ln \), and where,

\[
\sigma^2_i \triangleq \int_0^2 \rho^2_i \quad (A.19)
\]

Substituting (A.18) in (A.14), we find (54). Similarly, we find,

\[
-H_{p^{\ast k}_0} (v_i^{\ast}) \geq (1 - \zeta) \int_{R^d} \left[dy f_o(y_i') \int_{R^d} dx q(x, y_i') \log q(x, y_i') +
\right.
\]

\[
+ \zeta \int_{R^d} dx q(x, z t') \log q(x, z t') \geq (1 - \zeta) 2^{-1} \{1 + \log 2 \pi \rho^2_i \} -
\]

\[
-(1 - \zeta) B_{p^*_0} (v_i^{\ast}) - \zeta 2^{-1} \{1 + \log 2 \pi \rho^2_i \} + \zeta 2^{-1} \{1 - g(2 t') \} \log \sigma^2_i -
\]

\[
-\zeta 2^{-1} g(2 t') \{1 - g(2 t') \} [1 + \sigma_i^2 + \sigma_i^{-2} + \rho_i^{-2} (1 + \sigma_i^2) z^2 m_2^2 (t')] \quad (A.20)
\]

Proof of Lemma 4

The mapping \(q_i^*(y^{k+1}_i) \) is clearly pointwise continuous for every finite \(k \) and every \(i \), since

\[
\text{min} \left\{ \frac{\lambda_i}{a_{j,i}(y^{k+1}_i)} \right\} \quad \text{and} \quad p_{\alpha_1}(y^{k+1}_i) \quad \text{are both pointwise continuous, for every } i \text{ and } j, \text{ and every finite } k.
\]

Let now \(k \) be given, and let then \(x^{k'}_i \) and \(y^{k'}_i \) be two sequences such that \(\lambda_i \left[y^{(k+1)'}_i, x^{(k+1)'}_i \right] \leq \alpha, \quad 0 \leq \alpha \leq 1, \quad \text{for } k(1-\alpha) \text{ of the } k \text{ i's}. \) Then,

\[
|m_o(z^{k'}_i(y^{k'}_i)) - m_o(z^{k'}_i(x^{k'}_i))| \leq \alpha c^* + \lambda_i \alpha c^* = \alpha c^*(1 + \lambda_i)
\]

and given, \(x^{k'}_i \), given \(\epsilon_1 > 0 \), there exists \(\alpha_1 > 0 \), such that,

\[
\{ \# j : g_j(y^{(k+1)'}_j, x^{(k+1)'}_j) > \alpha_1 \} < k \alpha_1 \quad \text{implies},
\]

\[
|p_{\alpha_1}(z^{k'}_i(y^{k'}_i)) - p_{\alpha_1}(z^{k'}_i(x^{k'}_i))| < \epsilon_1 \quad \forall i \quad (A.21)
\]

Similarly, given \(x^{k'}_i \), given \(\epsilon_2 > 0 \), there exists \(\delta_2 > 0 \) and \(\delta_3 > 0 \), such that,
\[\gamma \left(x_{j+1}^{g_1}, y_{j+1}^{g_1} \right) < \delta_2 \ \text{implies} \ \min \left[1, \frac{\lambda_j}{a_{j,i}(y_j^{g_1})} \right] \leq \lambda_{j, \text{overc}}(y_j^{g_1}) \ | \epsilon < \epsilon_2 \quad (A.22) \]

\[\gamma \left(x_{j+1}^{g_1}, y_{j+1}^{g_1} \right) < k\delta_3 \ \text{and} \ \gamma \left(x_{j+1}^{g_1}, y_{j+1}^{g_1} \right) < \delta_3 \]

imply, \[\min \left[1, \frac{\lambda_j}{a_{j,i}(y_j^{g_1})} \right] p_{a_j}(z_j^{x_j^{g_1}}(y_j^{g_1})) - \min \left[1, \frac{\lambda_j}{a_{j,i}(y_j^{g_1})} \right] p_{a_j}(z_j^{x_j^{g_1}}(y_j^{g_1})) \ | \epsilon < \epsilon_2 \quad (A.23) \]

Given \(x_j^{g_1} \), let now \(y_j^{g_1} \) be such that:

\[\gamma \left(y_{j+1}^{g_1}, x_{j+1}^{g_1} \right) > \alpha \leq k\alpha \ \text{for some} \ \alpha \ \text{such that} \ \alpha < \min(\delta_2, \delta_3) \]

Then,

\[1 q_{i_j}^{g_1}(x_j^{g_1}) - q_{i_j}^{g_1}(y_j^{g_1}) \ | \leq k^{l-1} \sum_{j=0}^{k-1} \min \left[1, \frac{\lambda_j}{a_{j,i}(x_j^{g_1})} \right] - \min \left[1, \frac{\lambda_j}{a_{j,i}(y_j^{g_1})} \right] \]

\[+ k^{-1} \sum_{j=0}^{k-1} \min \left[1, \frac{\lambda_j}{a_{j,i}(y_j^{g_1})} \right] p_{a_j}(z_j^{x_j^{g_1}}(y_j^{g_1})) - \min \left[1, \frac{\lambda_j}{a_{j,i}(y_j^{g_1})} \right] p_{a_j}(z_j^{x_j^{g_1}}(y_j^{g_1})) \ | \epsilon \leq 2(1-\alpha)\epsilon_2 + 2\alpha \quad (A.24) \]

From (A.24) we finally conclude that given \(x_j^{g_1} \), given \(\epsilon > 0 \), there exists \(\alpha > 0 \), such that,

\[\gamma \left(y_{j+1}^{g_1}, x_{j+1}^{g_1} \right) > \alpha \ \text{implies} \]

\[1 q_{i_j}^{g_1}(x_j^{g_1}) - q_{i_j}^{g_1}(y_j^{g_1}) \ | < \epsilon \ ; \ \forall j. \]

Proof of Theorem 2

Let us define,

\[q_{i_j}^{g_1}(x_j^{g_1}) = \left[1 - \min \left[1, \frac{\lambda_j}{a_{j,i}(y_j^{g_1})} \right] \right] f_a(x) + \min \left[1, \frac{\lambda_j}{a_{j,i}(y_j^{g_1})} \right] f_a(x_j^{g_1}(y_j^{g_1})) \quad (A.25) \]

Then,

34
\[q_j^*(x,y^k_l) = k^{-1} \sum_{j=0}^{k-1} q_j(x,y^k_l) \] \hspace{1cm} (A.26)

If \(D_{l,k}(f,v_{l,k}^*) \) denotes the mean difference-squared distortion induced by \(v_{l,k}^* \) at the density \(f \), then,

\[
\lim_{M \to \infty} D_{l,k}(f,v_{l,k}^*) = k^{-1} \sum_{j=0}^{k-1} D_{l,j}^0(f,v_{l,k}^*)
\] \hspace{1cm} (A.27)

where,

\[
D_{l,j}^0(f,v_{l,k}^*) = E_{\mu_2} \left(X^2 - 2(1-\delta) \int dx f_{o}(x) \left[\int_{R^d} dy_1^k f_0(y_1^k) m_o(y_1^k) q_j^*(x,y_1^k) \right] \right.
\]

\[
\left. + (1-\delta)^2 \int dx f_{o}^{-2}(x) \left[\int_{R^d} dy_1^k f_0(y_1^k) m_o(y_1^k) q_j^*(x,y_1^k) \right] \right] \] \hspace{1cm} (A.28)

Due to (A.27), we conclude that the influence function induced by \(v_{l,k}^* \) is the average of the influence functions induced by the operations \(\{q_j^*, 0 \leq j \leq k-1\} \). Also, if \(\mu_{i,j}^* \) denotes the breakdown point of the operation \(q_j^* \), then the breakdown point of \(v_{l,k}^* \) is bounded from below by \(\min_{0 \leq j \leq k-1} \mu_{i,j}^* \). From (A.28), and due to the boundness of the vector, \(z^k_l(y^k_l) \), we now conclude that there exists some positive constant, \(d^* \), such that \(\mu_{i,j}^* \geq d^* \lim_{M \to \infty} \zeta_{l,1}^* \); \(V_j \). If \(I_{l,j}(f_o,z,q_j^*) \) denotes the influence function of the operation \(q_j^* \) at the nominal source, we also conclude that there exists some finite constant, \(e^* \), such that, \(I_{l,j}(f_o,z,q_j^*) \leq e^* \lim_{M \to \infty} I_{l,1}(f_o,z,v_{l,1}^*) \). The Theorem easily follows from the above, where \(\lim_{M \to \infty} I_{l,1}(f_o,z,v_{l,1}^*) \) is given by (72) and \(\lim_{M \to \infty} \zeta_{l,1}^* \) is given by (73).

Proof of Lemma 5
For \(q^*(x, y^k) \) as in (70), we clearly have,

\[
-H_{\mu_1(v, \mu)} \geq \int_{\mathbb{R}^d} dy^k f_{\theta}(y^k) \int_{\mathbb{R}} dx q^*(x, y^k) \ln q^*(x, y^k)
\]

(A.29)

For \(q^*(x, y^k) \) as in (A.25), and due to the convexity of the logarithmic function, we have,

\[
\int_{\mathbb{R}} dx q^*(x, y^k) \ln q^*(x, y^k) = k^{-1} \sum_{j=0}^{k-1} \int_{\mathbb{R}} dx q_j^*(x, y^k) \ln q^*(x, y^k) \geq
\]

\[
k^{-2} \sum_{j=0}^{k-1} \sum_{i=0}^{k-1} \int_{\mathbb{R}} dx q_j^*(x, y^k) \ln q_i^*(x, y^k)
\]

(A.30)

Also,

\[
\int_{\mathbb{R}} dx q_j^*(x, y^k) \ln q_i^*(x, y^k) = \left[1 - \min \left(1, \frac{\lambda_i}{a_{j,i}(y^k)} \right) \right] \int_{\mathbb{R}} dx q_j^*(x, y^k) \ln q_i^*(x, y^k)
\]

\[
+ \min \left(1, \frac{\lambda_i}{a_{j,i}(y^k)} \right) \int_{\mathbb{R}} dx q_j^*(x, y^k) \ln q_j^*(x, y^k) \geq
\]

\[
\left[1 - \min \left(1, \frac{\lambda_i}{a_{j,i}(y^k)} \right) \right] \left[1 - \min \left(1, \frac{\lambda_i}{a_{j,i}(y^k)} \right) \right] \int_{\mathbb{R}} dx q_j^*(x, y^k) \ln q_j^*(x)
\]

\[
+ \left[1 - \min \left(1, \frac{\lambda_i}{a_{j,i}(y^k)} \right) \right] \min \left(1, \frac{\lambda_i}{a_{j,i}(y^k)} \right) \int_{\mathbb{R}} dx q_j^*(x, y^k) \ln q_j^*(x, y^k)
\]

\[
+ \min \left(1, \frac{\lambda_i}{a_{j,i}(y^k)} \right) \left[1 - \min \left(1, \frac{\lambda_i}{a_{j,i}(y^k)} \right) \right] \int_{\mathbb{R}} dx q_j^*(x, y^k) \ln q_j^*(x)
\]

\[
+ \min \left(1, \frac{\lambda_i}{a_{j,i}(y^k)} \right) \min \left(1, \frac{\lambda_i}{a_{j,i}(y^k)} \right) \int_{\mathbb{R}} dx q_j^*(x, y^k) \ln q_j^*(x, y^k)
\]

(A.31)

Let us define,

\[
g_{j,i}(y^k) \Delta \min \left(1, \frac{\lambda_i}{a_{j,i}(y^k)} \right)
\]

(A.32)
Then, from (A.31), and for \(r_0 \) and \(\rho_m \) as in the proof of Lemma 3, we obtain:

\[
\int_{\mathbb{R}} q^*(x, y_k^I) \ln q^*(x, y_k^I) \geq -\frac{1}{2} \left[g_{k,i}(y_k^I) g_{k,i}(y_k^I) + \left[1 - g_{k,i}(y_k^I) \right] \left[1 - g_{k,i}(y_k^I) \right] \right]
- \frac{1}{2} \left[1 - g_{k,i}(y_k^I) \right] \ln 2\pi r_0^2 - \frac{1}{2} g_{k,i}(y_k^I) \ln 2\pi \rho_k^2 - \frac{1}{2\rho_k^2} [r_0^2 + m_0^2(\mathbf{z}_k^A(y_k^I))] g_{k,i}(y_k^I) - \frac{1}{2\rho_k^2} [r_0^2 + m_0^2(\mathbf{z}_k^A(y_k^I))] g_{k,i}(y_k^I) \\
+ \frac{1}{2} \left(\frac{r_0^2}{\rho_k^2} + \frac{\rho_k^2}{r_0^2} + \left[\frac{1}{\rho_k^2} + \frac{1}{r_0^2} \right] m_0^2(\mathbf{z}_k^A(y_k^I)) \right) g_{k,i}(y_k^I) g_{k,i}(y_k^I) \quad (A.33)
\]

Define,

\[
G_{k,i}(y_k^I) = k^{-1} \sum_{j=0}^{k-1} g_{j,i}(y_k^I) \quad (A.34)
\]

From (A.30) and (A.33), we then obtain:

\[
\int_{\mathbb{R}} q^*(x, y_k^I) \ln q^*(x, y_k^I) \geq -\frac{1}{2} \left[G_{k,i}(y_k^I) \right] - \frac{1}{2} \left[1 - G_{k,i}(y_k^I) \right]^2 \\
- \frac{1}{2} \left[1 - G_{k,i}(y_k^I) \right] \ln 2\pi r_0^2 - \frac{1}{2} G_{k,i}(y_k^I) \ln 2\pi \rho_k^2 - \frac{1}{2\rho_k^2} [r_0^2 + m_0^2(\mathbf{z}_k^A(y_k^I))] G_{k,i}(y_k^I) \\
- \frac{1}{2} \left[\sigma_0^2 + \rho_k^2 m_0^2(\mathbf{z}_k^A(y_k^I)) \right] G_{k,i}(y_k^I) \\
- \frac{1}{2} \left[\sigma_0^2 + r_0^2 m_0^2(\mathbf{z}_k^A(y_k^I)) \right] G_{k,i}(y_k^I) \\
+ \frac{1}{2} \left[\sigma_0^2 + \sigma_k^2 + \rho_k^2 (1 + \sigma_0^2) m_0^2(\mathbf{z}_k^A(y_k^I)) \right] G_{k,i}(y_k^I)
\]
\[-\frac{1}{2}[1 + \ln(2\pi \rho_{kl}^2)] + [1 - G_{k,l}(y_{A}^{\lambda})] \ln \sigma_{kl}\]

\[-\frac{1}{2} G_{k,l}(y_{A}^{\lambda}) [1 - G_{k,l}(y_{A}^{\lambda})] \sigma_{kl}^2 + \alpha_k^2 + \rho_{kl}^2 (1 + \sigma_{kl}^2) m_0^2 (z_I^{\lambda}(y_{A}^{\lambda})) - 2\] \hspace{1cm} (A.35)

where,

\[\sigma_{kl} \triangleq \sigma_{kl}^0 \cdot \rho_{kl}\] \hspace{1cm} (A.36)

Applying (A.35) to (A.29) we obtain the result.
REFERENCES

DISTRIBUTION LIST

Copy No.

1 - 6 Air Force Office of Scientific
 Research/NM
 Building 410
 Bolling Air Force Base
 Washington, D.C. 20332-6448
 Attention: Major Brian W. Woodruff, NM

7 - 8 Dr. P. Kazakos, EE

9 Dr. R. J. Mattauch, EE

10 - 11 E. H. Pancake, Clark Hall

12 SEAS Publications Files
END DATE
FILMED
JAN
1988