STRONG REPRESENTATION OF WEAK CONVERGENCE (U)

AFOSR-TR-87-1354

UNCLASSIFIED

F49620-85-C-0144
The following result is proved. If \(S_n \) is a separable metric space for \(n \leq \infty \), \(\phi_n : \),

\(S_n \rightarrow S_\infty \) is measurable for \(n \leq \infty \), \(X_n \) is an \(S_n \)-valued random variable for \(n \leq \infty \) and \(\phi_n (X_n) \rightarrow X_\ast \) in \(S_\ast \), then there exist \(S_n \)-valued random variables \(X_n' \) such that \(X_n = X_n' \) for \(n \leq \infty \) and \(\phi_n (X_n') \rightarrow X_\ast' \) w.p.1. Conditions on \(S_n \) and \(\phi_n \) are presented that allow a construction in the context of Polish spaces.
STRONG REPRESENTATION OF WEAK CONVERGENCE

by

Z.D. Bai
W.Q. Liang
and
W. Vervaat

Technical Report No. 186
June 1987
STRONG REPRESENTATION OF WEAK CONVERGENCE

Z.D. BAI

Center for Multivariate Analysis, 515 Thackeray Hall, University of Pittsburgh, Pittsburgh, PA 15260, USA

W.Q. LIANG

Center for Multivariate Analysis, 515 Thackeray Hall, University of Pittsburgh, Pittsburgh, PA 15260, USA

Wim VERVAAT

Department of Mathematics, Catholic University, Toernooiveld 5, 6525 ED Nijmegen, The Netherlands

The following result is proved. If S_n is a separable metric space for $n \leq \infty$, q_n: $S_n \rightarrow S_\infty$ is measurable for $n < \infty$, X_n is an S_n-valued random variable for $n \leq \infty$ and $q_n(X_n) \rightarrow_d X_\infty$ in S_∞, then there exist S_∞-valued random variables X'_n such that $X_n \rightarrow_d X'_n$ for $n \leq \infty$ and $q_n(X'_n) \rightarrow X'_\infty$ wpL. Conditions on S_n and q_n are presented that allow a construction in the context of Polish spaces.

AMS 1980 Subject Classification: Primary 60B10

Skorohod's representation theorem - strong representation of weak convergence

In this paper we prove the following variant of Skorohod's representation theorem for weak convergence. Equality in distribution is denoted by $=_d$, convergence in distribution by \rightarrow_d.

Theorem 1. Let S_n for $n = 1, 2, \ldots , \infty$ be a separable metric space and let q_n for $n = 1, 2, \ldots$ be a measurable function from S_n into S_∞. If X_n is an S_n-valued random variable for $n = 1, 2, \ldots , \infty$ and $q_n(X_n) \rightarrow_d X_\infty$ in S_∞, then there exist S_∞-valued random variables X'_n for $n = 1, 2, \ldots , \infty$ defined on one probability space and such that $X'_n =_d X_n$ in S_n for $n = 1, 2, \ldots , \infty$ and $q_n(X'_n) \rightarrow_d X'_\infty$ wpL in S_∞.
When $S_\infty = S$ (separable) and $\varrho_n = \text{id}_S$ for all n, then the above theorem specializes to Dudley's (1968) variant of Skorohod's representation theorem. In Skorohod's (1956) original version S was required to be complete as well. See Wichura (1971) and Blackwell & Dubins (1983) for further extensions. Our proof of the present theorem amounts to the construction of a special metric space T to which Dudley's theorem can be applied.

Theorem 1 turns out to be useful in many instances. It is applied in Bai (1984), Bai & Yin (1986) and Yin (1984). The need for these applications led the first two authors to the present research.

Here is the simplest example of a theorem that can be proved by Theorem 1, but not by the theorem of Skorohod-Dudley in its original form. It is Theorem 4.1 of Billingsley (1968), restricted to separable metric spaces:

Theorem 2. If S is a separable metric space with metric ϱ, (X_n, Y_n) are S^2-valued random variables for $n = 1, 2, \ldots$ and X is an S-valued random variable such that $X_n \to X$ in S and $\varrho(X_n, Y_n) \to 0$ in \mathbb{R}, then $Y_n \to X$ in S.

Proof. By Billingsley (1968, Th.4.4) we have $(X_n, \varrho(X_n, Y_n)) \to (X, 0)$ in $S \times \mathbb{R}$. Apply Theorem 1 with $S = S \times \mathbb{R}$, X_n, replaced by (X_n, Y_n) and $\varrho(x, y) = (x, \varrho(x, y))$, all for $n \leq \infty$.

Proof of Theorem 1. All statements involving n are supposed to hold for $n = 1, 2, \ldots, \infty$ unless restricted explicitly; limit statements without explicit tendency hold as $n \to \infty$. Let T be the disjoint union of all S_n. Let $T \to \{1, 2, \ldots, \infty\}$ be defined by $\delta(x) = n$ if $x \in S_n$. Set $\varrho_n := \text{id}_S$ and define $\varrho : T \to S_n$ by $\varrho(x) := \varrho_n(\chi)$. Let ϱ_n be the metric of S_n. Let δ_n be positive for $n \leq \infty$, decreasing to 0 as $n \to \infty$, and set $\delta := 0$. We now define what is going to be the metric on T:

$$\delta(x, y) = \begin{cases} \delta_n(\chi), & \text{if } \delta(x) = \delta(y), \\ \delta_n(\chi), & \text{if } \delta(x) \neq \delta(y). \end{cases}$$

Let us first verify that δ is indeed a metric. Obviously, $\delta(x, x) = \delta(x, x)$ and $\delta(x, x) = 0$. If $\delta(x, y) = 0$, then $\delta(x) = \delta(y)$ and $\varrho_n(\chi) = 0$, so $x = y$. The triangle inequality can be verified separately for both terms on the right-hand side of (1). We note the following properties of δ-convergence:

1. $\delta = \varrho$, on $S_n \times S_n$.
2. δ is ϱ_n-convergent for $n \leq \infty$.
3. If $x, y \in S_n$, then $\delta(x, y) \to 0$ as $k \to \infty$, if $\varrho_n(x, y) \to 0$ and $\varrho(x, y) \to 0$ as $k \to \infty$.
4. δ is ϱ_n-convergent for $n \leq \infty$.
5. If $x, y \in S_n$ for each $n \leq \infty$, then $x_n \to x$ if $x \in S_n$ and $\varrho_n(x_n) \to x$ in S_n.

Having established that T with δ is a separable metric space, we may apply Dudley's theorem to S-valued random variables. However, there is one more barrier to take. We want to identify S_n-valued random variables with T-valued random variables having range in S_n. In the first appearance random variables must be ϱ_n-measurable, where ϱ_n is the Borel field in S_n generated by ϱ_n. In the
second appearance they must be \mathcal{B}_n-measurable, where \mathcal{B}_n is the trace in S_n of \mathcal{B}, the Borel field in T generated by δ. So we must prove $\mathcal{B}_n = \mathcal{B}_n$.

From the second clause in (3) it follows that $S_n \subset \mathcal{B}_n$. For the converse inclusion we must do a little more. First note that \mathcal{B} is already generated by the open δ-balls in T, since δ is separable. This can be phrased equivalently by stating that \mathcal{B} is the smallest σ-field in T which makes the functions $\delta(x, \cdot)$ measurable for all $x \in T$. Consequently, \mathcal{B}_n is the smallest σ-field in S_n which makes the functions $\delta(x, \cdot)$, restricted to S_n, measurable for all $x \in T$. First suppose $y \in S_n$. Then $\delta(x, y) = q_n(q(x, y)) + \varepsilon_n$, for $x \in T$, $y \in S_n$, which, as a function of x, is obviously \mathcal{B}_n-measurable. So $\mathcal{B}_n \subset \mathcal{B}$.

We now write down the scheme of implications that proves the theorem. We are given S_n-valued random variables X_n such that

(1) $q_{n}(X_n) \to Y_n$ in S_n.

The major point to be proved below is that this implies

(7) $X_n \to Y_n$ in T.

By Dudley's theorem there are T-valued random variables Y_n, defined on one probability space, such that $Y_n \equiv_{d} X_n$ in T and $Y_n \to Y_n$ in T. By (4) we have $S_n \subset \mathcal{B}_n$ for each n, so there is a measurable function $f_n : T \to S_n$ such that the restriction of f_n to S_n is the identity map on S_n; take f_n to be the identity map on S_n and constant on $T S_n$. Set $X_n := f_n Y_n$. Then X_n has range in S_n, and $X_n = Y_n$ in T. Since $\mathbb{P}[Y_n \in S_n] = \mathbb{P}[X_n \in S_n] = 1$, and $X_n \equiv_{d} X_n$, it follows that $X_n \equiv_{d} X_n$ in T. As X_n has range in S_n, this implies $X_n \equiv_{d} X_n$ in S_n. From $X_n \equiv_{d} Y_n$ in T and $Y_n \to Y_n$ in T we obtain $X_n \to Y_n$ in T. As X_n has range in S_n, this implies by (5)

$$q_n(X_n) \to Y_n \text{ wp1 in } S_n.$$

We have arrived at all conclusions of the theorem.

It remains to prove the implication (6) \Rightarrow (7). We will interpret (6) and (7) by convergence of probability distributions on continuity sets, so we must compare the boundaries under \mathcal{B}_n and \mathcal{B}_n. By (2) we have for $A \subset T$,

$$Z_n(A \cap S_n) = Z_n(A \cap S_n) = Z_n(A).$$

Let $B(x, r) := \{y \in T : \delta(x, y) < r \}$ and set

$$\mathcal{B} := \{B(x, r) : r > 0, x \in S_n \} \cup \{\emptyset, T\},$$

and let \mathcal{B} consist of the unions of finitely many elements of \mathcal{B}. By Billingsley (1968, Corollary 2 on p. 15) it is sufficient for (7) that

$$\mathbb{P}[X_n \in A] \to \mathbb{P}[X_n \in A] \text{ for } A \subset \mathcal{B}.$$

If $B(x, \varepsilon) \in \mathcal{B}$ with $\delta(x, \varepsilon) < \varepsilon$, then $B(x, \varepsilon) = S_{n+1}$, so $\mathbb{P}[X_n \in B(x, \varepsilon)] = 0$ unless $n \geq \delta(x, \varepsilon)$. If $B(x, \varepsilon) \in \mathcal{B}$ with $\varepsilon < \varepsilon$, then
\[X_n \in B(x, r) \] = [q_n(x, q_n(x_n)) < r - \varepsilon_n] = [q_n(X_n) \in B(x, r - \varepsilon_n) \cap S_x]. \]

So

(11) \[\{q_n(X_n) \in B(x, r) \cap S_x \} \subset \liminf \{X_n \in B(x, r)\} \subset \limsup \{X_n \in B(x, r)\} \]

\[\subset \{q_n(X_n) \in B(x, r) \cap S_x\}. \]

By (6), (8) and (9) the outmost sides of (11) have equal probabilities. Combining the previous observations for separate \(B(x, r) \in V \) we arrive at (11) with \(A \in \mathcal{A} \) instead of \(B(x, r) \in V \), again with equal probabilities for the outmost sides. This proves (10), hence (7). The proof of the theorem is complete.

Remarks. In general the space \(T \) is not complete under \(\delta \), even if all \(S_n \) are under \(q_n \). To see this, consider the case that all \(x_n (n < x) \) lie in \(S_m \) for one fixed \(m \). Then \((x_n) \) is \(\delta \)-Cauchy iff \(\lim \{x_n\}_n \) is \(q_m \times q_m \)-Cauchy. If the latter holds, then \(\{(x_n, q_m(x_n))\} \) converges in \(S_m \times S_m \), but not necessarily in graph \(q_m \), unless the latter is closed. This combined with the observation that \(\delta \)-Cauchy sequences \(\{x_n\}_n \) with \(x_n \in S_n \) converge if \(S_n \) is \(q_n \)-complete leads us to the following result.

Theorem 3. Let \(S_n \) be separable and \(q_n \)-complete for each \(n \). Then \(T \) is \(\delta \)-complete if graph \(q_n \) is closed in \(S_n \times S_n \) for each \(n \).

It is well-known that graph \(q_n \) is closed if \(q_n \) is continuous, and that \(q_n \) is continuous if graph \(q_n \) is closed and \(S_n \) is compact. Using the fact that a subset of a Polish space is Polish if it is \(G_\delta \) (Dugundji (1966, Th XIV.8.3)), we arrive at the following variation on Theorem 3.

Theorem 4. Let \(S_n \) be Polish for each \(n \). Then \(T \) is Polish if graph \(q_n \) is \(G_\delta \) in \(S_n \times S_n \) for each \(n \).

For results on real functions with \(G_\delta \) graphs, see van Rooij & Schikhof (1982, Exerc. 11.Y.Z). Functions of the first class of Baire (pointwise limits of continuous functions) have \(G_\delta \) graphs. \(F_\sigma \) graphs are also \(G_\delta \).

Acknowledgment. Thomas M. Liggett has contributed to our discussions about this proof.
Strong representation of weak convergence

References

END DATE FILMED DEC. 1987