ON TWO METHODS OF IDENTIFYING INFLUENTIAL SETS OF OBSERVATIONS (U) CALIFORNIA UNIV RIVERSIDE DEPT OF STATISTICS S GHOSH FEB 07 TR-152 AFOSR-TR-87-1244

UNCLASSIFIED AFOSR-87-0048 F/G 12/3 NL
In this paper two new measures are proposed to identify influential sets of observations at the design state in view of prediction and fitting. A relationship is established between one of proposed measures and the Cook’s measure at the inference stage.
ON TWO METHODS OF IDENTIFYING INFLUENTIAL SETS OF OBSERVATIONS*

by

Subir Ghosh

Department of Statistics
University of California
Riverside, California 92521

In this paper two new measures are proposed to identify influential sets of observations at the design stage in view of prediction and fitting. A relationship is established between one of proposed measures and the Cook's measure at the inference stage.

AMS 1970 Subject Classifications: Primary and Secondary 62J05, 62K15

Short Running Title: Identifying Influential Observations

Keywords and Phrases: Cook's Measure, Design, Influential Observations, Linear Models, Robustness, Unavailable Observations.

* The work of the author is sponsored by the Air Force Office Of Scientific Research under Grant AFOSR-87-0048.
1. **Introduction**

A set of observations under a design is said to be influential in this paper if the set affects not only the fitting of the model to the data but also the prediction in terms of the fitted model. In the problem of identifying sets of \(t \) (a positive integer) influential observations, we assume the underlying design is robust against the unavailability of any \(t \) observations [Chosh (1979)]. We first explain this concept by considering the standard linear model

\[
E(y) = X\beta, \tag{1}
\]

\[
V(y) = \sigma^2 I, \tag{2}
\]

\[
\text{Rank } X = p, \tag{3}
\]

where \(y(N \times 1) \) is a vector of observations, \(X(N \times p) \) is a known matrix, \(\beta(p \times 1) \) is a vector of fixed unknown parameters and \(\sigma^2 \) is a constant which may or may not be known. Let \(d \) be the underlying design corresponding to \(y \). The design \(d \) is assumed to be robust against the unavailability of any \(t \) observations in the sense that the parameters in \(\beta \) are still unbiasedly estimable when any \(t \) observations in \(y \) are unavailable. There are \(\binom{N}{t} \) possible sets of \(t \) observations. The idea of robustness of designs against unavailability of data is fundamental in measuring the influence of a set of observations.

We first measure the influence of a set of \(t \) observations by assuming the observations in the set unavailable and then calculating the sum of variances of their predicted values from the remaining \((N-t) \) observations. The largest value of the sum indicates the corresponding set of \(t \) observations is the most influential in terms of precise
prediction of unavailable observations. We also measure the influence of a set of t observations by assuming them unavailable and then calculating the sum of squares of the elements of the covariance matrix between the least squares fitted values of the remaining (N-t) observations and a complete set of orthonormal linear functions of y with zero expectations. The largest value of the sum of squares indicates the corresponding set of t observations is the most influential.

The importance of knowing the influential set of observations at the design stage is that (1) we can assess the influence of a set of unavailable observations in the planned analysis, (2) in the case of deficit of budget during a long term experiment using the robust design where it may be a good idea not to collect observations which are least influential.

2. First Method

We denote the ith set of t observations in y by \(y^{(i)}_2 \); and the remaining observations in y by \(y^{(i)}_1 \); the corresponding submatrices of X by \(X^{(i)}_2 \) and \(X^{(i)}_1 \); the resulting design when t observations in the ith set are unavailable by \(d^{(i)} \), i=1, ..., (N). The least squares estimators of \(\beta \) under \(d \) and \(d^{(i)} \) are \(\hat{\beta}_d = (X'X)^{-1}X'y \) and \(\hat{\beta}_d^{(i)} = (X_1^{(i)}X_1^{(i)})^{-1}X_1^{(i)}y^{(i)}_1 \).

We write the fitted values of y under \(d \) and \(d^{(i)} \) as \(\hat{y}_d = \hat{\beta}_d \) and \(\hat{y}_d^{(i)} = \hat{X}_d^{(i)}\hat{\beta}_d^{(i)} \). When t observations in the ith set are unavailable, the predicted values of unavailable observations \(\hat{y}_2^{(i)} \) from available observations are the elements in \(\hat{X}_2^{(i)} = X_2^{(i)} \hat{\beta}_d^{(i)} \). The reliability of these estimators can be judged by \(V(\hat{y}_2^{(i)}) = \sigma^2X_2^{(i)}(X_1^{(i)}X_1^{(i)})^{-1}X_2^{(i)} \). The first measure of influence of \(y_2^{(i)} \) is defined as
I_1(y_2^{(i)}) = \text{Trace } V(y_2^{(i)}). \quad (4)

The smallest value of I_1(y_2^{(i)}), i=1,\ldots,^N_t, for i=u, indicates that the uth set of t observations is the least influential in terms of precise prediction of unavailable observations. On the other hand the largest value of I_1(y_2^{(i)}), i=1,\ldots,^N_t, for i=w, indicates the wth set of t observations is the most influential.

We denote B^{(i)}_1 = I_t + X_2^{(i)}(X_1^{(i)}')X_1^{(i)}X_1^{(i)}(X_1^{(i)})^{-1}X_2^{(i)}'. It can be checked that

\[B^{-1}_1 = I_t - X_2^{(i)}(X'X)^{-1}X_2^{(i)}', \quad (5) \]

\[\hat{\beta}_d^{(i)} - \hat{\beta}_d = (X'X)^{-1}X_2^{(i)}B_1^{(i)}X_2^{(i)} \hat{\beta}_d - y_2^{(i)}, \quad (6) \]

\[E(X_2^{(i)} \hat{\beta}_d - y_2^{(i)})(X_2^{(i)} \hat{\beta}_d - y_2^{(i)})' = \sigma^2 B^{-1}_1. \quad (7) \]

We denote the ith observations in \(y \) by \(y_i \) and the ith row in \(X \) by \(x_i \), \(i=1,\ldots,N \).

Theorem 1 For any design.

\[\sigma^{-2} I_1(y_2^{(i)}) \geq \sum_{i \in \{i_1,\ldots,i_t\}} \frac{x_i'(X'X)^{-1}x_i}{1 - x_i'(X'X)^{-1}x_i}, \quad (8) \]

where the \(i_1,\ldots,i_t \) rows of \(X \) are rows of \(X_2^{(i)} \).

Proof. It follows from \(B_1^{(i)} \) and \(B^{-1}_1 \) given in (5) that for \(i = 1,\ldots,i_t \),

\[1 + x_i'(X_1^{(i)}X_1^{(i)})^{-1}x_i \geq \frac{1}{1 - x_i'(X'X)^{-1}x_i}, \]

i.e.,

\[x_i'(X_1^{(i)}X_1^{(i)})^{-1}x_i \geq \frac{x_i'(X'X)^{-1}x_i}{1 - x_i'(X'X)^{-1}x_i}. \]

The rest is easy.
Theorem 2 If for a design, the individual observations are equally influential then

\[I_1(y_1) = \frac{p\sigma^2}{(N-p)} \]

(Proof.) When the individual observations are equally influential, \(I_1(y_1) \) is a constant independent of \(i \) for \(t=1 \) and thus \(x_1^{(1)} = x_1 \) and \(x_1' (x_1^{(1)})' x_1^{(1)} x_1 \) is a constant independent of \(i \). This in turn implies from (5) that for \(t=1 \), \(x_1' (X'X)^{-1} x_1 \) is a constant independent of \(i \). We know trace \(X (X'X)^{-1} x_1 = p \) and thus \(x_1' (X'X)^{-1} x_1 = \frac{p}{N} \). From (5), we get \(x_1' (x_1^{(1)})' x_1^{(1)} x_1 = \frac{p}{N} \) and hence the result.

Theorem 3 If for a design, the individual observations are equally influential, then

\[I_1(x_2^{(1)}) \geq \frac{p\sigma^2 t}{(N-p)} \]

(Proof.) For \(t=1 \) and equally influential individual observations, \(x_1' (X'X)^{-1} x_1 = \frac{p}{N} \) and hence the result in (10) follows from (8).

From (9) and (10), we observe that for a design with equally influential individual observations \(I_1(y_1^{(1)}) \geq t I_1(y_1) \).

3. **Second Method**

Let \(Z((N-p)xN) \) be a matrix such that \(\text{Rank } Z = (N-p) \), \(ZX = 0 \) and \(ZZ' = I \). It can be seen that \(\text{Cov}(\hat{y}_d, z_y) = 0 \). This implies that \(\hat{y}_d \) has the minimum variance within the class of all unbiased estimators of \(E(y_d) \) under (1-3). When \(t \) observations in the \(i \)th set are unavailable, the least squares fitted values are \(\hat{\gamma}_1^{(1)} = x_1^{(1)} \hat{\beta}(1) \). We denote the submatrices of \(Z \) corresponding to \(x_1^{(1)} \) and \(x_2^{(1)} \) by \(Z_1^{(1)} \) and \(Z_2^{(1)} \). It follows that \(\text{Cov}(\hat{y}_1^{(1)}, z_y) = \sigma^2 [x_1^{(1)}(x_1^{(1)})' x_1^{(1)}) x_1^{(1)} z_1^{(1)}] \). The
further \(\text{Cov}(\hat{\beta}_1^{(i)}, Z Y) \) is away from the null matrix, the more influential is the set of \(t \) observations \(y_2^{(i)} \). We thus have the second measure of influence as
\[
I_2(y_2^{(i)}) = \sigma^{-2} \left[\text{Sum of squares of elements in } \text{Cov}(\hat{\beta}_1^{(i)}, Z Y) \right].
\]
(11)

We now show some similarities between our two measures of influence \(I_1(y_2^{(i)}) \) and \(I_2(y_2^{(i)}) \).

Theorem 4 The following is true for \(i=1, \ldots, \binom{N}{t} \),
\[
V(Z_1^{(i)} \chi_1^{(i)}) = V(Z_2^{(i)} \chi_2^{(i)}).
\]

Proof. We observe that \(Z_1^{(i)} x_1^{(i)} + Z_2^{(i)} x_2^{(i)} = 0 \) and hence
\[
V(Z_1^{(i)} \chi_1^{(i)}) = \sigma^2 Z_1^{(i)} (x_1^{(i)}) (x_1^{(i)})' \chi_1^{(i)} = \sigma^2 Z_2^{(i)} (x_2^{(i)}) (x_2^{(i)})' \chi_2^{(i)} = V(Z_2^{(i)} \chi_2^{(i)}).
\]

Theorem 5 The following is true.
\[
I_2(y_2^{(i)}) = \text{Trace } V(Z_2^{(i)} \chi_2^{(i)}).
\]
(13)

Proof. It can be seen that
\[
I_2(y_2^{(i)}) = \sigma^2 \text{Trace } x_1^{(i)} (x_1^{(i)}) (x_1^{(i)})' - x_1^{(i)} (x_1^{(i)})' Z_1^{(i)} (x_1^{(i)}) (x_1^{(i)})' x_1^{(i)}' x_1^{(i)}' x_1^{(i)}
\]
\[
= \sigma^2 \text{Trace } Z_1^{(i)} (x_1^{(i)}) (x_1^{(i)})' - x_1^{(i)} (x_1^{(i)})' Z_1^{(i)}
\]
\[
= \text{Trace } V(Z_1^{(i)} \chi_1^{(i)})
\]
\[
= \text{Trace } V(Z_2^{(i)} \chi_2^{(i)})
\]

Corollary We have
\[
I_2(y_2^{(i)}) = \text{Trace } [V(\hat{\chi}_2^{(i)})][Z_2^{(i)}]' Z_2^{(i)}].
\]
(14)

The equation (13) displays the similarity between two measures of influence \(I_1(y_2^{(i)}) \) and \(I_2(y_2^{(i)}) \). Although the matrix \(Z \) is not unique, it can be checked that \(I_2(y_2^{(i)}) \) is unique for all choices of the matrix \(Z \).
4. **Relationship**

Cook (1977) proposed a distance function between \(\hat{y}_d \) and \(\hat{y}_{d(1)} \), popular as Cook's distance, at the inference stage as

\[
D_1 = \frac{(\hat{y}_{d(1)} - \hat{y}_d)'(\hat{y}_{d(1)} - \hat{y}_d)}{ps_d^2}, \tag{15}
\]

where \((N-p)s_d^2 = (y - \hat{y}_d)'(y - \hat{y}_d)\). The Cook's distance \(D_1\) measures the degree of influence of \(t\) observations in the \(ith\) set on the estimation of \(\beta\). We now show that our first measure of influence \(I_1(y_2^{(i)})\) is in fact related to \(D_1\).

Theorem 6 From (4) and (15), we have

\[
E(ps_d^2D_1) = I_1(y_2^{(i)}). \tag{16}
\]

Proof. We get from (6)

\[
(\hat{y}_{d(1)} - \hat{y}_d)'(\hat{y}_{d(1)} - \hat{y}_d) = (x_2^{(i)} \beta - y_2^{(i)})'(B_{(i)} - B_{(i)})(x_2^{(i)} \beta - y_2^{(i)}).
\]

It now follows from (7), (15) and (17) that

\[
E(ps_d^2D_1) = \sigma^2 \text{Trace } (B_{(i)} - I_t)
= \sigma^2 \text{Trace } x_2^{(i)}(x_1^{(i)})'(x_1^{(i)})^{-1}x_2^{(i)}
= I_1(y_2^{(i)}).
\]

This completes the proof.

5. **Examples**

Consider a \(2^4\) factorial experiment in a completely randomised set up and suppose the elements in \(\beta\) are the general mean, the main effects and the 2-factor interactions. The 3-factor and higher order interactions are assumed to be zero. Thus \(p=11\). The treatments are denoted by \((x_1 x_2 x_3 x_4), x_i = 0, 1, i = 1, 2, 3, 4\). For brevity, we indicate a treatment by the
positions where the level 1 is occurring. For example, the treatment (1100) is denoted by 12. The treatment (0000) is denoted by 0.

Design I

Consider a design with 15 treatments and we write the treatments in the order (0,1,2,3,4,12,13,14,23,24,34,123,124,134,234). Note that the elements in y, the rows of X and the columns of Z correspond to this ordering. The matrix Z is given below

$$Z = \begin{pmatrix} 4a & -3a & -3a & -3a & 2a & 2a & 2a & 2a & -a & -a & -a & -a \\ 0 & 1 & -1 & 1 & -1 & 0 & -2 & 0 & 0 & 2 & 0 & 1 & -1 & 1 & -1 \\ 0 & 1 & -1 & -1 & 1 & 0 & 0 & -2 & 2 & 0 & 0 & -1 & 1 & 1 & -1 \\ 0 & 1 & 1 & -1 & -1 & -2 & 0 & 0 & 0 & 0 & 2 & 1 & 1 & -1 & -1 \end{pmatrix},$$

where $a = (1/\sqrt{5})$. The design is robust against the unavailability of any two observations [Ghosh (1979)].

Table I

Influences of Individual Observations Under Design I

<table>
<thead>
<tr>
<th>Observations</th>
<th>$\sigma^{-2} I_1$</th>
<th>$\sigma^{-2} I_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>y_1</td>
<td>4.000</td>
<td>.800</td>
</tr>
<tr>
<td>$y_{1, i=2,\ldots, 11}$</td>
<td>2.333</td>
<td>.700</td>
</tr>
<tr>
<td>$y_{1, i=12,\ldots, 15}$</td>
<td>4.000</td>
<td>.800</td>
</tr>
</tbody>
</table>
Table II

Influences of Pairs of Observations Under Design I

<table>
<thead>
<tr>
<th>Observations</th>
<th>$\sigma^{-2}I_1$</th>
<th>$\sigma^{-2}I_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(y_{1},y_{1}){i=2,\ldots,15};(y{2},y_{15})$;</td>
<td>11.333</td>
<td>1.500</td>
</tr>
<tr>
<td>$(y_{3},y_{14});(y_{5},y_{12});(y_{6},y_{4})_{i=2,13}$;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$(y_{7},y_{4}){i=12,14};(y{8},y_{1})_{i=13,14}$;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$(y_{9},y_{1}){i=12,15};(y{10},y_{1})_{i=13,15}$;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$(y_{11},y_{1})_{i=14,15}$;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$(y_{1},y_{1}){i=6,\ldots,11};(y{2},y_{1})_{i=12,13,14}$;</td>
<td>8.000</td>
<td>1.500</td>
</tr>
<tr>
<td>$(y_{3},y_{1}){i=12,13,15};(y{4},y_{1})_{i=12,14,15}$;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$(y_{5},y_{1}){i=13,14,15};(y{6},y_{1})_{i=14,15}$;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$(y_{7},y_{1}){i=13,15};(y{8},y_{1})_{i=12,15}$;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$(y_{9},y_{1}){i=13,14};(y{10},y_{14})$;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$(y_{11},y_{1})_{i=12,15}$;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$(y_{1},y_{1})_{i=12,\ldots,15}$;</td>
<td>8.667</td>
<td>1.600</td>
</tr>
<tr>
<td>$(y_{12},y_{1})_{i=13,14,15}$;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$(y_{13},y_{1})_{i=14,15}$;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(y_{14},y_{15})</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table II (Continued)

Influences of Pairs of Observations Under Design I

<table>
<thead>
<tr>
<th>Observations</th>
<th>$\sigma^{-2}I_1$</th>
<th>$\sigma^{-2}I_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(y_2, y_4)_{i=3,4,5,9,10,11}$</td>
<td>4.857</td>
<td>1.400</td>
</tr>
<tr>
<td>$(y_3, y_4)_{i=4,5,7,8,11}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$(y_4, y_4)_{i=5,6,8,10}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$(y_5, y_4)_{i=6,7,9}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$(y_6, y_4)_{i=7,8,9,10}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$(y_7, y_4){i=8,9,11}; (y_8, y_4){i=10,11}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$(y_9, y_4){i=10,11}; (y{10}, y_{11})$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$(y_2, y_4){i=6,7,8}; (y_3, y_4){i=6,9,10}$</td>
<td>10.000</td>
<td>1.400</td>
</tr>
<tr>
<td>$(y_4, y_4)_{i=7,9,11}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$(y_5, y_4)_{i=8,10,11}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$(y_6, y_{11}), (y_7, y_{10})$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$(y_8, y_9), (y_{10}, y_{12})$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

We find that under Design I, any of $y_i, i=2, ..., 11$ is the least influential w.r.t. both I_1 and I_2. Any pair of observations with $\sigma^{-2}I_1$ equals 11.333 is the most influential w.r.t. I_1. On the other hand, any pair of observations with $\sigma^{-2}I_2$ equals 1.600 is the most influential w.r.t. I_2. The variability in values of I_2 is so small that it is very hard to assess the influence w.r.t. I_2 under this design.
We consider a complete 2^4 factorial experiment with treatments written in the order (1234, 0, 1, 2, 3, 4, 12, 13, 14, 23, 24, 34, 123, 124, 134, 234). The matrix Z is as follows:

$$Z = \begin{bmatrix}
1 & 1 & -1 & -1 & -1 & 1 & 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 & -1 & -1 \\
0 & 0 & 1 & -1 & 1 & -1 & 0 & -2 & 0 & 0 & 2 & 0 & 1 & -1 & 1 & -1 \\
0 & 0 & 1 & -1 & -1 & 1 & 0 & 0 & -2 & 2 & 0 & 0 & -1 & 1 & 1 & -1 \\
0 & 0 & 1 & 1 & -1 & -1 & -2 & 0 & 0 & 0 & 0 & 2 & 1 & 1 & -1 & -1 \\
2 & -2 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & -1 & -1 & -1
\end{bmatrix}$$

This design is robust against the unavailability of any three observations [Chosh (1979)]. It can be checked that $I_1(y_i) = 2.2a^2$ and $I_2(y_i) = (.6875)a^2$ for $i=1,\ldots,16$. Thus the individual observations are equally influential w.r.t. both I_1 and I_2. For any pair of observations corresponding to treatments with zero or three levels in common, the value of σ^2I_1 is 8.000. For every other pair of observations, the value of σ^2I_1 is 4.667. We therefore see the validity of the equation (10) in Theorem 3 for this example since $2I_1(y_i) = 4.4a^2$. The value of σ^2I_2 for any pair of observations is a constant 1.375. The remark on I_2 for Design I also holds for Design II.
REFERENCES

END

12 - 87

DTIC