ON THE CONVERGENCE OF THE P-VERSION OF THE BOUNDARY ELEMENT GALERKIN METHOD
MARYLAND UNIV BALTIMORE COUNTY CATONSVILLE DEPT OF MATHEMATICS
STEPHAN ET AL 14 JUL 87 F/G 12/1 NL
We consider various physical problems which may be formulated in terms of integral equations of the first kind, including the two-dimensional screen Neumann and Dirichlet problems in acoustics (and crack problems in elasticity). Sharp regularity results for the solutions are available for these problems. We prove the convergence of the p-version for some Galerkin boundary element schemes based on the integral equation formulations. It is shown that the rate of convergence obtained by our method is twice that for the usual h-version.
Section 1. Introduction

Over the last ten years there has been a spectacular increase on research and applications of boundary element techniques. There has been an explosion of books as well as a series of International Conferences [10], specially dedicated to boundary element methods (BEM). The state of the art of asymptotic error estimates of the h-version for BEM is described in several detailed articles (see for example [24], [25]). There the theoretical framework for both first-kind and second-kind integral equations is the theory of pseudodifferential operators. As observed in [21] one has for strongly elliptic pseudodifferential operators convergence of any Galerkin scheme with conforming boundary elements; also there holds quasioptimality of the Galerkin error in the energy norm.

Almost all work on BEM has been performed with the h-version, where the degree p of the elements is fixed, usually on low level, typically $p = 0, 1, 2$ and the accuracy is achieved by properly refining the mesh. Only recently the p-version has been introduced into the BEM [1], [2], [3], [26]. The p-version fixes the mesh and achieves the
accuracy by increasing the degrees p of the elements uniformly or selectively. In the finite element method (FEM) the convergence of the p-version has been thoroughly investigated for one- and two-dimensional boundary value problems in a series of papers by Babuška and others [4], [5], [6], [7], [12]. Meanwhile convergence results have also been derived for the h-p version of the finite element method which is a combination of the standard h-version and the p-version [4], [8], [13], [14].

In this paper, we prove the convergence of the p-version for some Galerkin boundary element schemes which use first-kind integral equations. In Section 2 we introduce the function spaces and corresponding norms used later on. In Section 3.1 we show that the rate of convergence of the p-version is an optimal one in the $H^{1/2}$ and $H^{-1/2}$-norms generalizing known results for H^1 and L^2-norms. In Sections 3.2, 3.3 we approximate singular functions by the p-version in the $\tilde{H}^{1/2}$ and $\tilde{H}^{-1/2}$-norms and we derive convergence rates which are twice the rate of the h-version with uniform mesh. In Section 4 we apply the approximation results of Section 3 to the Galerkin BEM for several integral equations which are strongly elliptic pseudodifferential equations. As examples, we consider the two-dimensional screen Neumann and Dirichlet problems in acoustics where sharp regularity results for the solutions are available [22], [23]. Furthermore, we give first-kind boundary integral equations
governing the exterior Dirichlet and Neumann problems of the three-dimensional Helmholtz equation and we present the convergence rates for the p-version of the corresponding boundary element Galerkin schemes.
Section 2. Notation

Let \(\tilde{T} \) be a simply connected, bounded, smooth, closed curve in \(\mathbb{R}^2 \) and \(\Gamma \) be a connected subset of \(\tilde{T} \). By \(C^k(\tilde{T}) \), \(0 < k < \infty \) (\(k \) integer), we denote the space of all functions with continuous derivatives of order up to \(k \) on \(\tilde{T} \). The Sobolev spaces \(H^s(\tilde{T}) \) are defined for \(s \geq 0 \) to be the restrictions of \(H^{s+1/2}(\mathbb{R}^2) \) to \(\tilde{T} \) and for \(s < 0 \) by duality,

\[
H^s(\tilde{T}) = (H^{-s}(\tilde{T}))',
\]

with \(H^0(\tilde{T}) = L^2(\tilde{T}) \). These spaces are used to define the corresponding spaces of distributions on \(\Gamma \), namely, for any real \(s \),

\[
\tilde{H}^s(\Gamma) = \{ u \in H^s(\tilde{T}) : \text{supp } u \subset \tilde{T} \}
\]

\[
H^s(\Gamma) = \{ u|_\Gamma : u \in H^s(\tilde{T}) \}.
\]

The above spaces are normed as follows. For \(u \) defined on \(\Gamma \), let \(\delta u \) denote any extension of \(u \) on \(\tilde{T} \) and \(u^* \) denote the zero extension of \(u \) on \(\tilde{T} \). Then

\[
\|u\|_{H^s(\Gamma)} = \|u^*\|_{H^s(\tilde{T})}
\]

(2.1)

\[
\|u\|_{\tilde{H}^s(\Gamma)} = \inf \{ \|\delta u\|_{H^s(\tilde{T})} : \delta u \in H^s(\tilde{T}) \}
\]

(2.2)

Note that for \(s > 1/2, s \neq \text{integer } + 1/2 \), \(\tilde{H}^s(\Gamma) \) is the usual \(H^s(\Gamma) \) space and for \(-1/2 < s < 1/2 \), \(\tilde{H}^s(\Gamma) = H^s(\Gamma) \). For \(s < -1/2, s \neq \text{integer } + 1/2 \), \(\tilde{H}^s(\Gamma) = (H^{-s}(\Gamma))' \). We will be
particularly interested in the cases \(s = 1/2 \) and \(s = -1/2 \).

For \(s = 1/2 \), the space \(H^{1/2}(\Gamma) \) is also denoted by \(H_{\infty}^{1/2}(\Gamma) \), with the equivalent norm (see [18])

\[
\|u\|_{H^{1/2}(\Gamma)}^2 = \|u\|_{H_{\infty}^{1/2}(\Gamma)}^2 + \|(1-x^2)^{-1/2} u\|_{H^0(\Gamma)}^2
\]

where for simplicity, we have assumed \(\Gamma = (-1,+1) \) (the general case can be treated by affine maps) and \(x \) denotes the arc length. In terms of duality, the following relations hold

\[
H^{-1/2}(\Gamma) = (H^{1/2}(\Gamma))^*, \quad \tilde{H}^{-1/2}(\Gamma) = (\tilde{H}^{1/2}(\Gamma))^*.
\]

Let \(\tilde{\Gamma} \) be of length \(2\pi \), then \(H^s(\tilde{\Gamma}) \) may be considered to be spaces of \(2\pi \)-periodic functions. For \(u \in H^s(\tilde{\Gamma}) \), we may then write

\[
u(t) = \sum_{j=0}^{\infty} a_j \cos j\psi + \sum_{j=1}^{\infty} b_j \sin j\psi
\]

so that the \(H^s(\tilde{\Gamma}) \) norm may be equivalently defined by

\[
\|u\|_{H^s(\tilde{\Gamma})} \leq \left[\sum_{j=0}^{\infty} a_j^2 (1+j^2)^s + \sum_{j=1}^{\infty} b_j^2 (1+j^2)^s \right]^{1/2}
\]

For \(I \) a smooth open arc, we will define \(P_p(I) \) to be the set of all algebraic polynomials of degree less than or equal to \(p \) in \(s \), the arc length parameter. \(P_{\infty}(I) \) will denote the subset of polynomials vanishing at the end points of \(I \).

Let us now subdivide \(\tilde{\Gamma} \) into \(N \) pieces, \(\tilde{\Gamma} = \bigcup_{i=1}^{N} \Gamma_i \), such that \(\Gamma_i \) is a smooth open arc with end points \(\Lambda_{i-1}, \Lambda_i \) \((\Lambda_0 = \Lambda_N) \). Then for \(p \geq 0 \), \(S_p(\tilde{\Gamma}) \) will denote the set of all functions \(u \) defined on \(\tilde{\Gamma} \) such that the restriction \(u|_{\Gamma_i} \) to \(\Gamma_i \)
belongs to \(P_\Gamma \). Moreover, we set for \(p \geq 1 \),
\[V_p(\vec{\Gamma}) = S_p(\vec{\Gamma}) \cap C^0(\vec{\Gamma}). \]

We may assume that \(\Gamma \) may be partitioned analogously and define \(S_p(\Gamma) \), \(V_p(\Gamma) \) as above. Then \(S^0_p(\Gamma) \), \(V^0_p(\Gamma) \) will denote the subsets of functions that vanish at the end points of \(\Gamma \).

Note that \(S_p(\vec{\Gamma}) \) (\(S_p(\Gamma) \)) is a subset of \(H^{-1/2}(\vec{\Gamma}) \) (\(H^{-1/2}(\Gamma) \)) while \(V_p(\vec{\Gamma}) \) (\(V_p(\Gamma) \)) is a subset of \(H^{1/2}(\vec{\Gamma}) \) (\(H^{1/2}(\Gamma) \)) and \(V^0_p(\Gamma) \) is a subset of \(\tilde{H}^{1/2}(\Gamma) \).

So far we have dealt with the one-dimensional case.

We will also be interested in a simply connected, bounded, smooth, closed surface \(\vec{\Gamma} \subset \mathbb{R}^3 \). The definitions of \(H^S(\vec{\Gamma}) \) are analogous to the previous case. We now assume that \(\vec{\Gamma} \) is partitioned into curvilinear quadrilaterals and triangles, i.e., \(\vec{\Gamma} = \bigcup_{i=1}^{n} \vec{\Gamma}_i \). Let \(Q \) and \(T \) be the reference square and triangle respectively, then \(\Gamma_i = F_i(Q) \) or \(F_i(T) \), where \(F_i \) is a smooth bijective mapping. We assume that the intersection of any two disjoint \(\Gamma_i \)'s is either the empty set or a common vertex or a common side.

By \(P^1_p(T) \) we will denote the set of all polynomials of total degree \(< p \) on the triangle \(T \). \(P^2_p(Q) \) will denote the set of all polynomials of degree \(< p \) in each variable on \(Q \).

We define
\[S_p(\vec{\Gamma}) = \{ u | u |_{\Gamma_i} (F_i(T)) \in P^1_p(T) \text{ if } \Gamma_i \text{ is a triangle and} \]
\[u |_{\Gamma_i} (F_i(T)) \in P^2_p(Q) \text{ if } \Gamma_i \text{ is a quadrilateral} \} \quad (2.6) \]

and \(V_p(\vec{\Gamma}) = S_p(\vec{\Gamma}) \cap C^0(\vec{\Gamma}) \). \quad (2.7)
Section 3. Approximation Theorems

In this section, we will be interested in obtaining estimates for the approximation of functions in $H^S(\Gamma)$, $\tilde{H}^S(\Gamma)$ and $H^S(\Gamma)$ by piecewise polynomials belonging to the polynomial subspaces introduced in the previous section.

3.1. Approximation of Functions in H^S

We first present some results for the case when u, the function being approximated is known to lie in H^S. These will be used by us in the next section for approximating problems on closed curves and closed surfaces.

In what follows, Γ will denote either a closed curve or a closed surface.

Theorem 3.1. Let $\gamma = \tilde{\Gamma}$ or Γ. Let $u \in H^S(\gamma)$, $s > 1/2$. Then for $p = 1, 2, \ldots$, there exists $u_p \in V_p(\gamma)$ such that

$$
\|u - u_p\|_{H^{1/2}(\gamma)} \leq C_p^{-1} \|u\|_{H^S(\gamma)} (3.1)
$$

where the constant C is independent of u and p but depends on s and the partition on γ. Moreover, for $u \in \tilde{H}^S(\Gamma)$,

$$
\|u - u_p\|_{H^{1/2}(\Gamma)} \leq C_p^{-1} \|u\|_{\tilde{H}^S(\Gamma)} \log^{1/2} p (3.2)
$$

Proof. The estimate (3.1) follows by interpolating the approximation estimates for the p-version obtained in the H^0 and H^1 norm (see [6]). In [7], an alternative proof (for closed curves) using Chebyshev expansions is provided in Theorem 3.2. Moreover, (3.2) is also proved in this theorem, the procedure
being similar to our proof of Theorem 3.3 in Section 3.2.

The above theorem provides estimates for the error of the best approximation in the $H^{1/2}$ and $H^{1/2}$ norms. The next theorem provides estimates in the $H^{-1/2}$ norm. It has been proved in [9] for γ being a closed curve and it is included here for completeness.

Theorem 3.2. Let $\gamma = \Gamma$ or Γ, $u \in H^s(\gamma)$, $s > 0$. Then for $p = 0, 1, 2, \ldots$ there exists $u_p \in V_p(\gamma)$ such that

$$
\|u - u_p\|_{H^{-1/2}(\gamma)} \leq C_p^{-s+1/2} \|u\|_{H^s(\gamma)}
$$

(3.3)

where C is a constant independent of u and p but depends upon s and the grid on γ.

Proof. Let $u_p \in V_p(\gamma)$ satisfy

$$
\int_{\gamma_p} \omega \, d\xi = \int_{\gamma} \omega \, d\xi \quad \text{for all } \omega \in V_p(\gamma).
$$

(3.4)

Then, with $e = u - u_p$, we have (see [13])

$$
\|e\|_{H^0(\gamma)} \leq C_p^{-s} \|u\|_{H^s(\gamma)}
$$

(3.5)

Now, for arbitrary $v \in H^1(\gamma)$, we have by (3.4),

$$
\int_{\gamma} e v \, d\xi = \int_{\gamma_p} e(v - y) \, d\xi \quad \text{for all } \omega \in V_p(\gamma)
$$

(3.4)

$$
\|v\|_{H^1(\gamma)} \leq \|v\|_{H^1(\gamma)} \leq C_p^{-1} \|e\|_{H^0(\gamma)}
$$

where $y \in V_p(\gamma)$ satisfies

$$
\|v - y\|_{H^0(\gamma)} \leq C_p^{-1} \|v\|_{H^1(\gamma)}
$$
This yields

$$||e||_{H^1(\gamma)} \leq C_p^{-s+1} ||u||_{H^s(\gamma)}$$ \hspace{0.5cm} (3.6)

Interpolating (3.5), (3.6) and using the fact that

$$\tilde{H}^{-1/2}(\gamma) = (H^{1/2}(\gamma))' = (H^0(\gamma), H^1(\gamma))_{1/2}$$

$$= (H^1(\gamma))', H^0(\gamma))_{1/2}$$

we obtain (3.4).

Remark 3.1. For $\gamma = \Gamma$, we have $\tilde{H}^k(\Gamma) = H^k(\Gamma)$. For $\gamma = \Gamma$, we have $\|\cdot\|_{H^{-1/2}(\Gamma)} \leq \|\cdot\|_{\tilde{H}^{-1/2}(\Gamma)}$. Hence, in either case, (3.3) yields

$$\|u-u_p\|_{H^{-1/2}(\gamma)} \leq C_p^{-s+1/2} ||u||_{H^s(\gamma)}$$ \hspace{0.5cm} (3.7)

Remark 3.2. Since $V_p(\gamma) \subset S_p(\gamma)$, we see that (3.3) and (3.7) also hold for some $u_p \in S_p(\gamma)$.

Remark 3.3. So far we have assumed that Γ and Γ are smooth. The above theorems may also be modified to the case when Γ and Γ are only piecewise smooth.

3.2. $\tilde{H}^{1/2}$ Approximation of Singular Functions

We are interested here in approximating functions that are defined on the curve Γ and have square root singularities at the end points. For simplicity, we consider a function u defined on $I = [-1, +1]$ by

$$u(x) = (x+1)^{1/2} \gamma(x)$$ \hspace{0.5cm} (3.8)
where χ is a C^∞ function satisfying

$$
\chi(x) = 1, \quad -1 \leq x < -1/2 \\
= 0, \quad 1/2 \leq x < 1
$$

We consider the approximation of u in the $H^{1/2}(I)$ norm by functions in $P_p(I)$.

Let $\hat{I} = [-\pi, \pi]$. (We may consider \hat{I} to be a closed circle.) Let u be transformed to the periodic function \hat{u} on \hat{I} by the mapping $x = \cos \xi$, i.e., $\hat{u}(\xi) = u(x)$. Then we see that

$$
\hat{u}(\xi) = (1 + \cos \xi)^{1/2} \chi(\cos \xi) = \sqrt{2} \chi(\cos \xi)(\cos(\xi/2)) \quad (3.9)
$$

The following lemma is taken from [7].

Lemma 3.1. $\|u\|_{H^{1/2}(I)} \approx \|\hat{u}\|_{H^{1/2}(\hat{I})}$ for any $u \in H^{1/2}(I)$.

The main theorem of this section is the following.

Theorem 3.3. Let u be defined by (3.8). Then for $p = 1, 2, \ldots$ there exists a polynomial u^0_p in $P_p(I)$ such that

$$
u^0_p(\pm 1) = u(\pm 1) \quad (3.10)
$$

and

$$
\|u - u^0_p\|_{H^{1/2}(I)} \leq C p^{-1} \log^{1/2} p \quad (3.11)
$$

Proof. We first consider the image \hat{u} of u, which (being even) may be written as

$$
\hat{u}(\xi) = \sum_{k=0}^\infty a_k \cos k\xi. \quad (3.12)
$$
Define

\[u^0_p := u_p + \tilde{u} \quad (3.13) \]

where \(u_p \) is defined by

\[u_p := \sum_{k=0}^{p} a_k \cos k\xi \quad (3.14) \]

and where \(\tilde{u} \) is a linear function such that \(u^0_p \) satisfies the condition (3.10), i.e., such that

\[\tilde{u}(\xi) = (u-u_p)(\xi) = (\tilde{u}-u_p)(\cos^{-1}(\xi)) \quad (3.15) \]

We now estimate the coefficients \(a_k \) in (3.12). We have

\[
\begin{align*}
a_k &= C \int_{0}^{\pi} \tilde{u} \cos k\xi \, d\xi = C \int_{0}^{\pi} \chi(\cos \xi) \cos(\xi) \cos k\xi \, d\xi \\
&= C \int_{0}^{\pi} \chi(\cos \xi) \{ \cos(\frac{2k+1}{2}\xi) + \cos(\frac{2k-1}{2}\xi) \} \, d\xi.
\end{align*}
\]

Here, \(C \) may represent different constants. Integrating by parts gives,

\[
\begin{align*}
a_k &= C \{ \chi(\cos \xi) \sin(\frac{2k+1}{2}\xi) \cdot \frac{1}{2k+1} + \sin(\frac{2k-1}{2}\xi) \cdot \frac{1}{2k-1} \} \sin(\xi) \\
&+ \int_{0}^{\pi} \chi'(\cos \xi) \sin \xi \{ \sin(\frac{2k+1}{2}\xi) \cdot \frac{1}{2k+1} + \sin(\frac{2k-1}{2}\xi) \cdot \frac{1}{2k-1} \} \, d\xi \\
&\leq C \left\{ \frac{1}{k^2} + \int_{0}^{\pi} \chi'(\cos \xi) \left[\cos(\frac{2k+1}{2}\xi) \frac{1}{2k+1} - \cos(\frac{2k-1}{2}\xi) \frac{1}{2k-1} \right] \, d\xi \left\} \right.
\end{align*}
\]

So that with \(\chi'(1) = 0 \) further integration by parts yields

\[
\begin{align*}
|a_k| &\leq C \left\{ \frac{1}{k^2} + \int_{0}^{\pi} \chi''(\cos \xi) \sin \xi \left[\frac{\sin(\frac{1}{2}\xi)}{(2k+1)(2k+3)} - \frac{\sin(\frac{1}{2}\xi)}{(2k+1)(2k-3)} \right] \, d\xi \right\} \\
&\leq C \left\{ \frac{1}{k^2} + \int_{0}^{\pi} \chi''(\cos \xi) \sin \xi \left[\frac{\sin(\frac{1}{2}\xi)}{(2k+1)(2k-1)} - \frac{\sin(\frac{1}{2}\xi)}{(2k+3)(2k-3)} \right] \, d\xi \right\} \\
&\leq C \left\{ \frac{1}{k^2} + \int_{0}^{\pi} \chi''(\cos \xi) \sin \xi \left[\frac{\sin(\frac{1}{2}\xi)}{(2k+1)(2k+3)} - \frac{\sin(\frac{1}{2}\xi)}{(2k+3)(2k+1)} \right] \, d\xi \right\}.
\end{align*}
\]
Now since χ'' and all the sine functions are bounded independent of k, we obtain

$$|a_k| \leq \frac{C}{k^2} \quad (3.16)$$

We now estimate $\|u-u_p\|_{H^{1/2}(I)}$. By Lemma 3.1, (2.5), (3.12), and (3.14), we have

$$\|u-u_p\|^2_{H^{1/2}(I)} = \|\hat{u}-\hat{u}_p\|^2_{H^{1/2}(I)} = C \sum_{k=p+1}^{\infty} a_k^2 (1+k^2)^{1/2} \leq C \frac{k}{p+1} \sum_{k=p+1}^{\infty} \frac{(1+k^2)^{1/2}}{k^4}$$

which behaves like $\int \frac{C}{p+1} \frac{dx}{x^2} = \frac{C}{p}$. Hence,

$$\|u-u_p\|_{H^{1/2}(I)} \leq \frac{C}{p} \quad (3.17)$$

Next, we estimate $\|\tilde{u}\|_{H^{1/2}(I)}$. Since \tilde{u} is linear,

$$\|\tilde{u}\|_{H^{1/2}(I)} \leq C \{ |u(1)| + |u(-1)| \} \quad (3.18)$$

Now for any x, by (3.12), (3.14),

$$|(u-u_p)_p(x)| \leq \sum_{k=p+1}^{\infty} |a_k| \leq \sum_{k=p+1}^{\infty} \frac{C}{k^2} \leq \frac{C}{p} \quad (3.19)$$

Using (3.15), (3.19), and (3.18), we see that

$$\|\tilde{u}\|_{H^{1/2}(I)} \leq \frac{C}{p} \quad (3.20)$$

which combined with (3.17) yields

$$\|u-u_p\|_{H^{1/2}(I)} \leq \frac{C}{p} \quad (3.21)$$
By (2.3), we know that

\[\| u - u_0 \|_{H^{1/2}(I)} \leq \| u - u_0 \|_{H^{1/2}(I)} + \| (1 - x^2)^{-1/2} (u - u_0) \|_{H^0(I)} \]

(3.22)

Hence we must bound the second term. We have

\[\int_{-1}^{1} (1 - x^2)^{-1} (u - u_0)^2 \, dx = \int_{1/p}^{\pi} \frac{1}{p} \int_{-1/p}^{1/p} \frac{1}{p} \int_{-1/p}^{1/p} \frac{1}{p} \int_{-1/p}^{1/p} (u - u_0)^2 (\sin \xi)^{-1} \, d\xi \]

(3.23)

Now \(\frac{1}{\sin \xi} \) is bounded on \([\frac{1}{p}, \pi - \frac{1}{p}]\). Hence, using (3.19)

\[\int_{1/p}^{\pi} \frac{1}{p} \int_{-1/p}^{1/p} (u - u_0)^2 (\sin \xi)^{-1} \, d\xi \leq \frac{C}{p} \int_{1/p}^{\pi} \frac{1}{p} \int_{-1/p}^{1/p} (\sin \xi)^{-1} \, d\xi \leq \frac{C}{p} \log p \]

(3.24)

Also, let \([a]\) denote the integral part of \(a\). Then it may be verified that with

\[\hat{u} := \sum_{j=\{\frac{p+2}{2}\}}^{\infty} a_{2j} + \sum_{j=\{\frac{p+1}{2}\}}^{\infty} a_{2j+1} \cos \xi \]

we obtain with (3.13)

\[\hat{u} - \hat{u}_0 = \sum_{j=\{\frac{p+2}{2}\}}^{\infty} a_{2j} (\cos 2j\xi - 1) + \sum_{j=\{\frac{p+1}{2}\}}^{\infty} a_{2j+1} (\cos (2j+1)\xi - \cos \xi) \]

which satisfies

\[(\hat{u} - \hat{u}_0) (\cos^{-1}(\xi)) = 0 \]

as required in (3.10). Hence,
\[(\hat{u} - \hat{u}_p^0)^2 \leq C(\sum_{j=\lfloor \frac{p+1}{2} \rfloor}^{\infty} a_{2j} \cos 2j\xi - 1)^2 \]

\[+ (\sum_{j=\lfloor \frac{p+1}{2} \rfloor}^{\infty} a_{2j+1} \cos(2j+1)\xi - \cos \xi))^2 \]

\[\leq C((\sum_{j=\lfloor \frac{p+2}{2} \rfloor}^{\infty} a_{2j} \sin^2 j\xi)^2 \]

\[+ (\sum_{j=\lfloor \frac{p+1}{2} \rfloor}^{\infty} a_{2j+1} \sin(j+1)\xi \sin j\xi)^2) \]

so that

\[\frac{1}{p} \int (\hat{u} - \hat{u}_p^0)^2 (\sin \xi)^{-1} d\xi \leq \frac{1}{p} \int (\sum_{j=\lfloor \frac{p+2}{2} \rfloor}^{\infty} a_{2j} \sin^2 j\xi)^2 (\sin \xi)^{-1} d\xi \]

\[+ \int (\sum_{j=\lfloor \frac{p+1}{2} \rfloor}^{\infty} a_{2j+1} \sin(j+1)\xi \sin j\xi)^2 (\sin \xi)^{-1} d\xi) \]

(3.25)

Now \(\sin j\xi \leq j\xi\), so that for any \(\varepsilon > 0\),

\[\sin^2 j\xi \leq \sin^\varepsilon j\xi \leq (j\xi)^{1-\varepsilon} \leq (j\xi)^\varepsilon \]

Hence, using (3.16), the first term on the right side of

(3.25) is bounded by

\[\frac{1}{p} \int (\sum_{j=\lfloor \frac{p+2}{2} \rfloor}^{\infty} a_{2j} \sin^2 j\xi)^2 (\sin \xi)^{-1} d\xi \]

\[\leq \frac{C}{p^{2(1-\varepsilon)}} \cdot p^{-2\varepsilon} = \frac{C}{p^2} \]

The second term may be similarly bounded, as may the term

\[\int (\hat{u} - \hat{u}_p^0)^2 (\sin \xi)^{-1} d\xi \]

\[\frac{1}{p} \int (\hat{u} - \hat{u}_p^0)^2 (\sin \xi)^{-1} d\xi \]

Using this with (3.23), (3.24) gives
\[\| (1-x^2)^{-1/2}(u-u_0) \|_{H^0(I)} \leq C \log^{1/2} \frac{1}{p} \]

which combined with (3.21)-(3.22) yields (3.11).

In Section 4 we will use Theorems 3.1 and 3.3 to bound the error made when a function that is smooth in the interior of \(\Gamma \) and behaves like (3.8) at the end points is approximated by functions in \(V_p(\Gamma) \).

3.3. \(\tilde{H}^{-1/2} \) Approximation of Singular Functions

In this section, we consider the approximation of functions \(u \) defined on \(I = [-1,+1] \) of the form

\[u(x) = (x+1)^{-1/2} \chi(x) \tag{3.26} \]

where \(\chi \) is as before. We are now interested in approximating \(u \) in the \(\tilde{H}^{-1/2}(I) \) norm by functions in \(P_p(I) \). To this end, we first prove the following lemma.

Lemma 3.2. Let \(f \in \tilde{H}^{-1/2}(I) \). Then \(f' \in \tilde{H}^{-1/2}(I) \) and

\[\| f' \|_{\tilde{H}^{-1/2}(I)} \leq C \| f \|_{\tilde{H}^{-1/2}(I)} \tag{3.27} \]

Proof. Let \(\psi \in C_0^\infty(I) \). Define \(\psi^* \) to be the extension by 0 of \(\psi \) to \(IR \). Then it may be easily seen that \(\psi'' = \psi^* \), so that

\[\| \psi' \|_{\tilde{H}^{-1/2}(I)} = \| \psi^* \|_{\tilde{H}^{-1/2}(\mathbb{R})} = \| \psi^* \|_{\tilde{H}^{-1/2}(\mathbb{R})} \leq C \| \psi^* \|_{\tilde{H}^{1/2}(\mathbb{R})} \leq C \| \psi \|_{\tilde{H}^{1/2}(I)} \leq C \| \psi \|_{\tilde{H}^{1/2}(I)} \tag{3.28} \]
since $\psi \in C_0^\infty(I)$. (The inequality (3.28) can be verified taking Fourier transforms, for instance.)

Now, let $f \in \dot{H}^{-1/2}(I)$. We use the following definition, from [11], for the $\dot{H}^{-1/2}(I)$ norm:

$$
\|f'\|_{\dot{H}^{-1/2}(I)} = \sup_{\psi \in C_0^\infty(I)} \frac{|\langle f', \psi \rangle|}{\|\psi\|_{L^2(I)}}^{1/2}.
$$

Hence with

$$
\langle f', \psi \rangle_{L^2(I)} = -\langle f, \psi' \rangle_{L^2(I)}
$$

We obtain

$$
\|f'\|_{\dot{H}^{-1/2}(I)} = \sup_{\psi \in C_0^\infty(I)} \frac{|\langle f, \psi' \rangle|}{\|\psi\|_{L^2(I)}}^{1/2} \leq \sup_{\psi \in C_0^\infty(I)} \frac{\|f\|_{\dot{H}^{1/2}(I)} \|\psi'\|_{\dot{H}^{-1/2}(I)}}{\|\psi\|_{L^2(I)}}^{1/2} \leq C \|f\|_{\dot{H}^{1/2}(I)}
$$

by (3.28). This proves the lemma.

With Lemma 3.2, we obtain the following analog to Theorem 3.3.

Theorem 3.4. Let u be defined by (3.26). Then there exists a polynomial u_p in $P_p(I)$ such that

$$
\|u-u_p\|_{\dot{H}^{-1/2}(I)} \leq C p^{-1} \log^{1/2} p.
$$

(3.29)
Proof. Let
\[w = \int_{-1}^{1} u \, dx = 2(x+1)^{1/2} \chi(x) - 2 \int_{-1}^{1} (x+1)^{1/2} \chi'(x) \, dx = w_1 + w_2. \]

By Theorem 3.3, there exists \(v_{p}^{1} \in P_{p}(I) \) satisfying
\[\|w_1 - v_{p}^{1}\|_{H^{1/2}(I)} \leq Cp^{-1} \log^{1/2} p. \]

Also, since \(\chi(x) \) is smooth, \(w_2 \) lies in \(H^{2-\epsilon} \) for any \(\epsilon > 0 \).

Applying Theorem 3.1, there exists \(v_{p}^{2} \in P_{p}(I) \) satisfying
\[\|w_2 - v_{p}^{2}\|_{H^{1/2}(I)} \leq Cp^{-(2-\epsilon - 1/2)} \log^{1/2} p \|w_2\|_{H^{2-\epsilon}(I)} \leq Cp^{-1} \log^{1/2} p. \]

Taking \(v_{p} = v_{p}^{1} + v_{p}^{2} \), we have
\[\|w - v_{p}\|_{H^{1/2}(I)} \leq Cp^{-1} \log^{1/2} p. \]

Finally, using Lemma 3.2 and taking \(u_{p} = v_{p}' \), we obtain (3.29).
Section 4. The p-Version for Boundary Elements

Before we apply the approximation results of Section 3 to the Galerkin solutions of some integral equations of the first kind, let us recall some basic facts on the Galerkin method. The key to the error analysis of Galerkin's method is the following result by Hildebrandt and Wienholtz [15] (see also [11], [21]).

Lemma 4.1. Let H be a Hilbert space with dual H' (not necessarily identified with H) and let A be injective and continuous from H into H' satisfying a Garding inequality. Let $u \in H$ denote the solution of

$$ Au = f \quad (4.1) $$

where $f \in H'$ and let $u_N \in S_N \subset H$ denote the solution of the Galerkin equations

$$ <Au_N,v> = <f,v> \quad \text{for all } v \in S_N \subset H. \quad (4.2) $$

Furthermore let for any $\phi \in H$ there exists $\phi_N \in S_N$ with

$$ \phi = \lim_{N \to \infty} \phi_N \text{ in } H. $$

Then for N large enough the Galerkin equations (4.2) are uniquely solvable and there holds with a constant C independent of u, u_N and N the error estimate

$$ ||u-u_N|| < C \inf \{ ||u-v_N|| : v_N \in S_N \} \quad (4.3) $$

where $||\cdot||$ denotes the norm in H.

Next we list several boundary value problems which can
be reduced to strongly elliptic integral equations, i.e.,
the corresponding integral operators satisfy a Gårding
inequality in appropriate Sobolev spaces. Therefore, due
to Lemma 4.1, the corresponding boundary element Galerkin
methods converge and the quasioptimality (4.3) holds leading
together with the approximation results of Section 3 to
error estimates for the p-version.

The Neumann screen problem in acoustics describes the
scattering of a plane wave at a hard obstacle Γ. Here Γ is
given by an oriented open arc being a finite piece of a
smooth curve in \mathbb{R}^2. The orientation defines the normal
vector n pointing to the side Γ_2 (see Fig. 1). The opposite
side of Γ will be denoted by Γ_1. The scattering problem
leads to the problem: \textit{Find the pressure amplitude field}
$u \in H^1_{\text{loc}}(\Omega_\Gamma)$ satisfying
\[(\Delta + k^2)u = 0 \text{ in } \Omega_\Gamma = \mathbb{R}^2 \setminus \Gamma \]
\[\frac{\partial u}{\partial n}|_{\Gamma_1} = g_1, \quad \frac{\partial u}{\partial n}|_{\Gamma_2} = g_2 \]

Here $k \neq 0$, $\text{Im} \, k > 0$ and $g_1, g_2 \in H^{-1/2}(\Gamma)$ are given with
$g := g_1 - g_2 \in H^{-1/2}(\Gamma)$. In addition, we require the
Sommerfeld radiation condition
\[\frac{\partial u}{\partial r} - iku = o(r^{-1/2}) \text{ and } u = o(r^{-1/2}) \text{ as } r = |x| \to \infty. \quad (4.5) \]

From [23] we know that for $\text{Im} \, k > 0$, $k \neq 0$ the problem (4.4),
(4.5) has no eigensolutions and furthermore it can be
reduced to a hypersingular integral equation on Γ.
Theorem 4.1 [23]. Let \(g_1, g_2 \) and \(k \) be given as above. Then there holds: (i) \(u \in H^1_{\text{loc}}(\Omega_T) \) solves (4.4), (4.5) if and only if the jump \(\{u\}_\Gamma \in \tilde{H}^{1/2}(\Gamma) \) satisfies the integral equation

\[
D\{u\}(z) := -2f[u](\zeta) \\frac{\partial^2}{\partial n_z \partial n_\zeta} \phi(z, \zeta) d\zeta = f(z), \quad z \in \Gamma (4.6)
\]

with

\[
f(z) := g_1(z) + g_2(z) + 2f(g_1(\zeta) - g_2(\zeta)) \frac{\partial}{\partial n_z} \phi(z, \zeta) d\zeta (4.7)
\]

where

\[
\phi(z, \zeta) := -\frac{i}{4} H_0^{(1)}(k|z-\zeta|) (4.8)
\]

and \(H_0^{(1)} \) is the Hankel function of the first kind and order zero. (ii) There exists exactly one solution \(\psi \in \tilde{H}^{1/2}(\Gamma) \), \(\psi = \{u\}_\Gamma \) solves (4.6).

The proof of the assertion (ii) in [23] hinges on the fact that \(D \) is a strongly elliptic pseudodifferential operator of order 1. Therefore there exists a constant \(\gamma_1 > 0 \) and a compact mapping \(C_1 : \tilde{H}^{1/2}(\Gamma) \to \tilde{H}^{-1/2}(\Gamma) \) such that

\[
\Re \langle (D+C_1)\psi, \psi \rangle_{L^2(\Gamma)} \geq \gamma_1 \|\psi\|_{\tilde{H}^{-1/2}(\Gamma)}^2 (4.9)
\]

for every \(\psi \in \tilde{H}^{1/2}(\Gamma) \). This yields that \(D \) is a Fredholm operator of index zero, and the bijectivity of \(D \) follows therefore from its injectivity which is guaranteed by the above assumptions on the wave number \(k \). Note that the assumptions on \(g_1, g_2 \) imply \(f \in \tilde{H}^{-1/2}(\Gamma) \).
Using localization and Mellin transformation Stephan
and Wendland derive in [23] the following explicit regularity
result for the solution of (4.6) near the end points z_1, z_2
of Γ.

Lemma 4.2 [23]. For $0 < \sigma < 1/2$ let $q_j \in H^{1/2+\sigma}(\Gamma)$, $j = 1, 2$, be given. Then the solution $[u]|_\Gamma \in \tilde{H}^{1/2}(\Gamma)$ of the integral
equation (4.6) has the form

$$[u]|_\Gamma = \frac{2}{\pi} \sum_{i=1}^{2} \alpha_i \rho_i^{1/2} \chi_i + v_0 \text{ with } v_0 \in \tilde{H}^{3/2+\sigma}(\Gamma), \alpha_i \in \mathbb{R}. \quad (4.10)$$

Here ρ_i denotes the Euclidean distance between $z \in \Gamma$ and the
end point z_i of Γ. χ_i is a C^∞-cut-off function with
$0 \leq \chi_i \leq 1$ and $\chi_i = 1$ near to z_i, $\chi_i = 0$ at the opposite
end point, $i = 1, 2$.

The p-version Galerkin method for the hypersingular
integral equation (4.6) reads: Find $v_p \in V_p^0(\Gamma)$ such that
with $f \in H^{-1/2}(\Gamma)$ given by (4.7) for all $\phi_p \in V_p^0(\Gamma)$ there
holds

$$\langle Dv_p, \phi_p \rangle_{L^2(\Gamma)} = \langle f, \phi_p \rangle_{L^2(\Gamma)} \quad (4.11)$$

Here $V_p^0(\Gamma)$ denotes the set of continuous, piecewise
polynomials of degree $\leq p$ which vanish at the end points
of Γ as introduced in Section 2. Note $V_p^0(\Gamma) \subset \tilde{H}^{1/2}(\Gamma)$.
There holds the following convergence result for the Galerkin
scheme (4.11).
Theorem 4.2. Let p be sufficiently large. Then the Galerkin equations \((4.11)\) are uniquely solvable and for the error between the exact solution $[u]_\Gamma \in \tilde{H}^{1/2}(\Gamma)$ of \((4.6)\) and the Galerkin solution $v_p \in V_p^0(\Gamma)$ we have
\[||[u] - v_p||_{\tilde{H}^{1/2}(\Gamma)} \leq C p^{-1} \log^{1/2} p \] \((4.12)\)
where the constant C is independent of p.

Proof. We observe that the operator D in \((4.6)\) fulfills the requirements on A in Lemma 4.1 with $H := \tilde{H}^{1/2}(\Gamma)$, and $H = H^{-1/2}(\Gamma)$ since D satisfies the Gårding inequality \((4.9)\) and D is bijective from $\tilde{H}^{1/2}(\Gamma)$ onto $H^{-1/2}(\Gamma)$ due to Theorem 4.2. On the other hand $\{V_p^0(\Gamma)\}$ is a sequence of approximating subspaces of $\tilde{H}^{1/2}(\Gamma)$ as $p \to \infty$ and therefore $V_p^0(\Gamma)$ is a candidate for the subspace S_N in Lemma 4.1 with p instead of N. Thus the convergence of the p-version for the Galerkin procedure \((4.11)\) is an immediate consequence of Lemma 4.1. The rate of convergence in \((4.12)\) follows from the quasioptimality \((4.3)\) together with the regularity result \((4.10)\), where the approximation result \((3.11)\) is used to approximate the singular part in \((4.10)\) and Theorem 3.1 is used to approximate the regular part v_0.

Remark 4.1. (i) The decomposition \((4.10)\) shows that the exact solution $\psi = [u]_\Gamma$ of the integral equation \((4.6)\) belongs to $H^{1-\epsilon}(\Gamma)$ for any $\epsilon > 0$. Therefore the h-version of the Galerkin procedure for equation \((4.6)\) gives only an estimate of order $O(h^{1/2})$ for the Galerkin error, if a uniform mesh is used.

(ii) Application of the estimate \((3.2)\) to the quasioptimality
estimate (4.3) gives with $\psi \in H^{1-\varepsilon}(\Gamma)$

$$
\|\psi - \psi_p\|_{H^{1/2}(\Gamma)} \leq C_p^{-1/2+\varepsilon} \log^{1/2} p \|\psi\|_{H^{1-\varepsilon}(\Gamma)}.
$$

The better estimate (4.10) follows from Theorem 3.3.

The Dirichlet screen problem in acoustics describes the scattering of a plane wave at a soft obstacle Γ. With Γ being an open arc as introduced above the scattering problem becomes: Find the pressure amplitude field $u \in H^1_{\text{loc}}(\Omega_\Gamma)$ satisfying

$$(\Delta + k^2)u = 0 \text{ in } \Omega_\Gamma = \mathbb{R}^2 \setminus \Gamma, \quad u = g \text{ on } \Gamma$$

(4.13)

together with the radiation condition (4.5) for given $g \in H^{1/2}(\Gamma)$ and $k \neq 0, \text{Im } k > 0$.

We know from [22] that with the above restrictions on the wave number k the Dirichlet problem (4.13), (4.5) has no eigensolutions. Furthermore this Dirichlet problem can be reduced to a weakly singular integral equation on Γ [22].

Theorem 4.3 [22]. Let $g \in H^{1/2}(\Gamma)$ be given and $k \neq 0, \text{Im } k > 0$. Then there holds: (i) $u \in H^1_{\text{loc}}(\Omega_\Gamma)$ solves (4.13), (4.5) if and only if the jump $[\frac{\partial u}{\partial n}]_{\text{loc}} \in \tilde{H}^{-1/2}(\Gamma)$ satisfies the integral equation

$$V[\frac{\partial u}{\partial n}](z) := -2\int_{\Gamma} \frac{\partial u}{\partial n} (\zeta) \Phi(z, \zeta) d\sigma(\zeta) = 2g(z), \quad z \in \Gamma$$

(4.14)

where Φ is given in (4.8)

(ii) There exists exactly one solution $\psi \in \tilde{H}^{-1/2}(\Gamma)$, $\psi = [\frac{\partial u}{\partial n}]_{|\Gamma}$
of (4.14).

(iii) Let \(q \in H^{3/2+\sigma}(\Gamma), 0 < \sigma < 1/2 \), be given. Then with the notation of Lemma 4.2 the solution \(\frac{\partial u}{\partial n} \bigg|_\Gamma \in H^{-1/2}(\Gamma) \)

cf (4.14) has the form

\[
\frac{\partial u}{\partial n} \bigg|_\Gamma = \sum_{i=1}^{2} \alpha_i \chi_i + \psi_0 \quad \text{with } \psi_0 \in H^{1/2+\sigma}(\Gamma), \alpha_i \in \mathbb{R} \quad (4.15)
\]

The proof of assertion (ii) in [22] uses that the single layer potential operator \(\nabla \) is a strongly elliptic pseudodifferential operator of order \(-1\). Therefore there holds with a constant \(\gamma_2 \) and a compact operator

\(C_2: H^{-1/2}(\Gamma) \to H^{1/2}(\Gamma) \) the Garding inequality

\[
\text{Re}(\phi^* C_2 \phi)_{L^2(\Gamma)} > \gamma_2 \left\| \phi \right\|_{H^{-1/2}(\Gamma)}^2 \quad (4.16)
\]

for any \(\phi \in H^{-1/2}(\Gamma) \).

The decomposition (4.15) is obtained in [22] by localizing the weakly singular integral equation (4.14) and applying the Mellin transformation. The explicit form (4.15) of the solution near the end points \(z_i, i = 1, 2 \), allows us to derive optimal error estimates for the Galerkin solution.

The \(p \)-version Galerkin method for the weakly singular integral equation (4.14) reads: Find \(\psi_p \in S_p(\Gamma) \) such that with \(q \in H^{1/2}(\Gamma) \)

\[
\langle \nabla \psi_p, \phi_p \rangle = \langle 2q, \phi_p \rangle \quad \text{for all } \phi_p \in S_p(\Gamma) \quad (4.17)
\]

Here \(S_p(\Gamma) \) denotes the set of piecewise polynomials of degree
s p subordinate to a partitioning of \(\Gamma \) as introduced in Section 2. Note \(S_p(\Gamma) = \widetilde{H}^{-1/2}(\Gamma) \).

Theorem 4.4. Let \(p \) be sufficiently large. Then the Galerkin equations (4.17) are uniquely solvable and the error between the exact solution \(\psi \) of (4.14) and the Galerkin solution \(u_p \in S_p(\Gamma) \) of (4.17) satisfies

\[
\|u - u_p\|_{H^{-1/2}(\Gamma)} \leq C_p^{-1} \log^{1/2} p \tag{4.18}
\]

with a constant \(C \) independent of \(p \).

Proof. Due to the G\"{a}rding inequality (4.16) application of Lemma 4.1 yields for the choices \(A = V \) and \(H = \widetilde{H}^{-1/2}(\Gamma) \) with \(H' = H^{1/2}(\Gamma) \) the convergence of the Galerkin scheme (4.17).

Note that \(\{S_p(\Gamma)\} \) as introduced in Section 2 is a sequence of approximating subspaces for \(\widetilde{H}^{-1/2}(\Gamma) \) as \(p \to \infty \). The estimate (4.18) follows from the quasioptimality (4.3) together with the regularity result (4.15) where (3.29) is used to approximate the singular part in (4.15) and Theorem 3.2 is used to approximate the regular part \(\psi_0 \).

The **exterior Neumann (Dirichlet)** problem in acoustics describes the scattering of a plane wave at a hard (soft) obstacle \(\Omega \) being a bounded domain in \(\mathbb{R}^3 \). For simplicity we assume that the boundary \(\Gamma \) of \(\Omega \) is a closed, smooth, simply connected surface. Then the scattering problem leads to the problem: Find \(u \in H^1_{\text{loc}}(\mathbb{R}^3 \setminus \bar{\Omega}) \) satisfying

\[
(\Lambda + k^2)u = 0 \quad \text{in} \quad \mathbb{R}^3 \setminus \bar{\Omega} \tag{4.19}
\]
\[\frac{\partial u}{\partial n} = g \text{ on } \Gamma \text{ (Neumann)} \quad (4.20) \]

or

\[u = f \text{ on } \Gamma \text{ (Dirichlet)} \quad (4.21) \]

for \(k \neq 0, \text{Im } k \geq 0 \) together with the radiation condition

\[\frac{\partial u}{\partial r} - iku = o(r^{-1}), \quad u = O(r^{-1}) \text{ as } r = |x| \to \infty. \quad (4.22) \]

Here we make the general assumption:

In the exterior Neumann (Dirichlet) problem in \(\mathbb{R}^3 \setminus \bar{\Omega} \)
let \(k^2 \) be different from the eigenvalues of the interior Dirichlet (Neumann) problem in \(\Omega. \) \quad (4.23)

The restriction to the three-dimensional case is only for simplicity. Of course we can derive analogous results also for the corresponding 2D problems. Easy modifications of the procedure in [16], [20] lead directly to a boundary integral equation method for the Neumann and the Dirichlet problem. One obtains immediately existence and uniqueness results analogous to Theorems 4.1 and 4.2. Let us first consider again the Neumann problem (4.19), (4.20), (4.22).

Theorem 4.5. Let \(g \in H^{-1/2}(\Gamma) \) be given with \(\int_{\Gamma} g ds = 0. \)
Then there holds with \(k \) as above (i) \(u \in H^1_{loc}(\mathbb{R}^3 \setminus \bar{\Omega}) \) solves (4.19), (4.20), (4.22) if and only if \(u \in H^{1/2}(\Gamma) \) satisfies the integral equation

\[Du(z) := -2i u(z) + 2 \sum_{\Gamma} \frac{\partial^2}{\partial n_z \partial n_{\zeta}} \Phi(z, \zeta) ds_z = \widetilde{g}(z), \quad z \in \Gamma \quad (4.24) \]
where

\[\Phi(z, \zeta) := \frac{e^{i(k|z-\zeta|)}}{4\pi|z-\zeta|} \]

(4.25)

and

\[\tilde{a}(z) = a(z) - 2f(q(\zeta)) \frac{\partial}{\partial n} \Phi(z, \zeta) ds_\zeta \]

(4.26)

(ii) There exists exactly one solution \(u \in H^{1/2}(\Gamma) \) of (4.24).

(iii) Let \(q \in H^S(\Gamma) \), \(s > -1/2 \) and \(\Gamma \) be analytic. Then the solution \(u \) of (4.24) belongs to \(H^{S+1}(\Gamma) \).

Correspondingly using the direct approach of [20], [22] one obtains for the Dirichlet problem (4.19), (4.21), (4.22):

Theorem 4.6. Let \(f \in H^{1/2}(\Gamma) \) be given. Then with \(k \) as above there holds: (i) \(u \in H^1_{\text{loc}}(\mathbb{R}^3 \setminus \bar{\Omega}) \) solves (4.19), (4.21), (4.22) if and only if \(\frac{\partial u}{\partial n} \in H^{-1/2}(\Gamma) \) satisfies the integral equation

\[V \frac{\partial u}{\partial n}(z) := -2f(\frac{\partial u}{\partial n}(\zeta)) \Phi(z, \zeta) ds_\zeta = \tilde{f}(z), \quad z \in \Gamma \]

(4.27)

with \(\Phi \) as in (4.25) and

\[\tilde{f}(z) := f(z) + 2f(q(\zeta)) \frac{\partial}{\partial n} \Phi(z, \zeta) ds_\zeta \]

(4.28)

(ii) There exists exactly one solution \(\frac{\partial u}{\partial n} \in H^{-1/2}(\Gamma) \) of (4.27).

(iii) Let \(f \in H^S(\Gamma) \), \(s > 1/2 \), and \(\Gamma \) be analytic. Then the solution \(\frac{\partial u}{\partial n} \) of (4.27) belongs to \(H^{S-1}(\Gamma) \).

Proofs of Theorems 4.5 and 4.6. For brevity we sketch only the main steps. The equivalence (i) between the boundary
value problems and the integral equations is standard and follows immediately from Green's formula (see [16], [20]).

The existence and uniqueness results (ii) of the solution of the respective integral equation are based on the strong ellipticity of the pseudodifferential operators \(D \) and \(V \), i.e., there hold with constants \(\gamma_1, \gamma_2 > 0 \) and compact mappings \(\tilde{C}_1 : H^{1/2}(\Omega) \to H^{-1/2}(\tilde{\Omega}) \) and \(\tilde{C}_2 : H^{-1/2}(\tilde{\Omega}) \to H^{1/2}(\tilde{\Omega}) \) the Gårding inequalities

\[
\text{Re} < (D + \tilde{C}_1) \nu, \nu >_{L^2(\Omega)} \geq \gamma_1 \| \nu \|^2_{H^{1/2}(\tilde{\Omega})} \quad (4.29)
\]
\[
\text{Re} < (V + \tilde{C}_2) \psi, \psi >_{L^2(\tilde{\Omega})} \geq \gamma_2 \| \psi \|^2_{H^{-1/2}(\tilde{\Omega})} \quad (4.30)
\]

for all \(\nu \in H^{1/2}(\tilde{\Omega}) \) and \(\psi \in H^{-1/2}(\tilde{\Omega}) \). Hence \(D : H^{1/2}(\tilde{\Omega}) \to H^{-1/2}(\tilde{\Omega}) \) and \(V : H^{-1/2}(\tilde{\Omega}) \to H^{1/2}(\tilde{\Omega}) \) are Fredholm operators of index zero. Under the assumption (4.23) we have for \(k \neq 0 \), \(\text{Im} \ k \geq 0 \) that the integral equations have no eigensolutions. Hence the above mappings \(D \) and \(V \) are bijective yielding assertion (ii). The regularity results (iii) in Theorems 4.5 and 4.6 follow in a standard way from the ellipticity of the pseudodifferential operators \(D \) and \(V \) (see for example [19], [20]).

Finally, we consider the Galerkin equations for the integral equations (4.24) and (4.27) and show the convergence of the p-version.

The Galerkin method (p-version) for the integral equation (4.24) reads with \(V_p(\tilde{\Omega}) \) defined by (2.7):

Find \(\nu_p \in V_p(\tilde{\Omega}) \) such that with \(\tilde{g} \in H^{-1/2}(\tilde{\Omega}) \) given by (4.26)
Correspondingly, the Galerkin method (p-version) for
the integral equation (4.27) reads with $S_p(\tilde{\Gamma})$ given by (2.6):

Find $\psi_p \in S_p(\tilde{\Gamma})$ such that with $\tilde{f} \in H^{1/2}(\tilde{\Gamma})$ given by (4.28)

there holds for all $\phi_p \in S_p(\tilde{\Gamma})$

$$\langle \nabla_{\Gamma} \phi_p, \phi_p \rangle_{L^2(\tilde{\Gamma})} = \langle \tilde{g}, \phi_p \rangle_{L^2(\tilde{\Gamma})}$$

(4.31)

Theorem 4.7. Let p be sufficiently large and $\tilde{g} \in H^s(\tilde{\Gamma})$, $s \geq -1/2$.
Then the Galerkin equations (4.31) are uniquely solvable.

Let $u \in H^{s+1}(\tilde{\Gamma})$ be the exact solution of (4.24) and $v_p \in V_p(\tilde{\Gamma})$
be the Galerkin solution then we have for $s \geq -1/2$

$$\|u-v_p\|_{H^{1/2}(\tilde{\Gamma})} \leq C_p^{-(s+1/2)} \|\tilde{g}\|_{H^s(\tilde{\Gamma})}$$

(4.33)

with a constant C independent of u, \tilde{g} and p.

Proof. Obviously, since Garding's inequality (4.29) holds
the assumptions of Lemma 4.1 are satisfied if we choose

$A = D$, $H = H^{1/2}(\tilde{\Gamma})$, $H' = H^{-1/2}(\tilde{\Gamma})$ and $S_N = V_p(\tilde{\Gamma}) \subset H^{1/2}(\tilde{\Gamma})$.

Note that $\tilde{\Gamma}$ is a closed, bounded, analytic surface. Thus
for p large enough Lemma 4.1 guarantees the unique solvability
of the Galerkin equations (4.31) and the quasioptimal estimate for the Galerkin error

$$\|u-v_p\|_{H^{1/2}(\tilde{\Gamma})} \leq C \inf \{ \|u-w_p\|_{H^{1/2}(\tilde{\Gamma})} : w_p \in V_p(\tilde{\Gamma}) \}$$

(4.34)

From Theorem 4.5 (iii) we know that for $s \geq -1/2$ with a
constant C

$$\|u\|_{H^{s+1}(\tilde{\Gamma})} \leq C \|g\|_{H^s(\tilde{\Gamma})}. \quad (4.35)$$

Therefore we can apply the approximation result (3.1) of Theorem 3.1 to (4.34) and obtain (4.33) by using (4.35).

Theorem 4.8. Let p be sufficiently large and $\tilde{\Gamma} \in H^s(\tilde{\Gamma})$, $s > 1/2$. Then the Galerkin equation (4.32) are uniquely solvable. Let $\frac{\partial u}{\partial \vec{n}} \in H^{s-1}(\tilde{\Gamma})$ be the exact solution of (4.27) and $\psi_\mathbf{p} \in S_p(\tilde{\Gamma})$ be the Galerkin solution, then we have for $s > 1/2$

$$\|\frac{\partial u}{\partial \vec{n}} - \psi_\mathbf{p}\|_{H^{s-1}(\tilde{\Gamma})} \leq C \|\tilde{\Gamma}\|_{H^s(\tilde{\Gamma})} \quad (4.36)$$

with a constant C independent of $\frac{\partial u}{\partial \vec{n}}$, $\tilde{\Gamma}$ and p.

Proof. Again, application of Lemma 4.1 gives the assertion if we take $A = V$, $H = H^{-1/2}(\tilde{\Gamma})$, $H' = H^{1/2}(\tilde{\Gamma})$ and $S_N = S_p(\tilde{\Gamma}) \subset H^{-1/2}(\tilde{\Gamma})$ since the Garding inequality (4.30) holds. Note again that $\tilde{\Gamma}$ is a closed, bounded, analytic surface. From Theorem 4.6 (iii) we know that for $s > 1/2$

$$\|\frac{\partial u}{\partial \vec{n}}\|_{H^{s-1}(\tilde{\Gamma})} \leq C \|f\|_{H^s(\tilde{\Gamma})}. \quad (4.37)$$

On the other hand, Lemma 4.1 yields

$$\|\frac{\partial u}{\partial \vec{n}} - \psi_\mathbf{p}\|_{H^{-1/2}(\tilde{\Gamma})} \leq C \inf \{\|\frac{\partial u}{\partial \vec{n}} - \phi_\mathbf{p}\|_{H^{-1/2}(\tilde{\Gamma})} : \phi \in S_p(\tilde{\Gamma})\} \quad (4.38)$$

Therefore by applying Theorem 3.2 and Remark 3.1 to (4.38) we
obtain with (4.37) the desired estimate (4.36).

Remark 4.2. Theorems 4.7, 4.8 show that for the p-version, the rate of convergence obtained depends only upon the smoothness of the data. Hence, when \(\tilde{f} \) and \(\tilde{g} \) are arbitrarily smooth, one obtains arbitrarily high rates of convergence. This is in direct contrast to the h-version, where the rate of convergence depends in addition upon the degree of polynomials used and is therefore not very high even for smooth solutions.

Finally, we remark that results analogous to the above ones can be shown for two-dimensional crack problems in linear elasticity, since those problems can be reduced to first kind integral equations like (4.6) or (4.14) for the components of the jumps of the displacement or traction across the crack line \(\Gamma \). Regularity results analogous to (4.10) and (4.15) hold for the solutions (see [17], [22], [23]). Hence the corresponding Galerkin schemes (4.11) and (4.17) will lead componentwise to error estimates like (4.12) and (4.18) with obvious modifications.

Acknowledgements: The first author was supported by the National Science Foundation under Grant DMS-8603954. The second author was supported by Air Force Office of Scientific Research, Air Force Systems Command, USAF, under Grant number AFOFR-85-0322.
REFERENCES

END
DATE
FILMED
DEC.
1987