COHERENT STATES FOR THE DAMPED HARMONIC OSCILLATOR

by

K. H. Yeon, C. I. Um and Thomas F. George

Prepared for Publication in Physical Review A

DEPARTMENT OF CHEMISTRY AND PHYSICS
STATE UNIVERSITY OF NEW YORK AT BUFFALO
BUFFALO, NEW YORK 14260

October 1987

This report is public information. Its distribution is unlimited for any purpose of the United States Government.

This document has been approved for public release and sale; its distribution is unlimited.
Coherent States for the Damped Harmonic Oscillator

K. H. Yeon, C. I. Um and Thomas F. George

Using the Caldirola-Kanai Hamiltonian for the damped harmonic oscillator, exact coherent states are constructed. These new coherent states satisfy the properties which coherent states should generally have.
Coherent States for the Damped Harmonic Oscillator

K. H. Yeon and C. I. Um*
Department of Physics, College of Science, Korea University
Seoul 136, Korea

Thomas F. George
Departments of Chemistry and Physics
239 Fronczak Hall
State University of New York at Buffalo
Buffalo, New York 14260 USA

Using the Caldirola-Kanai Hamiltonian for the damped harmonic oscillator, exact coherent states are constructed. These new coherent states satisfy the properties which coherent states should generally have.

PACS Nos. 02.90., 03.65 W, 05.30-d, 42.50. Bs

* To whom correspondence should be addressed
Since the coherent states for the harmonic oscillator have been constructed first by Schrödinger,\(^1\) they have been widely used to describe many fields of physics.\(^2\)-\(^5\) Recently Nieto and Simmons have constructed coherent states for particles in general potentials\(^6\) and have applied their formalism to confining one dimensional systems:\(^7\) harmonic oscillator with centripetal barrier and the symmetric Pöschl-Teller potential, and also to nonconfining one dimensional systems with the symmetric Rosen-Morse potential and the Morse potential. For the time-dependent systems Lewis and Riesenfeld\(^9\) have investigated the harmonic oscillator with time-dependent frequency \(\omega(t)\). Hartley and Ray\(^10\) has obtained exact coherent states for this time-dependent harmonic oscillator on the basis of Lewis and Riesenfeld theory. Hartley-Ray results satisfy most, but not all, of the properties of the coherent states. In the case of a quantum mechanical model of a damped forced harmonic oscillator, Dodonov and Man'ko\(^11\) have introduced the Caldirola-Kanai Hamiltonian\(^12\) with an external force term and constructed integrals of motion of this Hamiltonian, eigenstates and coherent states. The main flaw of the Dodonov-Man'ko result is its uncertainty relation \(\Delta p \cdot \Delta x > e^{-\gamma t} \hbar /2\) in which the uncertainty vanishes as \(t \rightarrow \infty\). This contradiction is critically reviewed by Greenberger\(^13\), and Cervero and Villarroel.\(^14\) Greenberger introduced the variable mass: \(m = m_0 e^{\gamma t}\) and removed the violation of uncertainty.

In this paper we construct exact coherent states for the damped harmonic oscillator described by the Caldirola-Kanai Hamiltonian

\[
\mathcal{H} = e^{-\gamma t} \frac{p^2}{2m} + e^{\gamma t} \frac{1}{2} m \omega^2 x^2.
\]

(1)
We first define creation operator a^* and annihilation operator a, and using these operators we will derive the representations of coherent states and investigate whether our coherent states satisfy the following properties of coherent states: (1) They are eigenstates of annihilation operator. (2) They are created from the vacuum or the ground states by an unitary operator. (3) They represent the minimum uncertainty states. (4) They are not orthogonal but complete and normalized.

In the proceeding paper (hereafter referred to as paper I) we have developed the quantum theory of the damped driven harmonic oscillator with the Caldirola-Kanai Hamiltonian with an external driving force $f(t)$ by path integral method. In paper I, setting $f(t) = 0$, the Hamiltonian is reduced to Eq. (1) and all other results become those corresponding to the Hamiltonian (Eq. (1)), and the Lagrangian, mechanical energy and propagator are given by

$$\mathcal{L} = e^{\gamma t} \left(\frac{1}{2} m \dot{x}^2 - \frac{1}{2} m \omega_0^2 x^2 \right),$$

$$\mathcal{E} = e^{-\gamma t} \frac{p^2}{2m} + \frac{1}{2} m \omega_0^2 x^2,$$

$$K(x, t; x_0, 0) = \left(\frac{m \omega_0^2 e^{\gamma t}}{2 \sin \omega t} \right)^{\frac{1}{4}} \exp \left\{ \frac{im}{\hbar} \left(x_0^2 e^{\gamma t} + x_0 \cos \omega t - 2 e^{\gamma t} x_0 \right) \right\} \left(\frac{2\omega}{\sin \omega t} \right),$$

with $\omega = (\omega_0^2 - \gamma^2/4)^{\frac{1}{2}}$. Here, the energy expression in Eq. (3) is not equal to the Hamiltonian itself. With the help of Eq. (4) and the wave function of simple harmonic oscillator, we obtain the wave function of the
damped harmonic oscillator:

\[
\psi_n(x,t) = \frac{N}{\sqrt{2^n n!}} H_n(Dx) \exp\left(-i(n + \frac{1}{2})\cot^{-1}(\frac{\gamma}{2\omega} + \cot \omega t) - A \chi^2\right),
\]

where

\[
N = \left(\frac{m\omega}{\hbar}\right)^{\frac{3}{4}} \frac{e^{-\frac{\gamma t}{2}}}{\delta(t) \sin^2 \omega t},
\]

\[
\delta^2(t) = \frac{\gamma^2}{4 \omega^2} + \frac{\gamma}{\omega} \cot \omega t + \cosec^2 \omega t,
\]

\[
A(t) = \frac{m\omega}{2 \hbar} e^{\frac{\gamma t}{2}} \left\{ \frac{1}{\delta(t)^2 \sin^2 \omega t} + i \left(\frac{\gamma}{2\omega} - \cot \omega t + \frac{\gamma}{2\omega} \cot \omega t \right) \right\},
\]

\[
D(t) = \left(\frac{m\omega}{\hbar}\right)^{\frac{3}{4}} \frac{e^{\frac{\gamma t}{2}}}{\delta(t) \sin \omega t}.
\]

The quantum mechanical expectation values of mechanical energy \(E(\text{Eq. (3)})\) take the form

\[
< E >_{mn} = -\frac{\hbar^2}{2m} e^{-\gamma t} < x^2 >_{mn} + \frac{1}{2} m \omega^2 < x^2 >_{mn}.
\]

The evaluation of Eq. (7) gives the non-zero matrix elements which occur only in the principal diagonal and the two second off-diagonals:

\[
< E >_{n+2,n} = [(n+2)(n+1)]^{\frac{1}{2}} \theta(t),
\]

\[
< E >_{nn} = \frac{1}{2} (n + \frac{1}{2}) \hbar \omega e^{-\gamma t} \left[\frac{\omega^2}{\delta^2} \delta(t)^2 \sin^2 \omega t + \frac{1}{\delta(t)^2 \sin^2 \omega t} \right],
\]
where

\[
\theta(t) = \frac{1}{4} \hbar \omega e^{-\gamma t} \exp \left\{ \left[2i \cot^{-1} \left(\frac{\gamma}{2\omega} \right) \right] \sin^2 \omega t \right. \\
- \frac{1}{\sin^2 \omega t} + \frac{1}{\sin^2 \omega t} \left(\frac{\gamma}{2\omega} \right) \sin^2 \omega t \\
+ \frac{\gamma}{2\omega} + \cot \omega t \right\} \left(\frac{\gamma}{2\omega} - \cot \omega t \right)^2 \sin^2 \omega t \\
+ \cot \omega t \right\}, \tag{10}
\]

Taking the complex conjugate and changing \(n \) into \((n-2) \) in Eq. (8) we can easily obtain the energy expectation value in \((n-2, n) \) state.

In a similar way to that used to obtain Eq. (7) we can obtain the uncertainty relations in the various states:

\[
[(\Delta p)(\Delta x)]_{n+2,n} = \frac{\hbar}{2} (n+2)(n+1)^{1/2} \beta(t), \tag{11}
\]

\[
[(\Delta p)(\Delta x)]_{n+1,n} = \frac{\hbar}{2} (n+1)^{1/2} \beta(t), \tag{12}
\]

\[
[\Delta p \cdot \Delta x]_{n,n} = (n + \frac{1}{2}) \hbar \beta(t), \tag{13}
\]

and

\[
\beta(t) = 1 \times \left(\frac{1}{8\omega^2} \right)^{1/2} \sin^2 \omega t + \frac{1}{8\omega^2} \sin 2\omega t \right)^{1/2} \]

\[
\tag{14}
\]
Changing \(n \) into \((n-1)\) and \((n-2)\) respectively in Eqs. (12) and (11) we can obtain the uncertainty relations in \((n-1, n)\) and \((n-2, n)\) states.

Before we construct annihilation operator \(a \) and creation operator \(a^* \), we give the properties of the coherent states. The coherent states can be defined by the eigenstates of the nonhermitian operator \(a \),

\[
|\alpha > = a |\alpha > .
\]

(15)

Using the completeness relation for the number representations, we can expand \(|\alpha >\) as

\[
|\alpha > = e^{-\frac{1}{2} |\alpha|^2} \sum_{n=0}^{\infty} \frac{\alpha^n}{\sqrt{n!}} |n >
\]

\[
= e^{-\frac{1}{2} |\alpha|^2} e^{a^* a} |0 > ,
\]

(16)

where \(|0 >\) is the vacuum or ground state and is independent of \(n \). The calculation of \(<\beta |\alpha >\) in Eq. (16) gives

\[
<\beta |\alpha > = e^{-\frac{1}{2} (|\alpha|^2 + |\beta|^2)} a \beta^* .
\]

(17)

Since Eq. (17) has nonzero value for \(\alpha \neq \beta \), the states are not orthogonal, but when \(|\alpha - \beta|^2 \to \infty \), the states become orthogonal.

The eigenvalue \(\alpha \) of coherent states are complex numbers \(u + iv \), and thus the completeness relation of coherent states is written as

\[
\int |\alpha > <\alpha | \frac{d^3 \alpha}{\pi} = 1 ,
\]

(18)
where \(I \) is the identity operator and \(d' a \) is given by \(d(Reu)d(Imv) \).

To define \(a^* \) and \(a \) for the damped harmonic oscillator we make use of Eq. (5) for \(< x >_{mn} \) and \(< p >_{mn} \):

\[
< x >_{mn} = \int_{-\infty}^{\infty} \psi^*_m(x) \psi_n(x) \, dx
\]

\[
= \frac{1}{2} (n+1)^{1/2} (ReA)^{-1/2} \exp \{ i \cot^{-1} \left(\frac{\gamma}{2\omega} + \cot \omega t \right) \} \delta_{m,n+1}
\]

\[
+ \frac{1}{2} n^{1/2} (ReA)^{-1/2} \exp \{ -i \cot^{-1} \left(\frac{\gamma}{2\omega} + \cot \omega t \right) \} \delta_{m,n-1}
\]

\[
= (n + \frac{1}{2})^{1/2} \mu(t) \delta_{m,n+1} + \frac{1}{2} n^{1/2} \mu(t)^* \delta_{m,n-1}, \tag{19}
\]

\[
< p >_{mn} = \int_{-\infty}^{\infty} \psi^*_m(x) \frac{\hbar}{i} \frac{\partial}{\partial x} \psi_n(x) \, dx
\]

\[
= i \hbar \sqrt{2} (n+1)^{1/2} \frac{A}{D} \exp \{ i \cot^{-1} \left(\frac{\gamma}{2\omega} + \cot \omega t \right) \} \delta_{m,n+1}
\]

\[
+ i \hbar \sqrt{2} n^{1/2} (\frac{A}{D} - D) \exp \{ -i \cot^{-1} \left(\frac{\gamma}{2\omega} + \cot \omega t \right) \} \delta_{m,n-1}
\]

\[
= (n + \frac{1}{2})^{1/2} \eta(t) \delta_{m,n+1} + \frac{1}{2} n^{1/2} \eta(t)^* \delta_{m,n-1}, \tag{20}
\]

where

\[
\mu(t) = \frac{1}{2} (ReA)^{-1/2} \exp \{ i \cot^{-1} \left(\frac{\gamma}{2\omega} + \cot \omega t \right) \}, \tag{21}
\]

\[
\eta(t) = \sqrt{2} i \hbar \frac{A}{D} \exp \{ i \cot^{-1} \left(\frac{\gamma}{2\omega} + \cot \omega t \right) \}, \tag{22}
\]
and we have the relation

\[\eta \mu^* - \eta^* \mu = 2i \text{Im} \left(\frac{1}{2} (\text{Re} A)^{1/4} \sqrt{2} \frac{i}{\hbar} \frac{A}{D} \right) = i \hbar. \]

(23)

Therefore, we define annihilation operator \(\alpha \) and creation operator \(\alpha^* \) for the damped harmonic oscillator as follows

\[\alpha = \frac{1}{\sqrt{\hbar}} (\eta x - \mu p), \]

(24)

\[\alpha^* = \frac{1}{\sqrt{\hbar}} (\mu^* p - \eta^* x), \]

(25)

where the expressions of \(x \) and \(p \) by \(\alpha \) and \(\alpha^* \) are

\[x = \mu^* \alpha + \mu \alpha^*, \]

(26)

\[p = \eta^* \alpha + \eta \alpha^*. \]

(27)

Since \(\eta \) is not equal to \(\mu \) in Eqs. (21) - (22), we can easily confirm that \(\alpha \) and \(\alpha^* \) are not hermitian operators, but the following relations are preserved:

\[[x, p] = i \hbar \]

(28)

\[[\alpha, \alpha^*] = 1. \]

(29)

Now we evaluate the transformation function \(< x | \alpha > \) from coherent states to the coordinate representation \(|x > \). From Eqs. (15) and (24)
we have

\[
(\eta x' - \mu \frac{h}{1} \frac{d}{dx'}) < x'|\alpha > = i \hbar \alpha < x'|\alpha >.
\]

(30)

For convenience we change the variable \(x'\) into \(x\) and solve this differential
equation, and we get

\[
<x|\alpha > = N \exp\left\{ \frac{1}{\mu} \alpha x - (2\frac{i}{\mu})^{-1} x x' \right\},
\]

(31)

where \(N\) is the integral constant. Taking \(N\) to satisfy Eq. (18), we obtain

the eigenvectors of the operator \(\alpha\) given in the coordinate representation

\(|x>:

\[
<x|\alpha > = (2\pi \mu)^{-\frac{1}{2}} \exp\left\{ -\frac{1}{2h} \frac{\eta}{\mu} x^2 + \frac{\alpha}{\mu} x - \frac{1}{2} |\alpha|^2 - \frac{1}{2} \frac{\mu^*}{\mu} a^2 \right\}.
\]

(32)

Next we show that a coherent state represents a minimum uncertainty
state. With the help of the relations between \(a, a^*\), \(x\) and \(p\) we evaluate
the expectation values of \(x, p, x^2\) and \(p^2\) in state \(|\alpha>:

\[
<x> = <a|\mu^* a + \mu a^* a > = \mu^* a + \mu a^*,
\]

\[
<p> = <a|\eta^* a + \eta a^* a > = \eta^* a + \eta a^*,
\]

(33)

\[
<x^2> = \mu^* a^2 + \mu^* (1 + 2\eta a^*) + \mu^3 a^* a^3,
\]

\[
<p^2> = \eta^* a^2 + \eta^* (1 + 2\eta a^*) + \eta^3 a^* a^2.
\]
From Eq. (33) we have

\[(\Delta x)^2 = \langle x^2 \rangle - \langle x \rangle^2 = \mu \mu^*, \tag{34}\]

\[(\Delta p)^2 = \langle p^2 \rangle - \langle p \rangle^2 = \eta \eta^*, \tag{35}\]

and thus the uncertainty relation becomes

\[(\Delta x)(\Delta p) = (\eta \mu^2)^{1/2} \frac{\hbar}{2} \Theta(t). \tag{36}\]

Eq. (36) is the minimum uncertainty corresponding to Eq. (13) in (0,0) state.

All of the formulas, we have derived, are reduced to those of simple harmonic oscillator when \(\gamma = 0\). The propagator (Eq. (4)) has very similar form to those of Cheng \(^15\) and others, \(^17\) but the wave function (Eq. (5)) is of new form.

We should note that the same classical equation of motion can be obtained from many different actions, and thus one may have many different propagators corresponding to the actions. Therefore it is very important to get the correct propagator. The mechanical energy (Eq. (3)) is not identical to the Hamiltonian operator (Eq. (1)). Hence we assume that this Hamiltonian represents the quantum mechanical dissipative system.

Fig. 1 and 2 illustrate the decay of the energy expectation value and the uncertainty relation as a function of \(\gamma/\omega\) in \((n, n)\) state. Although we have shown only the principal diagonal element, i.e., \(<E>_{nn}\), of the energy expectation values, there are four off-diagonals adjacent to the principal diagonal, which are involved in the exponential decaying term.
\[e^{-\gamma t}. \]
\[\langle E \rangle_n \] approaches the constant value as \(\frac{t}{\omega} \to 0. \) The uncertainty for \(\lambda(n, n) \) state with period \(\pi \) (Eq. (13)) is reduced to that of the harmonic oscillator at 0° and 180°.

From all of the above we conclude that the coherent states for the damped harmonic oscillator, with the Caldirola-Kanai Hamiltonian we have constructed, satisfy the properties of coherent states (1)-(4).

Acknowledgements

We are grateful to Professor S. W. Kim for helpful comments. This research was supported partly by Korea University and by the Office of Naval Research, the Air Force Office of Scientific Research (AFSC), United States Air Force, under Contract F49620-86-C-0009, and the National Science Foundation under Grant CHE-8620274.
Figure Caption

Fig. 1. Energy expectation value for \((n, n)\) state as a function of \(\omega t\) at the various value of \(\gamma/\omega\). As \(\gamma/\omega\) tends to zero, \(\omega\) energy approaches the constant values.

Fig. 2. Uncertainty relation for \(\omega (n, n)\) state versus \(\omega t\) at various values of \(\gamma/\omega\).
References

1. E. Schrödinger, Naturwiss. 14, 166 (1926).

TECHNICAL REPORT DISTRIBUTION LIST, GEN

<table>
<thead>
<tr>
<th>No. Copies</th>
<th>No. Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Office of Naval Research</td>
<td>2</td>
</tr>
<tr>
<td>Attn: Code 1113</td>
<td></td>
</tr>
<tr>
<td>800 W. Quincy Street</td>
<td></td>
</tr>
<tr>
<td>Arlington, Virginia 22217-5000</td>
<td></td>
</tr>
<tr>
<td>Dr. Bernard Doua</td>
<td>1</td>
</tr>
<tr>
<td>Naval Weapons Support Center</td>
<td></td>
</tr>
<tr>
<td>Code 50C</td>
<td></td>
</tr>
<tr>
<td>Crane, Indiana 47522-5050</td>
<td></td>
</tr>
<tr>
<td>Naval Civil Engineering Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>Attn: Dr. R. W. Drisko, Code L52</td>
<td></td>
</tr>
<tr>
<td>Port Hueneme, California 93401</td>
<td></td>
</tr>
<tr>
<td>Defense Technical Information Center</td>
<td>12</td>
</tr>
<tr>
<td>Building 5, Cameron Station</td>
<td></td>
</tr>
<tr>
<td>Alexandria, Virginia 22314</td>
<td></td>
</tr>
<tr>
<td>DTNSRDC</td>
<td>1</td>
</tr>
<tr>
<td>Attn: Dr. H. Singerman</td>
<td></td>
</tr>
<tr>
<td>Applied Chemistry Division</td>
<td></td>
</tr>
<tr>
<td>Annapolis, Maryland 21401</td>
<td></td>
</tr>
<tr>
<td>Dr. William Tolles</td>
<td>1</td>
</tr>
<tr>
<td>Superintendent</td>
<td></td>
</tr>
<tr>
<td>Chemistry Division, Code 6100</td>
<td></td>
</tr>
<tr>
<td>Naval Research Laboratory</td>
<td></td>
</tr>
<tr>
<td>Washington, D.C. 20375-5000</td>
<td></td>
</tr>
<tr>
<td>Dr. David L. Nelson</td>
<td>1</td>
</tr>
<tr>
<td>Chemistry Division</td>
<td></td>
</tr>
<tr>
<td>Office of Naval Research</td>
<td></td>
</tr>
<tr>
<td>800 North Quincy Street</td>
<td></td>
</tr>
<tr>
<td>Arlington, Virginia 22217</td>
<td></td>
</tr>
<tr>
<td>Dr. David Young</td>
<td>1</td>
</tr>
<tr>
<td>Code 334</td>
<td></td>
</tr>
<tr>
<td>NORDA</td>
<td></td>
</tr>
<tr>
<td>NSTL, Mississippi 39529</td>
<td></td>
</tr>
<tr>
<td>Naval Weapons Center</td>
<td>1</td>
</tr>
<tr>
<td>Attn: Dr. Ron Atkins</td>
<td></td>
</tr>
<tr>
<td>Chemistry Division</td>
<td></td>
</tr>
<tr>
<td>China Lake, California 93555</td>
<td></td>
</tr>
<tr>
<td>Scientific Advisor</td>
<td>1</td>
</tr>
<tr>
<td>Commandant of the Marine Corps</td>
<td></td>
</tr>
<tr>
<td>Code RD-1</td>
<td></td>
</tr>
<tr>
<td>Washington, D.C. 20380</td>
<td></td>
</tr>
<tr>
<td>U.S. Army Research Office</td>
<td>1</td>
</tr>
<tr>
<td>Attn: CRD-AA-IP</td>
<td></td>
</tr>
<tr>
<td>P.O. Box 12211</td>
<td></td>
</tr>
<tr>
<td>Research Triangle Park, NC 27709</td>
<td></td>
</tr>
<tr>
<td>Mr. John Boyle</td>
<td>1</td>
</tr>
<tr>
<td>Materials Branch</td>
<td></td>
</tr>
<tr>
<td>Naval Ship Engineering Center</td>
<td></td>
</tr>
<tr>
<td>Philadelphia, Pennsylvania 19112</td>
<td></td>
</tr>
<tr>
<td>Naval Ocean Systems Center</td>
<td>1</td>
</tr>
<tr>
<td>Attn: Dr. S. Yamamoto</td>
<td></td>
</tr>
<tr>
<td>Marine Sciences Division</td>
<td></td>
</tr>
<tr>
<td>San Diego, California 91232</td>
<td></td>
</tr>
<tr>
<td>Dr. David L. Nelson</td>
<td>1</td>
</tr>
<tr>
<td>Chemistry Division</td>
<td></td>
</tr>
<tr>
<td>Office of Naval Research</td>
<td></td>
</tr>
<tr>
<td>800 North Quincy Street</td>
<td></td>
</tr>
<tr>
<td>Arlington, Virginia 22217</td>
<td></td>
</tr>
</tbody>
</table>
ABSTRACTS DISTRIBUTION LIST, 056/625/629

Dr. J. E. Jensen
Hughes Research Laboratory
3011 Malibu Canyon Road
Malibu, California 90265

Dr. C. B. Harris
Department of Chemistry
University of California
Berkeley, California 94720

Dr. J. H. Weaver
Department of Chemical Engineering
and Materials Science
University of Minnesota
Minneapolis, Minnesota 55455

Dr. F. Kutzler
Department of Chemistry
Box 5055
Tennessee Technological University
 Cookeville, Tennessee 38501

Dr. A. Reisman
Microelectronics Center of North Carolina
Research Triangle Park, North Carolina
27709

Dr. D. DiLella
Chemistry Department
George Washington University
Washington D.C. 20052

Dr. M. Grunze
Laboratory for Surface Science and
Technology
University of Maine
Orono, Maine 04469

Dr. R. Reeves
Chemistry Department
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. J. Butler
Naval Research Laboratory
Code 6115
Washington D.C. 20375-5000

Dr. Steven M. George
Stanford University
Department of Chemistry
Stanford, CA 94305

Dr. L. Interante
Chemistry Department
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. Mark Johnson
Yale University
Department of Chemistry
New Haven, CT 06511-8118

Dr. Irvin Heard
Chemistry and Physics Department
Lincoln University
Lincoln University, Pennsylvania 19352

Dr. W. Knauer
Hughes Research Laboratory
3011 Malibu Canyon Road
Malibu, California 90265

Dr. K. J. Klaubunde
Department of Chemistry
Kansas State University
Manhattan, Kansas 66506
ABSTRACTS DISTRIBUTION LIST, 056/625/629

Dr. G. A. Somorjai
Department of Chemistry
University of California
Berkeley, California 94720

Dr. J. Murday
Naval Research Laboratory
Code 6170
Washington, D.C. 20375-5000

Dr. J. B. Hudson
Materials Division
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. Theodore E. Madey
Surface Chemistry Section
Department of Commerce
National Bureau of Standards
Washington, D.C. 20234

Dr. J. E. Demuth
IBM Corporation
Thomas J. Watson Research Center
P.O. Box 218
Yorktown Heights, New York 10598

Dr. M. G. Lagally
Department of Metallurgical and Mining Engineering
University of Wisconsin
Madison, Wisconsin 53706

Dr. R. P. Van Duyne
Chemistry Department
Northwestern University
Evanston, Illinois 60637

Dr. J. M. White
Department of Chemistry
University of Texas
Austin, Texas 78712

Dr. D. E. Harrison
Department of Physics
Naval Postgraduate School
Monterey, California 93940

Dr. R. L. Park
Director, Center of Materials Research
University of Maryland
College Park, Maryland 20742

Dr. W. T. Peria
Electrical Engineering Department
University of Minnesota
Minneapolis, Minnesota 55455

Dr. Keith H. Johnson
Department of Metallurgy and Materials Science
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Dr. S. Sibener
Department of Chemistry
James Franck Institute
5640 Ellis Avenue
Chicago, Illinois 60637

Dr. Arnold Green
Quantum Surface Dynamics Branch
Code 3817
Naval Weapons Center
China Lake, California 93555

Dr. A. Wold
Department of Chemistry
Brown University
Providence, Rhode Island 02912

Dr. S. L. Bernasek
Department of Chemistry
Princeton University
Princeton, New Jersey 08544

Dr. W. Kohn
Department of Physics
University of California, San Diego
La Jolla, California 92037
ABSTRACTS DISTRIBUTION LIST, 056/625/629

Dr. F. Carter
Code 6170
Naval Research Laboratory
Washington, D.C. 20375-5000

Dr. John T. Yates
Department of Chemistry
University of Pittsburgh
Pittsburgh, Pennsylvania 15260

Dr. Richard Colton
Code 6170
Naval Research Laboratory
Washington, D.C. 20375-5000

Dr. Richard Greene
Code 5230
Naval Research Laboratory
Washington, D.C. 20375-5000

Dr. Dan Pierce
National Bureau of Standards
Optical Physics Division
Washington, D.C. 20234

Dr. L. Kesmodel
Department of Physics
Indiana University
Bloomington, Indiana 47403

Dr. R. Stanley Williams
Department of Chemistry
University of California
Los Angeles, California 90024

Dr. K. C. Janda
University of Pittsburgh
Chemistry Building
Pittsburgh, PA 15260

Dr. R. P. Messmer
Materials Characterization Lab.
General Electric Company
Schenectady, New York 22217

Dr. E. A. Irene
Department of Chemistry
University of North Carolina
Chapel Hill, North Carolina 27514

Dr. Robert Gomer
Department of Chemistry
James Franck Institute
5640 Ellis Avenue
Chicago, Illinois 60637

Dr. Adam Heller
Bell Laboratories
Murray Hill, New Jersey 07974

Dr. Ronald Lee
R301
Naval Surface Weapons Center
White Oak
Silver Spring, Maryland 20910

Dr. Martin Fleischmann
Department of Chemistry
University of Southampton
Southampton SO9 5NH
UNITED KINGDOM

Dr. Paul Schoen
Code 6190
Naval Research Laboratory
Washington, D.C. 20375-5000

Dr. H. Tachikawa
Chemistry Department
Jackson State University
Jackson, Mississippi 39217

Dr. John W. Wilkins
Cornell University
Laboratory of Atomic and
Solid State Physics
Ithaca, New York 14853
<table>
<thead>
<tr>
<th>Name</th>
<th>Department</th>
<th>Institution</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. R. G. Wallis</td>
<td>Department of Physics</td>
<td>University of California</td>
<td>Irvine, California 92664</td>
</tr>
<tr>
<td>Dr. D. Ramaker</td>
<td>Chemistry Department</td>
<td>George Washington University</td>
<td>Washington, D.C. 20052</td>
</tr>
<tr>
<td>Dr. J. C. Hemminger</td>
<td>Chemistry Department</td>
<td>University of California</td>
<td>Irvine, California 92717</td>
</tr>
<tr>
<td>Dr. T. F. George</td>
<td>Chemistry Department</td>
<td>University of Rochester</td>
<td>Rochester, New York 14627</td>
</tr>
<tr>
<td>Dr. G. Rubloff</td>
<td>IBM</td>
<td>Thomas J. Watson Research Center</td>
<td>Yorktown Heights, New York 10598</td>
</tr>
<tr>
<td>Dr. Horia Metiu</td>
<td>Chemistry Department</td>
<td>University of California</td>
<td>Santa Barbara, California 93106</td>
</tr>
<tr>
<td>Dr. W. Goddard</td>
<td>Department of Chemistry and Chemical Engineering</td>
<td>California Institute of Technology</td>
<td>Pasadena, California 91125</td>
</tr>
<tr>
<td>Dr. P. Hansma</td>
<td>Department of Physics</td>
<td>University of California</td>
<td>Santa Barbara, California 93106</td>
</tr>
<tr>
<td>Dr. J. Baldeschieler</td>
<td>Department of Chemistry and Chemical Engineering</td>
<td>California Institute of Technology</td>
<td>Pasadena, California 91125</td>
</tr>
<tr>
<td>Dr. J. T. Keiser</td>
<td>Department of Chemistry</td>
<td>University of Richmond</td>
<td>Richmond, Virginia 23173</td>
</tr>
<tr>
<td>Dr. R. W. Plummer</td>
<td>Department of Physics</td>
<td>University of Pennsylvania</td>
<td>Philadelphia, Pennsylvania 19104</td>
</tr>
<tr>
<td>Dr. E. Yeager</td>
<td>Department of Chemistry</td>
<td>Case Western Reserve University</td>
<td>Cleveland, Ohio 41106</td>
</tr>
<tr>
<td>Dr. N. Winograd</td>
<td>Department of Chemistry</td>
<td>Pennsylvania State University</td>
<td>University Park, Pennsylvania 16802</td>
</tr>
<tr>
<td>Dr. Roald Hoffmann</td>
<td>Department of Chemistry</td>
<td>Cornell University</td>
<td>Ithaca, New York 14853</td>
</tr>
<tr>
<td>Dr. A. Steckl</td>
<td>Department of Electrical and Systems Engineering</td>
<td>Rensselaer Polytechnic Institute</td>
<td>Troy, New York 12181</td>
</tr>
<tr>
<td>Dr. G.H. Morrison</td>
<td>Department of Chemistry</td>
<td>Cornell University</td>
<td>Ithaca, New York 14853</td>
</tr>
</tbody>
</table>
END
DATE
FILMED
DEC.
1987