FATIGUE, FRACTURE AND STRAIN HARDENING OF HIGH CARBON HARDENED ALLOY STEEL

FINAL REPORT

GEORGE KRAUSS
JUNE 4, 1987

U.S. ARMY RESEARCH OFFICE

CONTRACT/GRANT NUMBER
DAAG29-84-K-0127

COLORADO SCHOOL OF MINES
GOLDEN, COLORADO 80401

APPROVED FOR PUBLIC RELEASE
DISTRIBUTION UNLIMITED
Title: Fatigue, Fracture and Strain Hardening of High Carbon Hardened Alloy Steels

Personal Author(s):
George Krauss

Type of Report and Period Covered:
Final, from 7/84 to 3/87

Date of Report: 1987, June, 4

Page Count: 6

Abstract:
The view, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, or decision, unless so designated by other documentation. The abstract does not include the following: High Carbon Steel, Fatigue, Fracture

Security Classification of This Page: Unclassified

Distribution/Availability of Report: Approved for public release; distribution unlimited.
ABSTRACT

Medium and high carbon alloy steels have been heat treated to microstructures of low-temperature tempered martensite and retained austenite. Four point bending fatigue testing of 0.8 pct C steels showed that low cycle fatigue resistance was directly related to retained austenite content. The strain-induced transformation of retained austenite substantially increased strain hardening rates of the composite tempered martensite-austenite microstructures at high strains and increased the number of cycles required to initiate fatigue cracks at prior austenite grain boundaries in specimens with the highest retained austenite content. Transmission electron microscopy identified the transition carbides formed on tempering as the orthorhombic eta carbide, and the increasing density of the transition carbides with increases in carbon content was the major carbon-dependent structural parameter which correlated with flow stresses and strain hardening rates in medium carbon tempered martensite. Elastic limits, as measured with strain gages mounted in compression specimens, decreased with increasing retained austenite content. In medium carbon steels with lath martensite morphologies the retained austenite transformed to martensite by stress-induced mechanisms, and in high carbon steels with plate martensite morphologies, the retained austenite transformed by strain-induced mechanisms.
<table>
<thead>
<tr>
<th>CONDIMENTS</th>
<th>DTIC RETRIEVAL AND INDEXING TERMINOLOGY</th>
</tr>
</thead>
<tbody>
<tr>
<td>STEAM CONDENSERS</td>
<td>CONFLICT</td>
</tr>
<tr>
<td>CONDIMENTS</td>
<td>CONFLUENCE</td>
</tr>
<tr>
<td>UF PEPPER</td>
<td>CONFORMAL MAPPING</td>
</tr>
<tr>
<td>SEASONINGS</td>
<td>BT *COMPLEX VARIABLES</td>
</tr>
<tr>
<td>SPICES</td>
<td>MAPPING</td>
</tr>
<tr>
<td>BT FOOD</td>
<td>CONFORMAL STRUCTURES</td>
</tr>
<tr>
<td>BT</td>
<td>BT STRUCTURES</td>
</tr>
<tr>
<td>CONDITIONED RESPONSE</td>
<td>CONFORMITY</td>
</tr>
<tr>
<td>BT *RESPONSE(BIOLOGY)</td>
<td>CONFRONTATION</td>
</tr>
<tr>
<td>CONDITIONING(LEARNING)</td>
<td>CONGENITAL ABNORMALITIES</td>
</tr>
<tr>
<td>BT *LEARNING</td>
<td>BT ABNORMALITIES</td>
</tr>
<tr>
<td>CONDUCTION BANDS</td>
<td>CONGESTION</td>
</tr>
<tr>
<td>BT ENERGY BANDS</td>
<td>CONGO RIVER</td>
</tr>
<tr>
<td>BT</td>
<td>BT *RIVERS</td>
</tr>
<tr>
<td>CONDUCTIVE LIQUIDS</td>
<td>CONGRESS</td>
</tr>
<tr>
<td>BT LIQUIDS</td>
<td>(B1/08) - Legislature of the United States consisting of the Senate and the House of Representatives</td>
</tr>
<tr>
<td>CONDUCTIVITY</td>
<td>BT *UNITED STATES GOVERNMENT</td>
</tr>
<tr>
<td>BT PHYSICAL PROPERTIES</td>
<td>NT HOUSE OF REPRESENTATIVES</td>
</tr>
<tr>
<td>N *ELECTRICAL CONDUCTIVITY</td>
<td>SENATE</td>
</tr>
<tr>
<td>THERMAL CONDUCTIVITY</td>
<td>CONICAL ANTENNAS</td>
</tr>
<tr>
<td>CONDUIT PLIERS</td>
<td>BT *BROADBAND ANTENNAS</td>
</tr>
<tr>
<td>BT PLIERS</td>
<td>NT BICONICAL ANTENNAS</td>
</tr>
<tr>
<td>CONDUITS</td>
<td>DISCONE ANTENNAS</td>
</tr>
<tr>
<td>CONFERENCING(COMMUNICATION)</td>
<td>CONICAL BODIES</td>
</tr>
<tr>
<td>BT COMMUNICATION AND RADIO SYSTEMS</td>
<td>BT BODIES</td>
</tr>
<tr>
<td>CONFIDENCE LEVEL</td>
<td>GEOMETRIC FORMS</td>
</tr>
<tr>
<td>CONFIDENCE LIMITS</td>
<td>NT FRUSTUMS</td>
</tr>
<tr>
<td>BT *STATISTICAL ANALYSIS</td>
<td>CONICAL NOZZLES</td>
</tr>
<tr>
<td>CONFIDENCE LIMITS</td>
<td>BT NOZZLES</td>
</tr>
<tr>
<td>BT MANAGEMENT</td>
<td>CONICAL SCANNING</td>
</tr>
<tr>
<td>CONFIGURATIONS</td>
<td>BT SCANNING</td>
</tr>
<tr>
<td>NT *AERODYNAMIC CONFIGURATIONS</td>
<td>CONICAL WINGS</td>
</tr>
<tr>
<td>ANTENNA CONFIGURATIONS</td>
<td>BT *DELTA WINGS</td>
</tr>
<tr>
<td>COAXIAL CONFIGURATIONS</td>
<td>CONJUGATED PROTEINS</td>
</tr>
<tr>
<td>CRUCIFORM CONFIGURATIONS</td>
<td>USE PROTEINS(CONJUGATED)</td>
</tr>
<tr>
<td>*SHAPE</td>
<td>CONJUNCTIVITIS</td>
</tr>
<tr>
<td>*SUE CONFIGURATION</td>
<td>BT *EYE DISEASES</td>
</tr>
<tr>
<td>CONFINED ENVIRONMENTS</td>
<td>CONNECTICUT</td>
</tr>
<tr>
<td>Restricted or isolated environments involving any number of people, such as in spacecraft, submarines, or bomb shelters</td>
<td>BT *NEW ENGLAND</td>
</tr>
<tr>
<td>BT ENVIRONMENTS</td>
<td>CONNECTICUT RIVER</td>
</tr>
<tr>
<td>CONFINEMENT(GENERAL)</td>
<td>BT *RIVERS</td>
</tr>
<tr>
<td>NT CONFINEMENT(NUCLEAR REACTORS)</td>
<td>CONNECTING RODS</td>
</tr>
<tr>
<td>CONFINEMENT(NUCLEAR REACTORS)</td>
<td>Systems or equipment that provide total isolation of hazardous materials in case of reactor accidents</td>
</tr>
<tr>
<td>BT CONFINEMENT(GENERAL)</td>
<td>NUCLEAR REACTORS</td>
</tr>
<tr>
<td>CONNECTORS</td>
<td>NT *ELECTRIC CONNECTORS</td>
</tr>
<tr>
<td>NT CONSUMER PROBLEMS</td>
<td>CONSUMABLE ELECTRODE PROCESS</td>
</tr>
<tr>
<td>CONSUMERS</td>
<td>BT *ARC MELTING</td>
</tr>
<tr>
<td>NT CONSUMER PROBLEMS</td>
<td>CONSUMERS</td>
</tr>
<tr>
<td>CONSUMPTION</td>
<td>NT ALCOHOL CONSUMPTION</td>
</tr>
<tr>
<td>ENERGY CONSUMPTION</td>
<td>FOOD CONSUMPTION</td>
</tr>
<tr>
<td>*FUEL CONSUMPTION</td>
<td>OIL CONSUMPTION</td>
</tr>
<tr>
<td>OXYGEN CONSUMPTION</td>
<td>CONTACT FUZES</td>
</tr>
<tr>
<td>USE IMPACT FUZES</td>
<td>CONNECT CONTACT LENSES</td>
</tr>
<tr>
<td>(84-120) - A thin lens fitted over the cornea to correct defects of vision</td>
<td>BT *OPTICAL LENSES</td>
</tr>
</tbody>
</table>
COMPRESSION IGNITION
BT *IGNITION

COMPRESSION IGNITION ENGINES
BT *INTERNAL COMBUSTION ENGINES
NT DIESEL ENGINES

COMPRESSION MOLDING
BT *MOLDING TECHNIQUES

COMPRESSION RATIO
BT RATIO

COMPRESSION SHOCK
USE SHOCK WAVES

COMPRESSION PROPERTIES
RESPONSE TO COMPRESSION LOADING
IF COMPRESSIBILITY
COMPRESSIVE STRENGTH
BT *MECHANICAL PROPERTIES
NT BEARING STRENGTH

COMPRESSION STRENGTH
USE COMPRESSION PROPERTIES

COMPRESSOR BLADES
BT *ROTOR BLADES(TURBOMACHINERY)
NT AXIAL FLOW COMPRESSOR BLADES

COMPRESSOR COMPONENTS
(BT 12)
IF COMPRESSOR PARTS
BT COMPRESSORS

COMPRESSOR NOISE
BT *MACHINERY NOISE

COMPRESSOR PARTS
USE COMPRESSOR COMPONENTS

COMPRESSOR ROTORS
BT ROTORS

COMPRESSOR STATORS
BT STATORS

COMPRESSORS
NT AIR COMPRESSORS
COMPRESSOR COMPONENTS
GAS COMPRESSORS
HIGH PRESSURE COMPRESSORS
MIXED FLOW COMPRESSORS
REFRIGERANT COMPRESSORS
*ROTARY COMPRESSORS
*SUPERCHARGERS

COMPTON SCATTERING
BT *GAMMA RAY SCATTERING

COMPTROLLERS
BT FINANCE

COMPUTATIONAL LINGUISTICS
BT LINGUISTICS
NT MACHINE TRANSLATION

COMPUTATIONS
BT *MATHEMATICAL ANALYSIS

COMPUTER AIDED DESIGN
BT COMPUTER APPLICATIONS

COMPUTER AIDED DIAGNOSIS
BT DIAGNOSIS(GENERAL)

COMPUTER AIDED INSTRUCTION
BT COMPUTER APPLICATIONS
*TEACHING METHODS

COMPUTER AIDED MANUFACTURING
(BT 12)
THE USE OF COMPUTERS TO COMMUNICATE WORK INSTRUCTIONS
TO AUTOMATE MACHINERY FOR THE HANDLING AND PROCESSING NEEDED
TO PRODUCE A WORKPLACE

COMPUTER APPLICATIONS
NT COMPUTER AIDED DESIGN
COMPONENTS
*COMPUTER AIDED SIMULATION
MEDICAL COMPUTER APPLICATIONS

COMPUTER ARCHITECTURE
BT *COMPACTS

COMPUTER COMMUNICATIONS
BT COMMUNICATION AND RADIO SYSTEMS

COMPUTER FILES
BT *FILES(RECORDS)

COMPUTER GRAPHICS
BT DISPLAY SYSTEMS
GRAPHICS

COMPUTER LOGIC
BT LOGIC

COMPUTER OPERATORS
BT *OPERATORS(PERSONNEL)

COMPUTER PERSONNEL
BT PERSONNEL
NT PROGRAMMERS

COMPUTER PRINTOUTS

COMPUTER PROGRAM DOCUMENTATION
BT COMPUTER PROGRAMS
DOCUMENTS

COMPUTER PROGRAM RELIABILITY

COMPUTER PROGRAM VERIFICATION

COMPUTER PROGRAMMING
IF CODING(COMPUTERS)
PROGRAMMING(COMPUTERS)
BT COMPUTER PROGRAMS
NT AUTOMATIC PROGRAMMING
CONTROL SEQUENCES
DEBUGGING(COMPUTERS)
MACHINE CODING
MACROPROGRAMMING
MICROPROGRAMMING

COMPUTER PROGRAMS
NT COMPILERS
*PROGRAMMING LANGUAGES
SUBROUTINES

COMPUTERIZED SIMULATION
BT COMPUTER APPLICATIONS
*MATHEMATICAL MODELS
NT ANALOG SIMULATION
DIGITAL SIMULATION
HYBRID SIMULATION

COMPUTERIZED TOMOGRAPHY

COMPUTERS
BT *DATA PROCESSING EQUIPMENT
NT ANALOG COMPUTERS
ASYNCHRONOUS COMPUTERS
CENTRAL PROCESSING UNITS
COMPUTER ARCHITECTURE
DIGITAL COMPUTERS
FIRE CONTROL COMPUTERS
GUIDANCE COMPUTERS
GUIDED MISSILE COMPUTERS
HYBRID COMPUTERS
INPUT OUTPUT DEVICES
MEMORY DEVICES
MINICOMPUTERS
MINICOMPUTERS
NAVIGATION COMPUTERS
SUPERCOMPUTERS

CONCRETE
BT *CONSTRUCTION MATERIALS
NT *REINFORCED CONCRETE
SHOTCRETE

CONCERNED
BT CONCERNED

CONCENTRATED FOODS
BT FOOD

CONCENTRATION(CHEMISTRY)
BT CONCENTRATION(COMPOSITION)

CONCENTRATION(COMPOSITION)
NT CONCENTRATION(CHEMISTRY)
DEUTERIUM ION CONCENTRATION

CONCRETE
BT CONSTRUCTION MATERIALS
NT *REINFORCED CONCRETE
SHOTCRETE

CONCERNED
BT CONCERNED

CONDENSATION
CHANGE OF STATE FROM GAS OR VAPOR TO LIQUID OR SOLID; ALSO
METEOROLOGICAL PHENOMENON
EXCLUDES CHEMICAL REACTION
NT *ATMOSPHERIC CONDENSATION
CONDENSATION NUCLEI

CONDENSATION NUCLEI
BT CONDENSATION

CONDENSATION REACTIONS
IF REFORMATION REACTIONS
BT CHEMICAL REACTIONS
NT GRIGNARD REACTIONS

CONDENSATION TRAILS
IF CONTRAILS
EXHAUST TRAILS
VAPOR TRAILS

CONDENSERS
BT TUBES

CONDENSERS(LIQUEIFIERS)
NT REFRIGERANT CONDENSERS

59
SUMMARY OF RESULTS

A major research effort previously supported by the Army Research Office at the Colorado School of Mines had led to the identification of the microstructural features associated with the fracture surface morphologies of hardened medium and high carbon steels. The findings were based on impact and fracture toughness testing with CVN and compact tension specimens. The work related carbide structures produced during the austenitizing, quenching and tempering stages of heat treatment to various fracture morphologies and levels of toughness.

The present contract was dedicated to extending the fracture studies to fatigue of hardened steels and to evaluating the effects of tempered martensite-austenite composite microstructures on the plastic flow and strain hardening of medium and carbon steels.

Table I lists the personnel associated with the present ARO contract and Table II lists the theses and papers which have been prepared as a result of the research efforts of the personnel involved in the ARO program. The following paragraphs summarize the results of the various component investigations of the program.

<table>
<thead>
<tr>
<th>Name</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>J. Bruce Kelley</td>
<td>M.S. Candidate</td>
</tr>
<tr>
<td>Kenneth P. Hayes</td>
<td>M.S. Candidate</td>
</tr>
<tr>
<td>Mark A. Zaccone</td>
<td>M.S. Candidate</td>
</tr>
<tr>
<td>Craig Van Thyne</td>
<td>M.S. Candidate</td>
</tr>
<tr>
<td>Gu Baozhu</td>
<td>Visiting Scientist</td>
</tr>
<tr>
<td>J.M.B. Losz</td>
<td>Beijing Aeronotical Institute</td>
</tr>
<tr>
<td>George Krauss</td>
<td>Postdoctoral Associate</td>
</tr>
<tr>
<td></td>
<td>Principal Investigator</td>
</tr>
</tbody>
</table>

Kelley (2,6) performed four-point bending fatigue studies of a series of 0.8C steels with varying amounts of chromium. The various amounts of chromium in the alloys were designed to change austenite-carbide boundaries during austenitizing, but the major effect of increasing chromium content was to lower M_s and increase the amount of retained austenite in the tempered martensite-austenite microstructures of heat treated specimens. Reheating treatments produced dispersions of retained carbide particles, similar to those studied by Brown (10) and Hayes (1), and resulted in finer martensite-austenite structures. The fatigue tests showed that improved low cycle fatigue life directly correlated with increasing amounts of retained austenite and microstructural refinement.
Zaccone (3,13) examined the plastic deformation and strain hardening of the same steels tested by Kelley in an effort to understand the role retained austenite plays in the tempered martensite-austenite composite microstructures. He examined the plastic response in both the microstrain and macrostrain regimes by compression testing. Strain gages were used to follow the microstrain deformation behavior. Three stages of deformation behavior were found. The first stage was directly dependent on the amount and morphology of the retained austenite, with the specimens with the most retained austenite having the lowest elastic limits. The second stage was independent of the amount of retained austenite, while the third stage, marked by a decrease in the rate of decrease in strain hardening rates, was again dependent on austenite content. The specimens with the highest austenite content had the highest strain hardening rates, behavior which was shown to be a result of strain-induced transformation of austenite to martensite. It is high strain hardening rates associated with microstructures with high retained austenite contents which explain the results of Kelley's fatigue testing. Instability and crack initiation at embrittled austenite grain boundaries is delayed in specimens with high retained austenite content. Examination of plastic zones at points of fatigue crack initiation confirm that substantial strain induced transformation of retained austenite is associated with fatigue crack development.

The morphology and fine structure of tempered martensites in medium and high carbon steel (5,7-0) were further characterized. In particular, the very fine transition carbide distributions, dislocation substructures, and retained austenite contents (11,12) of a series of medium carbon 41XX steels containing 0.3, 0.4, and 0.5 pct carbon were evaluated by transmission electron microscopy and related to deformation and fracture behavior. The flow stresses of tempered martensite in steels containing 10.3 to 0.5 pct carbon was linearly dependent on carbon content. Austenite grain size, martensite lath size and martensite packet size were constant. However, the density of transition carbides increased, and spacing of the carbides decreased, and retained austenite increased with increasing carbon content. Strain hardening and flow stresses in the microstrain regime were dependent on retained austenite and stress controlled transformation of the austenite to martensite. At higher strains, the substructure of the tempered martensite controlled deformation, with the higher carbon structures exhibiting higher strain hardening rates consistent with the finer spacings of the transition carbides in these structures.

The study (4) on the boron-containing carburizing steels is still in progress. The work is being done in cooperation with the ASME Gear Research Institute. Gears have been fabricated and heat treated and single teeth have been subjected to low cycle bending fatigue. The boron containing steels showed low cycle fatigue resistance intermediate to that of carburized 8627 and 4820 gear teeth. All steels failed by intergranular fatigue crack initiation, apparently in association with oxides produced during gas carburizing.

The details of the various investigations performed in the ARO program are or will be given in the theses and papers listed in Table II.
TABLE II
List of Publications Based on Research Supported by
ARO Contract DAAG29-84-K-0127
July 1984 through February 1987

THESES

TECHNICAL PAPERS

TABLE II (continued)

END
DATE
FILMED
DEC.
1987