REMARK ON THE MULTIPLE MIELER INTEGRAL (U) NORTH CAROLINA UNIV AT CHAPEL HILL CENTER FOR STOCHASTIC PROCESSES R BRIGOLA MAR 87 TR-179 AFOSR-TR-97-1099 UNCLASSIFIED F49620-82-C-6448 12/3
A short proof is given for Ito's result that the multiple Wiener integral can be written as an iterated stochastic integral, using the martingale property of Brownian motion and a simple property of symmetric tensor products of the L^2-space.
REMARK ON THE MULTIPLE WIENER INTEGRAL

by

R. Brigola
University of Regensburg
Fed. Rep. of Germany
and
Center for Stochastic Processes
University of North Carolina
Chapel Hill, NC

Abstract

A short proof is given for Ito's result that the multiple Wiener integral can be written as an iterated stochastic integral, using the martingale property of Brownian motion and a simple property of symmetric tensor products of the L^2-space.

This research has been supported by AFOSR Contract No. F 49620 82 C 0009
1. Introduction

The important fact of the representability of L^2-Brownian functionals as an Ito stochastic integral may be proved by using the homogeneous chaos decomposition of the L^2-space of Brownian motion and showing as main step, that the multiple Wiener integral can be written as an iterated Ito stochastic integral (cf. G. Kallianpur [4]).

For the proof of this latter fact, usually it is referred to Ito's way (cf. [2]) to showing the representation

$$I_n(t) = n! \int_0^t dW_t \left(\int_0^{t_1} dW_{t_1} \left(\int_0^{t_2} dW_{t_2} \cdots \int_0^{t_{n-1}} dW_{t_{n-1}} f(t_1, \ldots, t_n) \right) \right),$$

(where I_n denotes the n-fold multiple Wiener integral, $(W_t)_{t \in [0,1]}$ Brownian motion, $f : [0,1]^n \to \mathbb{R}$ a special elementary function of the form

$$f = \sum_{i_1, \ldots, i_n = 1}^p a_{i_1, \ldots, i_n} 1_{A_{i_1} \times \ldots \times A_{i_n}} , \quad A_1, \ldots, A_p \text{ a partition of } [0,1]$$

into Borel measurable subsets, $a_{i_1, \ldots, i_n} = 0$ if two of the indices i_1, \ldots, i_n are equal, and f_0 the symmetrization of f)

and to extending this formula by the usual technique of approximation and the properties of multiple Wiener integral and the Ito stochastic integral.

Since it appears intricate to calculate the above iterated Ito stochastic integral for the symmetrization even of a special elementary function, I apologize the following short proof, which uses the martingale properties of Brownian motion, a well-known formula transferring different forms of Hermitian polynomials into each other, and a simple property of symmetric tensor products.
2. Representation of the multiple Wiener integral as an iterated Itô stochastic integral

We will use the following notations:

\(\otimes^n L^2((0,1)) \) the n-fold tensor product of the space \(L^2((0,1), \lambda) \), \(\lambda \) the Lebesgue measure on \([0,1]\)

\(\otimes_0^n L^2((0,1)) \) \(\text{cl-lin} \{ f_1 \otimes_0 ... \otimes_0 f_n : f_i \in L^2([0,1]), 1 \leq i \leq n \} \), the corresponding symmetric tensor product, where

\[
\sum_{n=1}^{n!} \sum_{\pi} f_{\pi} = \frac{1}{n!} \sum_{\pi} f_{\pi} \otimes f_{\pi}
\]

\(\pi = (\pi_1, ..., \pi_n) \) a permutation of the integers \(\{1, ..., n\} \), \(\text{cl-lin} A \) the closed linear span of the set \(A \).

\(L_0^n([0,1]^n) \) denotes the symmetric \(L^2 \)-functions on \([0,1]^n\).

The (unnormalized) n-fold multiple Wiener integral \(I_n \) for a special elementary function \(f \) of the form

\[
f = \sum_{i_1, ..., i_n = 1}^{a} a_{i_1, ..., i_n} \otimes L_{A_{i_1}} \otimes ... \otimes L_{A_{i_n}}
\]

is given by

\[
I_n(f) = \sum_{i_1, ..., i_n} W(A_{i_1}) ... W(A_{i_n})
\]

where

\[
W(A) = \int_0^1 \lambda A \, dW_t
\]

is the stochastic measure corresponding to the Brownian motion \((W_t)_{t \in [0,1]} \)

\((A_1, ..., A_p \, \text{a partition of } [0,1] \, \text{into Borel measurable subsets, } a_{i_1, ..., a_n} = 0 \, \text{if two of the indices } i_1, ..., i_n \, \text{are equal}) \).

Identifying \(\otimes_0^n L^2((0,1)) \) with \(L_0^n([0,1]^n) \), it is clear that the symmetric tensor \(\otimes^n g \) \((g \in L^2([0,1]) \) corresponds to \(f \in L_0^n([0,1]^n) \), \(f(t_1, ..., t_n) = g(t_1)g(t_2)...g(t_n) \).
Lemma 1.

Let \(h_n(x) = (-1)^n \frac{1}{(n!)^\frac{1}{2}} e^{\frac{x^2}{2}} \left(\frac{d}{dx} \right)^n e^{-\frac{x^2}{2}} \)
be the n-th normalized Hermite polynomial and

\[H_n(t,x) = \frac{(t-x)^n}{n!} e^{\frac{x^2}{2}} \left(\frac{d}{dx} \right)^n e^{-\frac{x^2}{2}} \]

Then

\[H_n(t,x) = \frac{t^n}{n!} (n!)^\frac{1}{2} h_n\left(\frac{x}{t} \right) \]

This formula is well-known.

Lemma 2.

\(\bigotimes_o^n L^2([0,1]) = \text{cl} \cdot \text{lin} \{ \bigotimes_o^n g : g \in L^2([0,1]) \} \)

Proof.

It is to show that for every \(h_1 \bigotimes_o \ldots \bigotimes_o h_n \in \bigotimes_o^n L^2([0,1]) \) there exist \(g_1, \ldots, g_r \in L^2([0,1]), \lambda_1, \ldots, \lambda_r \in \mathbb{R}, r \in \mathbb{N} \) such that

\[h_1 \bigotimes_o \ldots \bigotimes_o h_n = \sum_{i=1}^r \lambda_i \bigotimes_o^n g_i \]

We proceed by induction:

i) Let \(h_1 \bigotimes_o \ldots \bigotimes_o h_n \) be of the form \(h_1^{k_o} \bigotimes_o h_2^{n-k} \), where \(h_1^{k_o} := \bigotimes_o^k h_1 \).

Consider \(h_1^{k_o} \bigotimes_o h_2^{n-k} \) as tensor of the symmetric tensor algebra \(S(E) \) on the vector space \(E := \text{lin} \{ h_1, h_2 \} \).

\(S(E) \) is isomorphic to the polynomial algebra \(\mathbb{R}[x_1, x_2] \) over \(\mathbb{R} \) and

\(h_1^{k_o} \bigotimes_o h_2^{n-k} \) corresponds to \(x_1^k x_2^{n-k} \).

The polynomials \(\{ x_1^k x_2^{n-k} : k = 0, \ldots, n \} \) form a basis for the homogeneous polynomials of degree \(n \) in two variables.

Consider \(e_n := (a_{11} x_1 + a_{12} x_2)^n \) =

\[= \sum_{k=0}^n \left(\begin{array}{c} n \\ k \end{array} \right) a_{11}^k a_{12}^{n-k} x_1^k x_2^{n-k} \]

The determinant of the matrix

\[\begin{vmatrix} \left(\begin{array}{c} n \\ i \end{array} \right) a_{ij}^{n-i} & \left(\begin{array}{c} n \\ i \\ j \end{array} \right) a_{ij}^{n-i-1} & \ldots & \left(\begin{array}{c} n \\ i \\ j \ldots \end{array} \right) a_{ij}^{n-i-j} \end{vmatrix}_{i=1, \ldots, n} \]

is a polynomial in \(a_{ij} (0 \leq i \leq n, 1 \leq j \leq 2) \), which is not identically zero.
Thus we may fix suitable a_i, such that this determinant is not zero, i.e. there exist linearly independent polynomials e_0^n, \ldots, e_n^n of degree n, which span $\mathbb{R}_n[x_1, x_2]$.

Thus there exist $\lambda_1, \ldots, \lambda_n$ with

$$x_1^k x_2^{n-k} = \sum_{i=0}^{n} \lambda_i e_i^n.$$

The polynomial e_0^n corresponds in $\mathcal{S}(E)$ to $\otimes^o g$, where

$$g_i = (a_i h_1 + a_i h_2).$$

ii) Now identify $h_1 \otimes \ldots \otimes h_n$ with a tensor in $\mathcal{S}(E)$, $E = \text{lin} \{h_1, \ldots, h_n\}$, and thus with a polynomial $x_1^{k_1} x_2^{k_2} \ldots x_n^{k_n}$, where

$$\sum_{i=1}^{n} k_i = n.$$

By induction we assume

$$x_1^{k_1} x_2^{k_2} \ldots x_n^{k_n} = \sum_{i=0}^{r} \lambda_i x_1^{k_1} e_i^n.$$

The elements of the sum are polynomials of degree n in two variables (with e_i linear, homogeneous in x_2, \ldots, x_n); thus they can be represented as linear combinations of certain f^n_j (with f_j linear, homogeneous in x_1, \ldots, x_n). To f^n_j correspond $\otimes^o g \in \mathcal{S}(E)$, which give the representation of $h_1 \otimes \ldots \otimes h_n$ we have been looking for.

Lemma 3.

Let (Ω, F, P) be a probability space, $(F_t)_{t \geq 0}$ a right-continuous filtration, $X_{t \geq 0}$ a continuous semi-martingale.

Then

$$\prod_{t=0}^{t} dX_{t_1} \prod_{t=0}^{t} dX_{t_2} \ldots \prod_{t=0}^{t} dX_{t_n} = H_n \left(<X, X>_t, X_t \right).$$

For the proof of this result, see for example [1].

Now Ito's result can be proved very easily:
Proposition (Ito [2]).

The multiple Wiener integral can be written as an iterated stochastic integral, i.e. for \(f \in L^2([0,1]^n) \):

\[
I_n(0) = n! \int_0^1 dW_t \left(\int_0^1 dW_{t_2} \left(\cdots \int_0^1 dW_{t_n} f_0(t_1, \ldots, t_n) \right) \right),
\]

where \(f_0 \) is the symmetrization of \(f \).

Proof. By the linearity of stochastic integrals, the inequality

\[
\left\| \left(\int_0^1 dW_t \left(\int_0^1 dW_{t_2} \left(\cdots \int_0^1 dW_{t_n} g(t_1) \cdots g(t_n) \right) \right) \right) \right\|^2 \leq \left\| g \right\|^{2n}
\]

\((g \in L^2([0,1])) \), and by the fact (cf. [4] and [5]), that the n-fold multiple Wiener integral induces an isometric isomorphism \(\mathcal{J}_n \) from \(\otimes_0^n L^2([0,1]) \) onto the n-th homogeneous chaos in \(L^2(\Omega, F^w, P) \), such that for \(f(t_1, \ldots, t_n) = g(t_1) \cdots g(t_n), g \in L^2([0,1]) \):

\[
I_n(0) = (n!)^n J_n (\otimes^n g) = (n!)^n \left\| g \right\| n \int_0^1 \frac{g(t)}{\left\| g \right\|} dt,
\]

it suffices to show the assertion for functions \(f \) of the form \(f(t_1, \ldots, t_n) = g(t_1) \cdots g(t_n) \) for \(g \in L^2([0,1]) \), by Lemma 2.

Since

\[
\left\| g \right\| = < \int_0^t g(s) dW_s >, \quad \text{(cf. (1))}
\]

we have by Lemma 1:

\[
I_n(0) = n! H_n \left(< \int_0^t g(s) dW_s >, \int_0^1 g(s) dW_s \right),
\]

and Lemma 3 proves the assertion.
Acknowledgement.

I would like to express my gratitude to Professor G. Kallianpur for his invitation to work at the Center for Stochastic Processes at UNC, Chapel Hill.

References

END
12 - 87
DTIC