Let \((X_t)\) be a Markov process, not assumed to be time homogeneous. It is well known that \(X_t = (t, X_t)\) is a time homogeneous Markov process. Let \(A\) be its generator. The Feynman-Kac's formula for \(X_t\) takes the following form if the equation

\[
(1.1) \quad A\psi + \psi = 0
\]

admits a solution \(\psi\), then \(\psi\) has the representation, for \(s < t\):

\[
(1.2) \quad \psi(s, X_s) = E \left[\psi(t, X_t) \exp \left(\int_s^t c(u, X_u) \, du \right) q(X_s) \right].
\]

We prove this under general conditions on \((X_t)\).
ON THE FEYNMAN-KAC'S FORMULA AND ITS APPLICATIONS TO FILTERING THEORY

by

Rajeeva L. Karandikar

Technical Report No. 161

October 1986
ON THE FEYNMAN–KAC'S FORMULA AND ITS APPLICATIONS TO FILTERING THEORY

RAJEEVA L. KARANDIKAR
Center for Stochastic Processes
University of North Carolina
and
Indian Statistical Institute
7, S.J.S. Sansanwal Marg, New Delhi

Technical Report No. 161 (UNC)
Technical Report No. 8408 (ISI)

Research partially supported by the Air Force Office of Scientific Research Contract #F49620 85 C 0144 and by the Indian Statistical Institute.
ON THE FEMMAN-KAC'S FORMULA AND ITS APPLICATIONS TO FILTERING THEORY

Rajeeva L. Karandikar
Indian Statistical Institute
7, S.J.S. Sansanwal Marg, New Delhi
and
Center for Stochastic Processes
University of North Carolina

1. Introduction: Let \((X_t)\) be a Markov process, not assumed to be time homogeneous. It is well known that \(\mathcal{X}_t = (t, X_t)\) is a time homogeneous Markov process. Let \(A\) be its generator. The Feynman-Kac's formula for \(X_t\) takes the following form if the equation

\[Av + cv = 0 \tag{1.1} \]

admits a solution \(v\), then \(v\) has the representation, for \(s < t\)

\[v(s, X_s) = E \left[v(t, X_t) \exp \left(\int_s^t c(u, X_u) du \right) | \sigma(X_s) \right] . \tag{1.2} \]

We prove this under general conditions on \((X_t)\).

Then we come to the question of existence of solution to (1.1). We show that under some regularity conditions on \((X_t)\), (1.1) has a solution for a rich class of boundary conditions. This implies that the 'dual' equation to (1.1) admits a unique solution. The 'dual' equation is an equation for measures on the state space of \((X_t)\) and its unique solution is the distribution of \(X_t\) under an absolutely continuous change of the underlying probability measure by a multiplicative functional.

These results on the measure valued equations significantly extend results given in [3] on the conditional distributions for the nonlinear filtering problem (in the white noise approach).
2. Let \((S, \mathcal{S})\) be a measurable space. Let \((X_t)\) be an \((S, \mathcal{S})\) valued Markov process on a probability space \((\Omega, \mathcal{F}, \mathbb{P})\) with transition probability function \(P\), i.e.

\[
\{w : X_t(w) \in B\} \in \mathcal{F}
\]

and

\[
E_x \left[1_B(X_t) | F_s \right] = P(s, x, t-s, B) \quad \text{a.s.} \quad w
\]

for all \(0 \leq s < t < \infty, B \in \mathcal{S}\). Here, the function \(P(s, x, t, B)\) on \(\{0 \leq s < t < \infty, x \in S, B \in \mathcal{S}\}\) is assumed to satisfy the following conditions.

(2.2) For \(s > 0, t > 0, x \in S; P(s, x, t, \cdot)\) is a countably additive probability measure on \((S, \mathcal{S})\).

(2.3) For \(s > 0, x \in S, B \in \mathcal{S}; P(s, x, 0, B) = 1_B(x)\).

(2.4) For \(t > 0, B \in \mathcal{S}; (s, x) \mapsto P(s, x, t, B)\) is a \(B([0, \infty)) \otimes \mathcal{S}\) measurable function \((\mathbb{B}(E)\) denotes the Borel \(\sigma\)-field of a topological space \(E\) and \(\otimes\) denotes the product of \(\sigma\)-fields).

(2.5) For \(s > 0, u \geq 0, t \geq 0, x \in S, B \in \mathcal{S}\) we have

\[
\int_S P(s+t, x, u, B) P(s, x, t, dz) = P(s, x, t+u, B)
\]

Throughout, \(F_t^X\) denotes the smallest \(\sigma\)-field with respect to which the family \(\{X_u : 0 \leq u \leq t\}\) is measurable. We also assume that

(2.6) the process \((X_t)\) is \(F_t^X\) - progressively measurable, i.e. for all \(t_0 < \infty\), the mapping \((t, w) \mapsto X_t(w)\) from \([0, t_0] \times \Omega \to S\) is \(\mathbb{B}(\Omega) \otimes \mathbb{B}(X_t)\) measurable.
Let $\hat{S} = \mathbb{R} \times S$, $\hat{S} = B(\mathbb{R}) \otimes S$ and \mathcal{Y} be the class of bounded real valued measurable functions on \hat{S}.

Definition: A sequence $\{ f_k \} \subseteq \mathcal{Y}$ is said to converge weakly to $f \in \mathcal{Y}$, written as $w-lim f_k = f$, if $f_k(x)$ is uniformly bounded and for each $x \in S$, $f_k(x)$ converges to $f(x)$.

For $f \in \mathcal{Y}$, $t \geq 0$, let $T_t f : S \rightarrow X$ be defined by

$$
(T_t f)(s,x) = \int f(s+t,z) P(s,x,t,dz), \quad (s,x) \in \hat{S}.
$$

Using the properties of P, it can be checked that $T_t f \in \mathcal{Y}$ and that for $u \geq 0$, $t \geq 0$,

$$
T_u \left[T_t f \right] = T_{t+u} f, \quad f \in \mathcal{Y}.
$$

Thus $\{ T_t : t \geq 0 \}$ is a semigroup of operators (from \mathcal{Y} into itself).
Remark: It is well known and easy to check that $\hat{X}_t = (t, X_t)$ is a Markov process with stationary transition probability function \hat{P} given by

$$\hat{P}(t, (s,x), B) = P(s,x,t,B(s+t)), \quad B \in \hat{S}$$

where B^u denotes the u-section of $B \subseteq S$. The semigroup $(T_t: t \geq 0)$ defined above is the usual semigroup associated with the transition function P (as in [2], section 2.1).

We will now recall the definition and some properties of the weak generator A of $(T_t: t \geq 0)$. Let \mathcal{D}_0 be given by

$$\mathcal{D}_0 = \{ f \in \hat{V} : \text{w-lim}_{t \to 0} T_t f = f \}$$

Definition: Let \mathcal{D}_A be the class of $f \in \hat{V}$ for which the

$$(2.9) \quad \text{w-lim}_{t \to 0} \frac{T_t f - f}{t} = g$$

exists and belongs to \mathcal{D}_0 and for $f \in \mathcal{D}_A$, define $Af = g$, where g is given by (2.9).

The following properties are easy to prove. We will only state them here. For a proof see chapter 1 in [2].

$$(2.10) \quad T_t(\mathcal{D}_A) \subseteq \mathcal{D}_A \quad \text{and for} \quad f \in \mathcal{D}_A, \quad A(T_t f) = T_t Af$$

$$(2.11) \quad \text{For} \quad f \in \mathcal{D}_0, \quad t + (T_t f)(s,x) \text{ is a right continuous function for all} \quad (s,x) \in \hat{S},$$

$$(2.12) \quad \text{For} \quad f \in \mathcal{D}_A, \quad \text{we have, for all} \quad (s,x) \in \hat{S}, \quad t \geq 0 \quad (T_t f)(s,x) = f(s,x) + \int_0^t (T_u Af)(s,x) du$$
(2.13) Given \(f \in L_1 \) there exists a sequence \(\{ f_k \} \subseteq \mathcal{D}_A \) such that

\[
\lim_{k \to \infty} f_k = f.
\]

In (2.13) above, \(f_k \) can be taken to be

\[
f_k(s,x) = \int_0^\infty k \, e^{-kt} (T_t f)(s,x) \, dx.
\]

The property (2.12) has the following important consequence.

Proposition 1: For \(f \in \mathcal{D}_A \), \(M_t \) given by

(2.14) \[M_t(w) = f(t, X_t(w)) - \int_0^t (Af)(u, X_u(w)) \, du \]

is a martingale with respect to the \(\sigma \)-fields \(\mathcal{F}_t^X \).

Proof: The progressive measurability of \((X_t) \) implies the \(\mathcal{F}_t^X \)-measurability of \(M_t \). Since \(f, Af \in \mathcal{D}_A \), they are bounded and hence \(M_t \) is itself bounded for each \(t \). Now (2.1) implies

(2.15) \[E_\omega \left[f(t, X_t) \mathcal{F}_s^X \right] = \int f(t, z) \, P(s, X_s, t-s, dz) \]

for \(s \leq t \). Similarly for \(s \leq u \), we have

(2.16) \[E_\omega \left[(Af)(u, X_u) \mathcal{F}_s^X \right] = (T_{u-s} Af)(s, X_s). \]

Using (2.11), (2.12), (2.15) and (2.16), it can be checked that

\[E_\omega \left[M_t - M_s \mathcal{F}_s^X \right] = 0. \]
We now turn our attention to the Feynman-Kac's formula. Our next result is a step in this direction.

Let \(g: [0,t_o] \times S \rightarrow \mathbb{R} \) be a \(\mathcal{B}([0,t_o]) \times \mathbb{R} \) measurable function such that

\[
(2.17) \quad E_w \left[\int_0^t |g(u, X_u)| du \right] < \infty
\]

and for a positive integrable function \(a: [0, t_o] \rightarrow \mathbb{R} \),

\[
(2.18) \quad g(u, x) < a(u) \quad \text{for all } x \in S, u \in [0, t_o].
\]

Fix \(0 < s < t \) and let

\[
(2.19) \quad B_t(w) = \exp \left(\int_s^t g(u, X_u(w)) du \right).
\]

Then we have

Theorem 2: Let \(f \in \mathcal{D}_A \) and \(g \) satisfy (2.17), (2.18). Then

\[
(2.20) \quad Z_t = f(t, X_t) \cdot B_t - \int_s^t \left[(Af)(u, X_u) + g(u, X_u) \right] \cdot B_u du
\]

is an \(\mathcal{F}_t^Y \) martingale for \(t > s \) (where \(B \) is given by (2.19)).

Proof: It is easy to see that \(Z_t \) is \(\mathcal{F}_t^Y \) measurable. The condition (2.18) implies that \(B_t \) is bounded. Since \(f, Af \) are also bounded the condition (2.17) gives the integrability of \(Z_t \). To prove the martingale property, suffices to prove that for \(s < r < t, C \in \mathcal{F}_r^Y \),

\[
(2.20) \quad E_w \left[(Z_t - Z_r) \cdot 1_C \right] = 0.
\]

Let \(f_t(t, w) = f(t, X_t(w)) - \int_t^{t_o} (Af)(u, X_u(w)) du \). Then by Proposition 1, it follows that for \(0 \leq t \leq t_o \)
(2.21) \[E \left[f_1(t,.)|\mathcal{F}^X_t \right] = f(t,X_t) \]

and hence

(2.22) \[E \left[l_c \cdot (Z_t - Z_r) \right] = E \left[1_c \cdot (f_1(t,.)B_t - f_1(r,.)B_r) - \int_r^t ((Af+gf)(u,X_u)du) \right]. \]

Now for each \(\omega \), \(f_1(t,\omega), B_t(\omega) \) are absolutely continuous functions and hence

\[
\begin{align*}
 f_1(t,\omega)B_t(\omega) - f_1(r,\omega)B_r(\omega) &= \int_r^t \frac{d}{du} \left[f_1(u,\omega)B_u(\omega) \right] du \\
 &= \int_r^t \left[f_1(u,\omega)g(u,X_u(\omega))B_u(\omega) \right. \\
 &\quad + (Af)(u,X_u(\omega))B_u(\omega) \left. \right] du.
\end{align*}
\]

Thus

(2.23) \[E \left[f_1(t,.)B_t - f_1(r,.)B_r \right] = \left[E \left[1_c \cdot f_1(u,.)g(u,X_u)B_u \right] du \\
 + E \left[1_c \cdot \int_r^t (Af)(u,.)B_u du \right] \\
 = E \left[1_c \cdot \int_r^t (Af+gf)(u,X_u)du \right]. \]

using (2.21) once again. Now (2.22) and (2.23) give the required equality

\[E \left[l_c (Z_t - Z_r) \right] = 0. \]

Remark: It can be verified that

\[Z_t = M_t B_t - \int_s^t M_u dB_u \]

where \(M \) is given by (2.14). Hence if \(M \) were right continuous, it would follow from the "integration by parts formula for martingale"
(See [5]) that $(Z_t, \frac{X}{t})$ is a martingale. However, in general M_t need not be right continuous and hence we have given a direct proof.

The following is the Feynman-Kac's formula for a time inhomogeneous Markov process.

Theorem 3: Let $0 < t_c < \infty$ be fixed. Let\(c : [0, t_c] \times S \to \mathbb{R} \)
and \(g : S \to \mathbb{R} \) be bounded measurable functions. Suppose that \(v \in \mathcal{D}_A \)
is a solution to

\[
(2.24) \quad [Av + cv](u, x) 1_{\{u < t_c\}} = 0
\]

and

\[
(2.25) \quad v(t_c, x) = g_c(x).
\]

Then \(v \) admits a representation, for \(s < t_c \)

\[
(2.26) \quad v(s, X_s) = E_s \left[g_c(X_{t_c}) \exp \left(\int_s^{t_c} c(u, X_u) du \right) \right] \text{ a.e. } \pi.
\]

Proof: Fix \(s < t_c \). Take \(f = v \) and \(g = c \) in Theorem 2 to obtain that \((Z_t, \frac{X}{t})_{s \leq t \leq t_c} \) is a martingale, where

\[
(2.27) \quad Z_t = v(t, X_t) \exp \left(\int_s^t v(u, X_u) du \right).
\]

Here we have used the fact that \(v \) satisfies (2.24) so that the second term appearing in the expression for \(Z_t \) is zero. Thus

\[
E_s \left[Z_{t_c} \mid \frac{X}{t} \right] = Z_s \quad \text{ a.s. } \pi.
\]

This is same as (2.26) since \(v(t_c, x) = g_c(x) \).
1. In this section we consider the question as to under what conditions \(t, x \), \((X_t) \) does the problem (2.24), (2.25) admit a solution. Of course, if the solution exists, it has to satisfy (2.26) and this gives a clue as to what conditions one should put on \(c_g(x_t) \).

Suppose that \(S \) is a topological space, \(\mathcal{B} \) is its Borel \(\sigma \)-field. Let \(\mathcal{X} \) be the space of all right continuous mappings \(X \) from \([0,\infty)\) into \(S \). We will denote by \(X_t \) the value of \(X \) at \(t \). Let \(S = \sigma(X_t : s < u < t) \). We assume that

\[
\text{(1.1)} \quad \text{for all } \omega, \ X_t(\omega) \in \mathcal{X}
\]

and that for all \((s, x) \in S\), there exists a probability measure \(P_{s, x} \) on \((\mathcal{X}, \mathcal{B})\) such that for \(0 \leq t_s < t_1 < \cdots < t_k, y \in S, A_1, A_2, \ldots, A_k \in \mathcal{B}; k \geq 1 \), we have

\[
\text{(2.2)} \quad P_{t_s, y} (X_{t_1} \in A_1 \cap \cdots \cap X_{t_k} \in A_k) = \prod_{i=1}^{k} P_t (y_i | t_{i-1} \leq y_i \leq t_i, y_{i-1} \in A_1, \ldots, y_{i-1} \in A_{i-1} \cap \cdots \cap y_k \in A_k).
\]

Remark: The main thrust of this assumption is that \(P_{s, x} \) is realized on \(\mathcal{X} \). The relation (2.1) and (3.2) imply that for \(\{t_i\}, \{A_i\} \) as in (3.2), we have

\[
\text{(3.3)} \quad P_\pi \left(\prod_{i=1}^{k} P_t (X_{t_i} | t_{i-1} \leq X_{t_i} \leq t_i, y_{i-1} \in A_1, \ldots, y_{i-1} \in A_{i-1} \cap \cdots \cap y_k \in A_k) \right).
\]

and hence by standard arguments, we have for \(B \in \mathcal{B}_\pi \)

\[
\text{(3.4)} \quad \pi(X \in B | t_t) = \int X \in B \quad \text{a.s. } \pi.
\]

Similarly, it can be proved that for \(s < t, B \in \mathcal{B}_\pi, x \in S \),

\[
\text{(3.5)} \quad P_{s, x}(B | t_t) = P_{t_s, x}(B) \quad \text{a.s. } P_{s, x}.
\]
We are now in a position to prove a 'converse' to the Feynman-Kac's formula.

Theorem 4: Let $0 < t_0 < T$ be fixed. Let $c : \left[0, t_0\right] \times S \rightarrow \mathbb{R}$ be a bounded continuous function. Let $f \in \mathbb{D}_A$. Let $v : S \rightarrow \mathbb{R}$ be defined by

$$v(s, x) = \mathbb{E}_{P_{s, x}} \left[f(t_0, X_t) \exp(\int_s^{t_0} c(u, X_u) \, du) \right], \quad s < t_0$$

$$= f(s, x), \quad s > t_0.$$

Then $v \in \mathbb{D}_A$ and $\Delta v = f_1$ where

$$f_1(s, x) = -c(s, x)v(s, x), \quad s < t_0$$

$$= (\Delta f)(s, x), \quad s > t_0.$$

Proof Since $v(s, x) = f(s, x)$ for $s > t_0$, we have

$$(T_t v)(s, x) = (T_t f)(s, x)$$

for $s > t_0$, $x \in S$, $t > 0$. Hence for $s > t_0$, $x \in S$,

$$\lim_{t \downarrow 0} \frac{(T_t v)(s, x) - v(s, x)}{t} = (\Delta f)(s, x) = f_1(s, x).$$

For $x \in X$, $s < t_0$ let us define

$$C_s(X) = \exp(\int_s^{t_0} c(u, X_u) \, du).$$

Then for $s < t_0$, we have

$$v(s, x) = \mathbb{E}_{P_{s, x}} \left[f(t_0, X_t) C_s(X) \right].$$
For \(s < t_0, \ s + t < t_0, \) we thus have

\[
(T_t \psi)(s, x) = \int \psi(s + t, z) P(s, x, t, ds)
\]

\[
= E_{s, x} [\psi(s + t, X_{s+t})]
\]

\[
= E_{s, x} \left[E_{s+t, X_{s+t}} \left(f(t_o, X_{t_o}) C_{s+t}(X) \right) \right]
\]

\[
= E_{s, x} \left[f(t_o, X_{t_o}) C_{s+t}(X) \right].
\]

by (3.5). Hence, for \(s < t_0, \ x \in S, \ s + t < t_0, \) we have

\[
\frac{(T_t \psi)(s, x) - \psi(s, x)}{t} = E_{s, x} \left[f(t_o, X_{t_o}) \cdot \frac{C_{s+t}(X) - C_s(X)}{t} \right].
\]

For all \(x \in X, \) we have from (3.9)

\[
\lim_{t \to 0} \frac{C_{s+t}(X) - C_s(X)}{t} = -c(s, x) \cdot C_s(X).
\]

Further

\[
\frac{C_{s+t}(X) - C_s(X)}{t} = | -c(s, x) \cdot C_s(X)|
\]

\[
\leq K
\]

where \(K \) depends only on \(t_0 \) and the upper bound of \(|c| \). The dominated convergence theorem gives that for \(s < t_0, \)

\[
\lim_{t \to 0} \frac{(T_t \psi)(s, x) - \psi(s, x)}{t} = E_{s, x} \left[f(t_o, X_{t_o}) \cdot [-c(s, x) C_s(X)] \right]
\]

\[
= -c(s, x) \psi(s, x)
\]

\[
= f_1(s, x)
\]
as $P_{s,x}(X = x) = 1$. Also, (3.13) implies that the left hand expression in (3.11) is uniformly bounded (in s,x,t). Thus we have

$$W-lim_{t \to 0} \frac{(T_t v)(s,x) - v(s,x)}{t} = f_1(s,x).$$

Remains to prove that $f_1 \in \mathcal{J}_0$. This will prove that $v \in \mathcal{J}_A$ and that $Av = f_1$. If $s \geq t_0$, $f_1(s,x) = (\Delta f)(s,x)$ and hence for $s \geq t_0$,

$$t \geq 0, \quad (T_t f_1)(s,x) = (T_t \Delta f)(s,x).$$

Since $\Delta f \in \mathcal{J}_0$, this gives

$$\lim_{t \to 0} (T_t f_1)(s,x) = f_1(s,x) \text{ for } s \geq t_0, \ x \in S.$$

For $s < t_0$, we have

$$T_t f_1(s,x) - f_1(s,x) = -E_{P_{s,x}} \left[c(s+t, X_{\infty+t})v(s+t, X_{\infty+t}) - c(s,x)v(s,x) \right]$$

$$= -E_{P_{s,x}} \left[\left(v(s+t, X_{\infty+t}) - v(s,x) \right) \left(c(s+t, X_{\infty+t}) - c(s,x) \right) \right]$$

$$- c(s,x) E_{P_{s,x}} \left[v(s+t, X_{\infty+t}) - v(s,x) \right].$$

Now as $t \to 0$, $c(s+t, X_{\infty+t}) = c(s,x)$ a.e. as $y_{s,x}^+$ as c is continuous and X_{∞} is right continuous. Hence by the dominated convergence theorem,

$$\lim_{t \to 0} E_{P_{s,x}} \left[v(s+t, X_{\infty+t}) - c(s,x) \right] = 0.$$

The relation (3.14) implies that

$$-c(s,x) E_{P_{s,x}} \left[v(s+t, X_{\infty+t}) - v(s,x) \right] = -c(s,x) \left[(T_t v)(s,x) - v(s,x) \right]$$

$$+ 0$$

as $t \to 0$. These observations give

12:
\[(3.17) \quad \lim_{t \to 0} (T_t f_1)(s,x) = f_1(s,x) \quad \text{for} \quad s < t_0, x \in S. \]

Now (3.16), (3.17) and the fact that \(T_t f_1 \) is uniformly bounded yield

\[w-\lim_{t \to 0} (T_t f_1) = f_1. \]

Remark: Under the conditions assumed in this section and Theorem 4, the equations (2.24), (2.25) for \(g_0(x) = f(t_0,x) \) have a unique solution \(v \) on \([0,t_0] \times S\) which is given by (3.6). To see this, let \(v' \) be any solution. Apply Theorem 3 to the process \((X_t : t \geq s) \) on the probability space \((\mathcal{F}, \mathcal{B}_t, P_s)\) to obtain, for \(s < t_0,\)

\[v'(s,X_s) = \mathbb{E}_{P_{s,x}} \left[f(t_0,X_{t_0}) \mathbb{C}_{S}(X) | \mathcal{B}_S \right] \quad \text{a.s.} \quad P_{s,x}. \]

Since under \(P_{s,x} \) any set in \(\mathcal{B}_S \) has measure zero or one, the conditional expectation appearing above is the unconditional expectation and thus equals \(v(s,x) \). Also \(X_s = x \) a.s. \(P_{s,x} \). Hence we have

\[v'(s,X_s) = v(s,x) \quad \text{a.s.} \quad P_{s,x}. \]

Those observation imply

\[v'(s,x) = v(s,x). \]

4. We now consider an equation dual to (2.24), namely

\[\frac{d}{dt} K_t = A^* K_t + \xi(t,s) K_t \]

where \(\{K_t \} \subseteq \mathcal{M}(S) \) - the class of finite signed measures on \((S, \mathcal{S})\). The equation (4.1) is purely formal and is to be interpreted as
\begin{align}
\langle f(t, \cdot), K_t \rangle &= \langle f(0, \cdot), K_0 \rangle + \int_0^t \langle Af(u, \cdot), K_u \rangle du + \int_0^t \langle g(u, \cdot) f(u, \cdot), K_u \rangle du \\
\text{for } f \in D. \quad \text{Here, } \langle \theta, \mu \rangle \text{ denotes } \int \theta \, d\mu \text{ for } \mu \in \mathcal{M}(S) \text{ and a function } \\
\theta: S \rightarrow \mathbb{R}. \quad \text{Thus } \langle f(t, \cdot), \mu \rangle = \int f(t, x) \, d\mu(x) \text{ for } f \in \mathcal{D}. \quad \text{We will show that this equation with boundary condition} \\
\langle f(t, \cdot), \mu \rangle &= \int f(t, x) \, d\mu(x) \text{ for } f \in \mathcal{D}. \quad \text{We will show that this equation with boundary condition} \\
(4.3) & \quad K_0 = \Pi \circ X_C^{-1} \\
\text{admits a unique solution which is given by} \\
(4.4) & \quad K_t(B) = \mathbb{E}_{\mu} \left[1_B(X_t) \exp \left(\int_0^t g(u, X_u) \, du \right) \right], \quad B \in \mathcal{B} \\
\text{The uniqueness will be proved in the class of } \{K_t\} \text{ satisfying} \\
(4.5) & \quad \{K_t\} \subseteq \mathcal{M}(S), \quad t + K_t(B) \text{ is a Borel measurable function} \\
& \quad \text{for all } B \in \mathcal{B} \text{ and } K_t \ll \Pi \circ X_C^{-1} \text{ with} \\
& \quad \left| \frac{dK_t}{d\mu X_C^{-1}} \right| \leq M \\
\text{for all } t, \text{ for a fixed constant } M. \\
\text{We continue to assume that the conditions imposed on } (X_t) \text{ in} \\
\text{Section 3, are valid. We further assume that } S \text{ is a complete separable} \\
\text{metric space. We begin with a Lemma.} \\
\text{Lemma 5: Let } 0 < t < \infty \text{ be fixed. Let } \mu \in \mathcal{M}(S) \text{ be such that} \\
(4.6) & \quad \langle f(t, \cdot), \mu \rangle = 0 \quad \forall f \in D. \\
\text{Then } \mu \equiv 0.
\end{align}
Proof : Let E be the class of $f \in J$ for which (4.6) holds. Easy to see that if $f_k \in F$, w-lim $f_k = f$, then $f \in F$. Hence by (2.13), $J_0 \subseteq \hat{F}$.

For $f \in C_b(S)$, (i.e. $f : S \to \mathbb{R}$ is bounded continuous), we have

$$(T_t f)(s,x) = E_{s,t} f(s+t, X_{s+t}) \to f(s,x) \text{ as } t \to 0,$$

since X is right continuous. Thus $C_b(S) \subseteq J \subseteq \hat{F}$.

Given $f_0 \in C_b(S)$, taking $f(s,x) = f_0(x)$, we have $f \in C_b(S) \subseteq J$ and hence

$$(4.7) \quad \langle f_0, u \rangle = 0.$$

The validity of (4.7) for all $f_0 \in C_b(S)$ implies $u = 0$ because S - the Borel σ field - is also the smallest σ field with respect to which $C_b(S)$ is measurable.

We are now in a position to prove the assertions made at the beginning of this section. This result may be considered as a dual Feynman-Kac's formula.

Theorem 6 : Suppose that ϕ satisfies (2.17) and (2.18). Then the equation (4.2) with boundary condition (4.3) admits a unique solution in the class of $\{K_t\}$ satisfying (4.5). The unique solution is given by (4.4).

Proof : First we will prove that $\{K_t\}$ defined by (4.4) satisfies (4.2). Let $\{K_t\}$ be defined by (4.4). Easy to see that (4.3) and (4.5) are satisfied.
Taking \(s = 0 \) in Theorem 2, it follows from the martingale property of \(Z_t \) that \(E_t Z_t = E Z_0 \). Here, \(Z_t \) is given by (2.20) where in turn \(B_t \) is given by (2.19), with \(s = 0 \). Noting that with these notations,

\[<\theta, K_t> = E_t \theta(X_t) B_t \]

we conclude from the relation \(E_t Z_t = E Z_0 \) that

\[<f(t,\cdot), K_t> - \int_0^t <(Af+Qf)(u,\cdot), K_u>du = <f(0,\cdot), K_0> \]

Hence \(\{K_t\} \) satisfies (4.2).

To prove the uniqueness part, we will prove the following. Suppose \(\{K_t\} \) satisfies (4.2), (4.5) and \(K_t \equiv 0 \). Then \(K_t \equiv 0, \ t \geq 0 \).

For this fix \(t_c < \infty \) and \(f \in \mathbb{D}_A^k \). Let \(\nu \) be the measure defined on \(S' = [0, t_c] \times S \) by

\[\nu(B) = E_t \int_0^t 1_B(u, X_u)du, \quad B \in \mathcal{B}(S') \]

Then note that (2.17) implies \(\int_{S'} |g| \, d\nu < \infty \). Hence if \(g_k : S' \to \mathbb{R} \) is defined by

\[g_k(s, x) = g(s, x) 1(|g(s, x)| < k) \]

then we have

\[\int_{S'} |g_k - g| \, d\nu \to 0 \quad \text{as} \quad k \to \infty. \]

For each \(k, \ g_k \) is bounded by \(k \). By Lusin's theorem (see [1], p. 187) we can pick \(c_{k, l} \in \mathbb{C}_b(S') \), bounded by \(k \), such that

\[c_{k, l} + r_k \quad \text{a.e.} \nu \quad \text{as} \quad l \to \infty. \]
Hence

\[\lim_{i \to \infty} \int |c_k,i - g_k| \, \text{d}v = 0. \]

Let \(v_{k,i} \) be given by (3.6) for \(c = c_{k,i} \). Then \(A v_{k,i} = -c_{k,i} v_{k,i} \) in \([0, t_0) \times S\) by Theorem 4. Using (4.2) for \(v_{k,i} \) and recalling that \(K_0 = 0 \), we have

\[(4.13) \quad \langle f(t_0, \cdot), K_0 \rangle = \langle v_{k,i}(t_0, \cdot), K_0 \rangle \]

\[= \int_0^{t_0} \langle (g - c_{k,i} v_{k,i})(u, \cdot), K_0 \rangle \, \text{d}u \]

Thus

\[(4.14) \quad |\langle f(t_0, \cdot), K_0 \rangle| \leq M \int_0^{t_0} |\langle g - c_{k,i} v_{k,i}(u, \cdot), \varphi \rangle| \, \text{d}u \]

As \(i \to \infty \), \(v_{k,i} \) converges pointwise to \(v_k \) and is bounded by \(k \), where \(v_k \) is given by (3.6) for \(c = c_k \). This and (4.11), (4.12), (4.14) imply

\[|\langle f(t_0, \cdot), K_0 \rangle| \leq M \int |g - c_k| |v_k| \, \text{d}v. \]

Since (4.9) implies \(c_k(u, x) \leq a(u) \), it follows that

\[|v_k| \leq M_1 \cdot \exp \left(\int_0^{t_0} a(u) \, \text{d}u \right) = M_2 \]

where \(|f| \leq M_1 \). Hence
This and (4.10) imply \(<f(t_o,.), K_{t_o}> = 0 \). Since \(f \in D_A \) is arbitrary, Lemma 5 gives \(K_{t_o} = 0 \). This completes the proof.

We will briefly consider the equation for normalized measures

\[
N_t(B) = \frac{K_t(B)}{K_t(S)}, \quad B \in S
\]

where \(K_t \) is given by (4.4). It is easy to see, using (4.2) that \(\{N_t\} \) satisfies.

\[
<f(t, .), N_t> = \int_0^t \langle (Af + gf)(u, .), N_u \rangle du - \int_0^t <f(u, .), N_u \rangle \langle g(u, .), N_u \rangle du
\]

We will now prove that \(\{N_t\} \) is the unique solution to this equation.

Theorem 7: The equation (4.16) with boundary condition \(N_0 = \pi \circ X^{-1}_0 \) admits a unique solution in the class of \(\{N_t\} \) satisfying (4.5). The solution is given by (4.15).

Proof: We need to prove uniqueness of the solution. Let \(N_t' \) be any other solution, i.e. satisfying (4.5), (4.16) and \(N_0' = \pi \circ X^{-1}_0 \). Then it can be checked that \(N_t'(S) = 1 \) for all \(t \geq 0 \). Further, if \(K_t' \) is defined by

\[
K_t'(B) = N_t'(B) \cdot \exp(\int_0^t \langle g(u, .), N_u' \rangle du)
\]

then \(K_t' \) is a solution to (4.2) and that it satisfies (4.3), (4.5).

Hence by Theorem 6, \(K_t' = K_t \). This and the observation that

\[
K_t'(S) = \frac{K_t'(B)}{K_t'(S)} = \frac{K_t(B)}{K_t(S)}
\]

give us the required equality, namely \(N_t' = N_t \).
5. We will now give applications of the results in the previous sections to filtering theory.

We refer the reader to [4] for a detailed discussion and background on the white noise approach to filtering theory.

We assume that the signal process \((X_t) \) is a Markov process satisfying the conditions imposed in the previous sections.

Let \(\mathcal{K} \) be a separable Hilbert space. Let \(h : [0,T] \times S \to \mathcal{K} \) be a measurable function such that

\[
E \left[\int_0^T \| h_u(X_u) \|_{\mathcal{K}}^2 \, du \right] < \infty
\]

Let \(H = L^2([0,T], \mathcal{K}) \) and let \(\xi : \Omega \to H \) be defined by

\[
(\xi(\omega))_u = h_u(X_u(\omega)), \quad 0 \leq u \leq T.
\]

Consider the model

\[
y = \xi + \varepsilon
\]

where \(\varepsilon = (\varepsilon_t) \) is \(\mathcal{K} \)-valued white noise independent of \((X_t) \). Here \(y \) is the observation process and \(y, \xi, \varepsilon \) are realised on a quasi cylinder probability space \((\mathcal{E}, \mathcal{F}, \mathbb{P}) \) (See [4] section 6). We now state the Bayes formula. For the relevant definitions and proof, see [4].

Theorem 8: For \(g : S \to \mathbb{R} \) bounded, measurable,

\[
E_a(g(X_t) | y_u : u < t) = \int_S g(x) \, dF_t(x, y)(x)
\]

where

\[
\Gamma_t(y)(B) = E \left[I_B(X_t) \exp \left(\int_0^t h_u(X_u) y_u \, du - \frac{1}{2} \int_0^t \| h_u(X_u) \|_{\mathcal{K}}^2 \, du \right) \right]
\]
\[f(t, u, y) = f(0, u, y) + \int_0^t \langle (Af + y^t f)(u, s), f_u(s) \rangle ds, \quad f \in D_A \]

with the condition \(f(0, u, y) = n_c \cdot \chi^{-1} \) in the class of \(K_t \) satisfying (4.5).

(ii) For all \(y \in H \), \(F_t(y) \) is the unique solution to the equation

\[f(t, u, y) = f(0, u, y) + \int_0^t \langle (Af + y^t f)(u, s), F_u(s) \rangle ds, \quad f \in D_A \]

with the initial condition \(F(0, u, y) = n_c \cdot \chi^{-1} \) in the class of \(K_t \) satisfying (4.5).

Proof: Since

\[|c_y(t, x)| \leq \frac{1}{T} ||h_t(x)||^2 + \frac{1}{T} ||y_t||^2 \]

and

\[r_y(t, x) \leq \frac{1}{T} ||y_t||^2 \]

it follows that for all \(v \in H \), \(c_y \) satisfies (2.17) and (2.18). Thus (i) follows from Theorem 6 and (ii) from Theorem 7.
Remark: Theorem 9 was proved in [3] under the much stronger condition

\[||h_t(x)|| \leq a_t \quad \text{with} \quad \int_0^T a_t^2 \, dt < \infty. \]

The equations (5.5) and (5.6) are analogues of the Zakai and Fujisaki-Kallianpur-Kunita equations. In [3], \(\Gamma_t(y) \) and \(F_t(y) \) were also characterized as unique solutions to another type of equations (equations (3.4) and (3.11) in [3]) under the condition (5.7). With a little bit of work, it can be shown that (5.7) can be replaced by (5.1) in these results as well.

References

END
DATE
FILMED
DEC.
1987