MODULATION OF AN INTENSE BEAM BY AN EXTERNAL MICROWAVE SOURCE - THEORY AND SIMULATION (U) NAVAL RESEARCH LAB
WASHINGTON DC J KRALL ET AL. 07 OCT 87 NRL-MR-6883
UNCLASSIFIED DE-AI05-86ER13505
F/G 20/9

ROA-RIB5
683 MODULATION OF AN INTENSE BERM BY AN EXTERNAL MICROWAVE
SOURCE - THEORY AND SIMULATION (U) NAVAL RESEARCH LAB
WASHINGTON DC J KRALL ET AL. 07 OCT 87 NRL-MR-6883
UNCLASSIFIED DE-AI05-86ER13505
F/G 20/9

MoEKE..
Modulation of an Intense Beam by an External Microwave Source — Theory and Simulation

J. Krall* and Y. Y. Lau

Plasma Theory Branch
Plasma Physics Division

*Science Applications Intl. Corp.

October 7, 1987

Approved for public release; distribution unlimited.
A time dependent, fully electromagnetic particle code is used to simulate the current modulation in an intense relativistic electron beam (IREB) by an external rf source. It is shown that the intense beam may serve as a power amplifier with good phase stability, as suggested in earlier experiments. Increase in beam bunching by the DC space charge is demonstrated with a simple analytical model.
Modulation of an Intense Beam by an External Microwave Source—Theory and Simulation

The experimental demonstration\(^1\) of deep current modulation in an intense relativistic electron beam (~5 ka, 500 keV) by a moderate external rf source (~50 kW) suggests strong potentials\(^2,3\) to amplify rf power to gigawatts at frequencies between 1 GHz to 10 GHz. Several unusual properties were discovered in the experiments\(^1,4\), namely, the high degree of phase and amplitude stability in the output signal\(^1\), the ease with which the current modulation can be achieved and may be manipulated by the introduction of additional, undriven cavities downstream, and the possible avoidance of electrical breakdown at the gaps even at a high level of beam modulation\(^5\). These unexpected features are only partially understood. The major obstacle to a complete understanding is the highly nonlinear interaction in complex geometries involving the kinetic energy, rf energy, and the potential energy of the beam, all of which are of the same order of magnitude. The crucial role played by the potential energy, which necessarily accompanies an intense beam, renders the classical picture of beam bunching invalid.

We, therefore, resort to a time dependent, two-dimensional, fully electromagnetic particle code, CONDOR\(^6\), to simulate the response of an intense beam to an external rf excitation. This amplifier configuration has never been subject to particle simulation, although self-excited oscillations have been studied in the past\(^7\). We found that when the external rf drive is low, the induced rf current agrees well with the small signal theory\(^1,7\). Addition of a second cavity in the drift region significantly enhances the current modulation, without loss of phase stability, as observed in earlier experiments\(^1\). An analytical model is presented to show that the DC space charges associated with the intense beam may encourage current bunching as the beam traverses a modulating gap.

The harmonic content is assessed. The details, together with experimental observations, will be published elsewhere.

To mimic the experiments as closely as possible, the simulation geometry [Fig. 1] consists of a 500 keV, annular IREB with beam radius \(r_b = 1.9 \text{ cm} \) and beam current \(I_o = 5 \text{ kA} \) propagating along a metal cylinder of radius \(r_v = 2.4 \text{ cm} \). A static 10 kG axial magnetic field confines the IREB. A gap feeding a coaxial cavity 5.6 cm long is inserted into the drift tube. An infinite radial transmission line (not shown) is attached to the outer wall of this cavity and "pumps" rf energy into the cavity at a frequency \(f = 1.37 \text{ GHz} \), the resonance frequency of the cavity. At \(t = 0 \), the rf drive is turned on. At \(t = 6 \text{ ns} \), after the fundamental mode of the cavity has saturated, the beam current is ramped up, reaching its full value at \(t = 11 \text{ ns} \) (5 ns rise). The simulation continues until \(t = 20 \text{ ns} \).

For rf drives yielding gap voltages with amplitude \(V_1 = 30 \text{ kV} \) and \(V_1 = 6 \text{ kV} \), the axial distribution of the normalized rf current \(I_1(z)/I_o \) in steady state is shown in Fig. 2. The temporal evolution of the beam current at a distance \(z = 28 \text{ cm} \) from the gap center is shown in Fig. 3a for the \(V_1 = 30 \text{ keV} \) case.

The above results may be compared with linear theory: An rf voltage \(V_1 \sin \omega t \) at the gap would induce an rf current \(I_1(z)\cos(\omega(t-z/v_o)) \) at a position \(z \) downstream, where

\[
I_1(z) = I_o V \sin \tilde{z} \tag{1}
\]

Here, \(v_o \) is the average electron speed in the drift region, \(V = (eV_1/m_o c^2) \), \(\delta/(\gamma_o^2 \beta_o \alpha^{1/2}), \tilde{z} = 2\pi(z/\lambda)\alpha^{1/2}/\beta_o \gamma_o, \delta = \beta_o^2/(\beta_o^2 - \alpha), \alpha = I_o/I_s \gamma_o^3 \beta_o, I_s = 8.53 \text{ kA}/\ln(r_i/r_b), \lambda = 2\pi c/\omega, \beta_o = v_o/c, \gamma_o = (1-\beta_o^2)^{-1/2} \). The axial dependence \(I_1(z)/I_o \) according to expression (1) is shown by the dashed curves in Fig. 2, using the same parameters as in the simulation: \(I_o = 5 \text{ kA} \), \(\lambda = 21.9 \text{ cm} \), \(I_s = 36.5 \text{ kA} \), \(\gamma_o = 1.67 \). Note that Eq. (1) and Fig. 2
imply linear dependence of I_1 on V_1 when V_1 is small. As V_1 increases, the current modulation would contain harmonic components $I_n(z) = 2 I_0 J_n(n V_1 \sin z)$ where J_n is the Bessel function of order n. This estimate shows that only the fundamental component ($n=1$) is significant if $V_1 < 0.3$.

To obtain a current modulation comparable to I_0, V_1 should also be of the same order of the beam voltage. It is impractical to excite such a large gap voltage directly from an external rf source. Instead, one may insert a second cavity downstream [Fig. 1b], at a location where the current modulation (by the first cavity) reaches a maximum1. This second cavity is identical to the first, but is not externally driven. Using the same rf drive as that for Fig. 3a, we show in Fig. 3b the temporal evolution of the beam current at 6 cm downstream from the second gap, at which the gap voltage is 330 keV. The total current modulation there increases to 57%, including all harmonics. In fact, the modulation level continues to increase over the remaining 10 cm of propagation distance, reaching 85%. No particle reflections were observed at the second gap, nor transients were important. These results compare favorably to both the experimental two-cavity result, in which the cavity separation was 5 cm and modulation greater than 80% was observed at 1.328 GHz1, and to more recent results in which the separation is 32 cm4. In this situation, the harmonic content is considerable, with as many as eleven harmonics clearly observable in the current measured immediately downstream from the second gap.

Substantial current modulation immediately beyond a gap is a property of an intense beam which cannot be expected from the conventional klystron theory. While the details are not fully understood, the following scenario emerges5: When the beam current I_0 approaches the limiting value, I_L, the
DC potential energy is nontrivial, especially near the gap. If the modulating voltage V_1 at the gap is sufficiently large, the instantaneous beam current may exceed the limiting value during the part of the rf cycle when the rf voltage is in the same phase as the retarding voltage caused by the DC self field of the beam. This then leads to strong current modulation once the beam exits the gap. In a simple model, the current modulation I_1/I_o at the gap exit reads:

$$\left(\frac{I_1}{I_o}\right)_{\text{exit}} = \left(\frac{2}{\pi} \left[1 - \frac{V_{\text{th}}}{V_1^2}\right]\right)^{1/2}$$ \hspace{1cm} (2)

where the threshold voltage V_{th} is given by

$$V_{\text{th}} = \frac{m_e}{e} c^2 \left\{\gamma_{\text{inj}} - \left[1 + \left(\frac{I_o}{I_L}\right)^{2/3} (\gamma_{\text{inj}}^{2/3} - 1)\right]^{3/2}\right\}$$ \hspace{1cm} (3)

in terms of the injection γ and the limiting current I_L. This current modulation is absent if $V_1 < V_{\text{th}}$, but rises rapidly once $V_1 > V_{\text{th}}$, and becomes insensitive to V_1 if the latter substantially exceeds V_{th} [c.f. Eq. (2)]. These features are also reflected qualitatively in experiments.

Finally, by varying the phase of the external rf drive in the two-cavity geometry [Fig. 1b], we have found that the current modulation signal is phase-locked to the external drive to within an error of $1.1 \pm 0.6\%$, in agreement with the experimental observation1.

In summary, several unusual features observed in experiments on the modulation of an intense beam are confirmed in the particle simulation. Useful analytic models are constructed.

We are grateful to M. Friedman and V. Serlin for many stimulating discussions, and for their support. We are also indebted to Scott Brandon and to Adam Drobot for their assistance in applying CONDOR6 to this problem. This work is supported by the Department of Energy, Contract No. DE-AI05-86 ER 13585.
References

5. M. Friedman and V. Serlin, private communication.
8. Since the electrons already spend some energy to set up the space charge depression in the drift region, their drift speed v_0 is somewhat less than the value at injection.
Fig. 1 (a) The geometry. Current modulation is provided by the externally driven cavity at left.

(b) A second cavity is inserted to enhance current modulation.
Fig. 2 Fraction of the modulated current for Fig. 1a, at two levels of the rf drive.
Fig. 3
(a) Current response measured at $z = 28$ cm from the gap for Fig. 1a, with gap voltage $V_1 = 30$ kV.

(b) Current response measured at 6 cm downstream of the second (right) cavity in Fig. 1b, with $V_1 = 30$ kV at the first cavity.
DISTRIBUTION LIST*

Naval Research Laboratory
4555 Overlook Avenue, S.W.
Washington, DC 20375-5000

Attn: Code 1000 - Commanding Officer, CAPT William C. Miller
1001 - Dr. T. Coffey
1005 - Head, Office of Management & Admin.
1220 - Mr. M. Ferguson
2000 - Director of Technical Services
2604 - NRL Historian
2628 - Documents (22 copies)
2634 - D. Wilbanks
4000 - Dr. V. R. Ellis
4600 - Dr. D. Nagel
4603 - Dr. W.W. Zachary
4700 - Dr. S. Ossakov (26 copies)
4700.1 - Dr. M. Friedman (10 copies)
4700.1 - V. Serlin (5 copies)
4710 - Dr. J.A. Pasour
4710 - Dr. C.A. Kapetanakos
4730 - Dr. R. Elton
4730 - Dr. B. Ripin
4740 - Dr. W.M. Manheimer
4740 - Dr. S. Gold
4790 - Dr. P. Sprangle
4790 - Dr. C.M. Tang
4790 - Dr. M. Lampe
4790 - Dr. Y.Y. Lau (50 copies)
4790 - Dr. G. Joyce
4790 - Dr. T. Godlove
4790A - V. Brizzi
6840 - Dr. S.Y. Ahn
6840 - Dr. A. Ganguly
6840 - Dr. R.K. Parker
6843 - Dr. N.R. Vanderplaats
6875 - Dr. R. Wagner

* Every name listed on distribution gets one copy except for those where extra copies are noted.
Prof. I. Alexeff
Dept. of Electrical Engineering
University of Tennessee
Knoxville, TN 37996-2100

Dr. Bruce Anderson
Lawrence Livermore National Laboratory
L-436
P. O. Box 808
Livermore, CA 94550

Dr. T. Antonsen
University of Maryland
College Park, MD 20742

Assistant Secretary of the Air Force (RD&L)
Room 4E856, The Pentagon
Washington, D.C. 20330

Dr. W. A. Barletta
Lawrence Livermore National Lab.
P. O. Box 808
Livermore, CA 94550

Dr. L. R. Barnett
University of Utah
Salt Lake City UT 84112

Dr. Robert Behringer
Office of Naval Research
1030 E. Green
Pasadena, CA 91106

Dr. G. Bekefi
Mass. Institute of Tech.
Bldg. 26
Cambridge, MA 02139

Prof. Herbert Berk
Institute for Fusion Studies
University of Texas
Austin, TX 78712

Dr. T. Berlincourt
Office of Naval Research
Attn: Code 420
Arlington, VA 22217

Dr. I. B. Bernstein
Mason Laboratory
Yale University
400 Temple Street
New Haven, CT 06520

Prof. A. Bers
Dept. of Electrical Engineering
MIT
Cambridge, MA 02139

Prof. Charles K. Birdsall
Dept. of Electrical Engineering
University of California
Berkeley, CA 94720

Dr. H. Brandt
Department of the Army
Harry Diamond Laboratory
2800 Powder Mill Rd.
Adelphi, MD 20783

Dr. Charles Brau
Los Alamos National Scientific Laboratory
P.O. Box 1663, M.S. - 817
Los Alamos, NM 87545

Dr. R. Briggs
Lawrence Livermore National Lab.
Attn: (L-71)
P.O. Box 808
Livermore, CA 94550

Prof. O. Buneman
ERL, Stanford University
Stanford, CA 94305

Dr. K. J. Button
Francis Bitter Natl. Magnet Lab.
Mass. Institute of Technology
Cambridge, MA 02139

Dr. J. A. Byers
Lawrence Livermore National Lab.
Attn: (L-630)
P. O. Box 808
Livermore, CA 94550

Prof. J. D. Callen
Nuclear Engineering Dept.
University of Wisconsin
Madison, WI 53706

Dr. Malcolm Caplan
4219 Garland Drive
Fremont, CA 94536
END

12-87

DTIC