Re: Its on the numerical and analytic solution of implicit systems of differential equations and their application to circuit and control problems were developed. In particular, the first general algorithm for the linear time varying case was developed along with an analysis of how to apply it to certain control problems. New structure theorems provide insight on the convergence of backward formulas and guidelines for their use.
11. The numerical and analytic analysis of implicit differential equations and their application to control and circuit problems.
PROJECT DESCRIPTION

Implicit systems of differential equations of the form $F(t,x,x') = 0$ naturally arise in many circuit and control problems, economic models, and the solution of partial differential equations by the method of lines. Implicit systems are also called singular, differential-algebraic, semi-state, constrained, and descriptor. The theory is well understood, and numerical codes exist, for index zero, index one, and linear constant coefficient problems. Higher index implicit systems occur in circuit and control problems. The numerical and analytic behavior of such higher index systems is not well understood and is incomplete. It has recently been shown that traditional methods, such as backward differentiation, need not work on higher index systems. Good characterizations of the solution manifold are often difficult to obtain. This research project is to study the numerical and analytic solution of higher index implicit differential equations. Applications will be made to circuit theory, control theory, and the analysis of numerically ill-conditioned index one systems.
During the report period the following papers were written as part of this research effort:

Additional references of the principal investigator [C1] and others [R1] appear at the end of this report.
If a system of differential equations is written in the semi-explicit form as

\begin{align}
 u' &= f(u,v,t) \quad (1a) \\
 0 &= g(u,v,t) \quad (1b)
\end{align}

then the system (1) is called index one if \(\frac{\partial g}{\partial v} \) is nonsingular. In this case the algebraic constraint (1b) may be solved for \(v \), to give \(v = \phi(u,t) \) and (1a) becomes an explicit equation \(u' = f(u, \phi(u,t), t) \). However, in some control applications [C1], [C7], [R1], [R2], [R7], [R11], [R12] the matrix \(\frac{\partial g}{\partial v} \) is always singular. These problems are called higher index problems. Definitions of index for the more general system

\[F(x,x',t) = 0 \quad (2) \]

appear in [C5]. Traditionally (1) has been numerically solved using backward differentiation formulas (BDF) [R3], [R4]. Recently, it has been shown that BDF's need not converge for either nonlinear [C5] or linear time varying [R4],

\[A(t)x'(t) + B(t)x(t) = f(t) \quad (3) \]
higher index systems. Prior to the work of the principal investigator, no general
method for the numerical solution of (3) existed.

An approach to numerically solve (3) was proposed in [C4]. However, numerous
questions on the practical implementation and theoretical implications of this
method remained unresolved. The approach was shown in [C4] to be theoretically
applicable in several cases of interest, but the range of applicability was
uncertain.

The key idea in [C4] was as follows. Suppose that (3) is solvable on an
interval I. That is, for every sufficiently smooth input f there is at least one
solution x and the solutions for a given f, are uniquely determined by their value
at any time t ∈ I. From [C2] it is known that the solution can depend not only on
A, B, f but also their derivatives. Thus some differentiation is necessary.
Assume that A, B, f are sufficiently smooth on I and at time t ∈ I, let (A_i), (B_i),
(x_i), (f_i) be the Taylor coefficients of A, B, x, and f respectively. These
functions do not have to be infinitely differentiable, just sufficiently
differentiable. Then for any j > 0, any t ∈ I, equation (3) implies that the
coefficients satisfy

\[
\begin{bmatrix}
A_0 \\
A_1 + B_0 \\
A_2 + B_1 \\
\vdots \\
A_{j-1} + B_{j-2}
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
\vdots \\
x_j
\end{bmatrix}
=
\begin{bmatrix}
B_0 \\
B_1 \\
\vdots \\
B_{j-1}
\end{bmatrix}
\begin{bmatrix}
f_o \\
x_o + f_1 \\
\vdots \\
x_j + f_{j-1}
\end{bmatrix}
\] (4)

or more compactly

\[\sum_{i=0}^{j} x_i = f_j.\] (5)
In [C4] it is shown that for all then known classes of solvable systems that if \(j \) is appropriately chosen, then (5) uniquely determines \(x_j \) even though \(x_j \) is not unique. Since \(x_j = x'(t) \) it is now possible to define a method to integrate (3).

This general approach was refined and improved by the principal investigator in [P1]. This paper made several contributions. First, it examined the numerical considerations in solving (5) and showed how to do so in a numerically reliable manner. Secondly it greatly reduced the computational effort of the method proposed in [C4] by showing how (5) could be used to define an explicit differential equation \(x' = R(t)x + r(t) \) at each time step. This made possible the definition of both Adams and Runge-Kutta methods. Due to the smaller sized coefficient matrices involved, these methods were more computationally efficient than the higher order Taylor methods of [C4] by an order of magnitude.

One previous difficulty with many of the approaches for solving (3), including the BDF, has been the lack of general methods for finding the manifold of consistent initial conditions. In [P4] the principal investigator showed that for the classes of systems covered by [P1], that the equations (5) could be used to develop an algorithm for calculating the consistent initial conditions. This is the first general method for doing so based strictly on the coefficients of A,B, f and not requiring a series of time-varying coordinate changes.

Although the results reported so far made substantial progress on the analysis of the linear time varying system (3), several major difficulties remained. Among these were the lack of either any explicit criteria for solvability or good descriptions of how to approximate one linear system by another. The full generality of the technique of [P1] was unknown.

Prior characterizations of solvability, often amounted to being able to solve the problem. In [P6], the principal investigator gave the first explicit,
verifiable, characterization of solvability in the cases when \(A, B, f \) are either real analytic or \(3n \)-times differentiable. Necessary conditions are also given if \(A, B, f \) are \(2n \)-times differentiable. These characterizations are stated directly in terms of pointwise rank conditions involving the arrays in (4). Thus they may be verified without performing any coordinate changes.

One consequence of [P6] is a proof that the numerical method of [P1] works for all smooth linear time varying implicit solvable systems (3) and [P4] can always be used to find the initial conditions.

Another consequence of [P6] is a characterization of when the solution manifolds of two linear time varying singular systems are close. This is the first general approximation result to appear for the linear time varying case and opens the door to the development of guidelines for model simplification.

The papers [P1], [P4], [P6] finally put the numerical and analytic solution of (3) on a firm footing. Techniques, for the first time, were now available to study the approximation and simplification of general linear time varying implicit systems.

The method just discussed pays a price for its extra generality. It requires more computational effort at each step than, for example, a BDF method. However, many circuit and control problems have special structure, for example semi-explicit form as in (1). In [P9], the principle investigator showed how to exploit this structure to achieve an additional order of magnitude reduction in computational effort. Also, in [P9] an example was given that showed that the algorithmic changes which lead to the reduction also enabled one to use the method to find a singular arc in a control problem that did not meet all the assumptions for the theory of [P6]. This suggests that the general approach may have even greater applicability than that shown in [P6]. This problem is currently under investigation by a new research assistant.
Many control problems are nonlinear. The results of [P6] provide techniques that can be utilized on some of these problems. In [P11], the principal investigator studied the control problem

\[A(t)x'(t) + (B(t) + u(t)C(t))x(t) = D(t)v(t) \]

(6)

Algorithms were given to determine when the solution \(x \) of (6) is a continuous function of the control \(u \) and its derivative.

Petzold and Gear [R4, [R5] have shown that most higher index systems (3) can be changed, at least locally, to an index two system by the use of linear time varying coordinate changes. Thus the index two case is of considerable interest. In [C2] the principal investigator had given both sufficient conditions under which an index two linear time varying singular system was solvable and a characterization of the solutions. In [P2] the principal investigator weakened the assumptions of [C2] and obtained a similar result. A series of examples in [P2] showed that additional weakening is probably not possible. These examples shed light on the behavior of systems which are index two but have higher index in a different coordinate system and have proved useful in testing numerical algorithms.

There are two natural types of coordinate changes to make when studying (3): letting \(x = Q(t)y \) and multiplication of (3) on the left by \(P(t) \). That neither of these effects the analysis of [P1], [P4], [P6], [C4] is one reason that approach is so useful.

It is known that the question of whether BDF's converge is unaltered by time varying \(P \) and constant \(Q \) but can be altered by time varying \(Q \). The research assistant K. Clark has defined a modified backwards differentiation formula (MBDF) in [P5]. This method has several interesting properties. For linear time
invariant systems and those in the standard canonical form [C6] it is the same as the BDF. However, the convergence properties of the MBDF are unchanged by constant P and time varying Q, but can be altered by time varying P. Thus the MBDF methods provide a nice symmetry to the theory. The methods of [P1], [P4], [C4] are unaffected by time varying P and Q. Additional results on when the BDF and MBDF methods work is given in [P7], [P8], [P12]. This unifies and extends some of the work of [R1].

A somewhat surprising development was the construction of a singular system for which BDF converged but after differentiation of the constraints, BDF did not converge [P8]. Since differentiation of constraints is often used in practice, this has implications for the solution of systems with index greater than two.

From this research has emerged a much better understanding of why BDF methods work on some problems and not others. In [P12] is the beginning of the first truly general theory of convergence of BDF.

The increasing interest in implicit systems within the mathematical and engineering communities is illustrated by the recent special sessions held on this topic and invitations to the principal investigator. Several of these are described in the travel section. In addition, the paper [P2] will appear in a special issue of *Circuits Systems & Signal Processing* on semistate equations.

The research of the principal investigator and others on singular systems is beginning to have the desired effect of making this approach accessible and useful to scientists and engineers. Examples are the recent papers on robotics [R7], chemical kinetics [R8], moving grids in partial differential equations [R8], [R10], flight control [R1], [R2], mechanics [R11], [R12], and other applications involving the method of lines [R8], [R10], [R12].
The research reported here has also laid the groundwork for consideration of new approaches to attacking important nonlinear problems. These approaches are now being examined.

TRAVEL

Travel funds from this grant were used to enable the principal investigator to attend the Society for Industrial and Applied Mathematics (SIAM) 1984 National Summer Meeting in Seattle, Washington, July 16-20. A paper concerning this research was presented. The meeting provided an opportunity to discuss the proposed research with experts from numerical analysis, control theory, and differential equations.

July 30 - August 3, 1984: the principal investigator attended and gave an invited paper [P1] at the American Mathematical Society (AMS) - SIAM Research Conference on "Linear Algebra and Its Role in Systems Theory". Researchers from Engineering and Mathematics with an interest in control theory, systems theory, linear algebra, and numerical linear algebra were present. Recent results by the principal investigator on the linear algebra problems that arise in the numerical solution of the implicit systems (3) were presented.

December 12-14, 1984: the principal investigator attended and gave an invited paper [P3] at the 23rd IEEE Conference on Decision and Control as part of a special session on generalized state space systems.

June 18-23, 1985: the principal investigator visited the University of Bologna, Italy. He gave a seminar on recent results on singular systems and had mathematical discussions with Professor Angelo Favini about operator theoretic questions involving implicit systems of differential equations. While considering
these questions, the principal investigator was able to prove, by operator theoretic means, one of the key lemmas in [P6]. This trip was partly supported by AFOSR and partly by the Italian government.

June 24-26, 1985; the principal investigator attended the 1985 SIAM National meeting in Pittsburgh, PA. He gave an invited talk in the special session on differential-algebraic equations.

July 27-August 2, 1986; the principal investigator attended and presented a paper at the 1986 Ordinary Differential Equations Conference in Albuquerque. This was a large meeting devoted to the numerical solution of differential equations. There were several people attending from universities, national laboratories, and corporations that were interested in singular systems.

August 12-14, 1986; the principal investigator attended and presented a paper at the SIAM Meeting on Linear Algebra in Signals, Systems, and Control in Boston, Mass. He was also on the organizing committee for this meeting. Approximately 400 mathematicians and engineers attended.

In addition to AFOSR sponsored travel, the principal investigator made two trips to Lawrence Livermore National Laboratory (LLNL), Livermore, California where he is a Participating Guest with a DOE Q clearance. The trips were July 19-20, 1986, and December 11-13, 1986. The principal investigator consulted with Dr. Linda Petzold of the Mathematical Computation Group, Dr. K. Brenan who was visiting from Aerospace Corporation, and B. Leimkuhler from the University of Illinois. The discussions were on the numerical solution of differential algebraic systems that arise in various applications. These trips were paid for by LLNL.
Research Assistant:

The Research Assistant, Mr. Kenneth Clark, worked on a Ph.D. in Applied Mathematics under the direction of the principal investigator. Mr. Clark developed some nice results on the relationship between the convergence of backward differentiation formulas and the types of transformations needed to put an implicit system into a canonical form. These results are reported in [P5], [P7], [P8], [P12]. He graduated in June, 1986. An abstract of his thesis follows.

Abstract of Research Ph.D. Thesis

ABSTRACT. Several aspects of the numerical and analytical treatment of singular linear systems

\[A(t)x' + B(t)x = f(t) \]

are considered. Here \(A(t) \) is assumed to be identically singular, and the differential equation is considered on the closed interval \([0,T]\). First, a class of modified difference schemes is derived for the numerical solution of the system. These methods are analyzed on several classes of problems which frequently arise, and in particular their convergence and stability is proved for the classes considered. The classes we examine include those transformable to constant coefficients, implicitly defined index one systems, and index two systems in semi-explicit form. We show that all of the classes investigated in this paper can be treated in a more general framework involving a special case of the standard
canonical form for time varying singular linear systems, and that the structure of
the form is the key element in the analysis.

ADDITIONAL REFERENCES

Of the Principal Investigator

C2. S. L. Campbell, Index two linear time-varying singular systems of
differential equations, SIAM J. Algebraic and Discrete Methods, 4(1983),
237-243.

C3. S. L. Campbell and L. R. Petzold, Canonical forms and solvable singular
517-521.

C4. S. L. Campbell, The numerical solution of higher index linear time varying

C5. S. L. Campbell, Consistent initial conditions for singular nonlinear

C6. S. L. Campbell, One canonical form for higher index linear time varying
singular systems of differential equations, Circuits Systems & Signal

C7. S. L. Campbell and K. Clark, Order and the index of singular time invariant

Others

R1. K. E. Brenan, Stability and convergence of difference approximations for
higher index differential algebraic systems with applications in trajectory

R2. K. E. Brenan, Numerical simulation of trajectory prescribed path control

R3. C. W. Gear, Simultaneous numerical solution of Differential-algebraic

R4. C. W. Gear and L. R. Petzold, ODE methods for the solution of
716-728.

R5. C. W. Gear and L. R. Petzold, Differential/algebraic systems and
matrix pencils, Matrix Pencils, Lecture Notes in Mathematics,

END
DATE
FILMED
DEC.
1987