AN EXPERIMENTAL STUDY OF A SIX KEY HANDPRINT CHORD KEYSBOARD (U) TEXAS TRANSPORTATION INST COLLEGE STATION S A WHISTLE MAY 86 RF-7053-2I DAAA15-86-K-0010
AN EXPERIMENTAL STUDY OF A SIX KEY HANDPRINT CHORD KEYBOARD

Sheldon A. Wolstein

May 1986

Approved for public release; distribution is unlimited.

1 Texas Transportation, Institute, Texas A&M University, College Station, Texas 77843-3135

U.S. ARMY HUMAN ENGINEERING LABORATORY
Aberdeen Proving Ground, Maryland 21005-5001
Chord Keyboards, Chord Keypads, Handprint Keyboards, Keypads

This study compared a production chord keypad and a 4x4 numeric keypad for numeric and alphabetic character entry. Of primary interest was the measure of character entry speed gained on each keypad over five days with one half hour practice each day. Results show that within the time constraints of the study, neither keypad was superior in terms of speed. Proficiency level gained was compared to the 50% level of average speed demonstrated on the beginning QWERTY typing test. This level was not gained, but the 25% level was reached under all three conditions: numeric keypad with no memory aids and chord
keypad with and without memory aids. Use of Mnemonic memory aids increased the number of errors made on the chord keyboard. The 4x4 keypad was found to have significantly less errors than the chord keyboard.
AN EXPERIMENTAL STUDY OF A
SIX KEY HANDPRINT CHORD KEYBOARD

Sheldon A. Wolstein

Interim Report
on Project
"Human Factors Studies of Data Entry Devices
and Techniques"
Report No. RF 7053-21
Contract DAAA15-86-K-0010

May 1986

Texas Transportation Institute
Human Factors Division
The Texas A&M University System
College Station, Texas 77843-3135

Approved for Public release; distribution is unlimited.
The views, opinions, and/or findings contained in this report are those of the authors, and should not be construed as an official Department of the Army position, policy, or decision unless so designated by other documentation.
TABLE OF CONTENTS

INTRODUCTION ... 5
Study Objectives .. 11
METHOD .. 13
Research Participants 13
Equipment and Facilities 13
Procedure .. 17
Experimental Design 20
Dependent Variables 20
RESULTS AND DISCUSSION 23
Mean Times for Sequences 23
Letters .. 23
Numbers .. 29
Mean Times for Lists 29
Letters .. 29
Numbers .. 29
Mean Errors ... 29
Letters .. 29
Numbers .. 48
Confusion Errors .. 48
CONCLUSIONS AND RECOMMENDATIONS 55
REFERENCES ... 67
SUPPLEMENTAL REFERENCES 69
APPENDIX A — Copy of text used for typing test 71
APPENDIX B — All programs used in experiment 73
APPENDIX C — Informed consent form 89
APPENDIX D — Training material for mnemonic condition 91
APPENDIX E — Training material for plain condition 101
APPENDIX F — Training material for keypad condition 107
APPENDIX G — One sheet cue cards for microwriter 109
APPENDIX H — Example of practice article 113

FIGURES
1 Velotype Keyboard .. 6
2 Rochester, Bequaert, and Sharp's Chord Keyboard 8
3 Microwriter Memory Aids 10
4 4 X 4 Keypad ... 12
5 Microwriter Keyboard 14
6 Standard Apple Ile Monochrome Monitor with Menu on Screen ... 15
7 Experimenter's Workstation 16
8 Operator's workstation with microwriter and training material ... 18
9 Sequence lists as presented to operators 19
10 Sample test results 21
11 Mean time by condition over days for letter sequence tests ... 25
12 Mean time by condition over days for number sequence tests ... 29
TABLES

1 Results of Typing Test: Means and Standard Deviations 24
2 Means and Variances for Letter Sequence Times 26
3 Analysis of Variance for Letter Sequence Times 27
4 Duncan's Multiple Range Test for Comparison of Days for Letter Sequence Times 28
5 Means and Variances for Number Sequence Times 31
6 Analysis of Variance for Number Sequence Times 32
7 Duncan's Multiple Range Test for Comparison of Conditions of Number Sequence Times 33
8 Duncan's Multiple Range Test for Comparison of Days of Number Sequence Times 34
9 Means and Variances for Letter List Times 36
10 Analysis of Variance for Letter List Times 37
11 Duncan's Multiple Range Test for Comparison of Days for Letter List Times 38
12 Means and Variances for Number List Times 40
13 Analysis of Variance for Number List Times 41
14 Duncan's Multiple Range Test for Comparison of Days for Number List Times 42
15 Means and Variances for Letter Error Count 44
16 Analysis of Variance for Letter Error Count 45
17 Duncan's Multiple Range Test for Comparison of Conditions for Letter Error Count 46
18 Duncan's Multiple Range Test for Comparison of Days for Letter Error Count 47
19 Means and Variances for Number Error Count 50
20 Analysis of Variance for Number Error Count 51
21 Duncan's Multiple Range Test for Comparison of Conditions for Number Error Count ... 52
22 Duncan's Multiple Range Test for Comparison of Days for Number Error Count 53
23 Confusion Matrix 54
24 Data Entry Rates by Condition and by Type of Test 56
INTRODUCTION

Chord keyboards are data entry keyboards which use the simultaneous activation of two or more keys to input alphanumeric characters. Although not new, these types of devices have been the subject of both popular and industrial interests as data entry devices for the non-typist. The original interest in chording keyboards dates back to the late fifties and early sixties. These early devices had keys ranging in number from 4 to 12. Operation was ordinarily two handed. Of these early mechanisms, the court reporter’s steno-writing system is best known.

The set of possible chords with only 7 keys (the summation of combination of 7 keys taken 'n' at a time (n=1,2,3,4,5) is equal to 127) is larger than the set of keys available on standard keyboards. The extra chords are then used for special characters, operator assignable functions, syllables or even entire words or phrases. The Velotype is just such a device (Special Systems Industry, no date). With 37 keys on the board, both hands are used. The keys are arranged in three groups. The left side has the initial consonants, the right side is almost a mirror image of the left and is dedicated to final consonants, vowels are in the middle (see Figure 1). The lesser used letters do not have dedicated keys but are instead generated by a two-key chord (e.g. T+J=D). With this layout, a three letter syllable can be spelled out with a three-key chord.

Some studies were cited in the sales literature for the Velotype, such as an undocumented study by the Dutch Association for Stenography and Office Practices. No quantitative results were reported but the conclusions they felt justified in making were:

1. The typing speed inexperienced velotypists can reach is three times as high as the speed of an experienced typist.
2. The speed of an experienced velotypist is approximately 900 to 1000 strokes per minute. This is faster than normal speech (bold face theirs) The speed of an experienced typist is between 250 and 300 strokes per minute.
3. Learning to velotype takes only 25% of the time it takes for traditional typing in order to reach the same average typing speed.

No other performance or learning studies are listed.
During the 1970's Nathaniel Rochester and Frank Bequaert developed another device with several keys per finger (Rochester, et al 1977). Their device had a five by two array of keys with a row of four rectangular thumb keys (see Figure 2). With the letters plotted on the corners, the keys utilized a swivel type activation. The designers claim 4407 possible chords, using only the thumb and the three strongest fingers of one hand.

Generally, there is a smaller number of keys present on a chord keyboard than on a standard keyboard. Each key is used several times in different combinations to produce various characters. This aspect of chording allows fewer keys to produce the same character set and this in turn, allows the board to be smaller than conventional keyboards. The smaller size enables these keyboards to be placed where other keyboards cannot be used. Also with fewer keys, many can be operated with one hand. These two features eliminate the need for the board to be immediately in front of the operator. This gives rise to unique applications such as operation within a cockpit of aircraft, conceivably under acceleration conditions. There is improvement of less novel workstations since the uncomfortable and stressful position common to typing is eliminated, thereby improving the ergonomic acceptability of the keying task.

A "handprint" keyboard is at the opposite extreme from full keyboards because it has the same number of keys as the number of fingers used to operate it, with perhaps one or two extra keys which are used infrequently. With so few keys, there is no motion of the fingers other than for key press; the keys are arranged to allow the fingers to rest naturally above them.

In their report, Alden and his associates state there is supporting data for "the hypothesis that keyboards which tend to minimize the number or the distance of finger-reaching movements are capable of the fastest operation, particularly for special purpose tasks" (Alden, Daniels, and Kanarick, 1972). Klemer (1958) as reported in Seibel (1972) trained two subjects on a two-handed handprint keyboard where the various characters were represented with two key chords. He reported that entry speeds were not "out of line with performance in learning to type on a conventional machine." This early work is reported by Seibel to be the beginning of the investigation of chord keyboards.

Ratz and Ritchie (1961) as reported in Alden et al (1972) performed a study to rank the 31 chords that are possible with one-hand. They ranked them with respect to speed: motor constraints (not decision time) as the limiting factor. In a replication of the Ratz and Ritchie study, Seibel (1972) reports very similar times for the 31 chords, and that continuous improvement in discriminative chord reaction time occurred over 30 days. Following this train of investigation, Seibel reports that "...if the effect of motor difficulty is balanced out, the number of alternative chords involved in a given reaction time task makes little or no difference in the reaction time for numbers 5 through 31. The overall average motor difficulty of a set of responses, however, does influence the reaction times for
FIGURE 2

Hocnester, Bequaert, and Sharp's Chord keyboard
the specific chord responses in the set." (Seibel 1972). This effect is again mentioned in another study by Seibel in which reaction times for 1,023 alternatives are only approximately 25 msec. slower than the reaction times for 31 alternatives. Seibel concludes that "Part of this small difference is attributable to the fact that the larger set contained more difficult chord patterns."

Handprint keyboards designed for one hand operation have certain advantages over keyboards that require two hands. Without the necessity of reaching with both hands, the keyboard may be used in any position, not necessarily on a desk or flat surface in front of the operator. One hand operation and a compact size allow the machine to be used anywhere, on a chair arm, or mounted on the side of the chair near the thigh. It would also be possible to integrate the device in the control column of some types of vehicles, such as high performance aircraft.

The main argument against most types of nonconventional keyboards is that hunt-and-peck operation is not possible and is therefore not suitable for novice operators. However on a handprint keyboard, with a simple, straightforward method of chording and the proper cue card, this argument may not be valid. Mnemonics are used for example, on the Microwriter, a production chord keyboard by Microwriter ltd. Some are visual such as the "H" where the crossbar produced by the thumb and little finger is visualized. Others are symbolic, like the "O" which represents the bulls-eye which relates to the center of the hand, the middle finger. The third type of mnemonic is based on wordplay. The "S" is produced by the "Sig"net ring finger (see Figure 3). Rodwell (1980) reports that it took him approximately 30 minutes to learn the alphabet, 30 minutes for numbers and punctuation. Two hours per day for two weeks allowed him to build up to a reasonable speed. While this information is reported in a popular magazine and is anecdotal in nature, it gives an indication that the novice user can use such a device with relatively little experience.

In their study, Lockhead and Klemmer (1959) had operators learning 137 chord patterns in less than 23 hours. These chords however, were not on a handprint keyboard and were also for 100 common words as well as the alphanumeric characters. The learning was without any memory aids. Gopher and Koenig (1983) conducted an experiment using two 5-key handprint keyboards together, one for each hand. Each keyboard was independent from the other and could produce the entire character set. Their objective was to study the best coding scheme to represent identical letters for both hands. The first session was spent in memorizing the codes. No mnemonic is reported, memorization was up to the individual, but all individuals had memorized the codes in 35-40 minutes. Six more sessions at 1.5 hours each were scheduled. By the end of those sessions, no asymptote to speed had yet been encountered.

However, Gopher and Koenig did conclude that:
ALPHABET - RECOMMENDED LEARNING SEQUENCE

<table>
<thead>
<tr>
<th>Alphabet</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Straight line up for I</td>
</tr>
<tr>
<td>B</td>
<td>Add a bar at the top for R</td>
</tr>
<tr>
<td>C</td>
<td>Add a bar at the bottom for L</td>
</tr>
<tr>
<td>D</td>
<td>Reverse L for mirror image J</td>
</tr>
<tr>
<td>E</td>
<td>Main feature of G is downstroke (opposite to I)</td>
</tr>
</tbody>
</table>

Microwriter Memory Aids

<table>
<thead>
<tr>
<th>Letter</th>
<th>Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Top of the A</td>
</tr>
<tr>
<td>B</td>
<td>Press completely for P</td>
</tr>
<tr>
<td>C</td>
<td>First Four Fingers for F</td>
</tr>
<tr>
<td>D</td>
<td>Most Fingers</td>
</tr>
<tr>
<td>E</td>
<td>Most common finger (index) for most common letter E</td>
</tr>
<tr>
<td>F</td>
<td>The central target - bulls eye</td>
</tr>
<tr>
<td>G</td>
<td>Signet ring finger</td>
</tr>
<tr>
<td>H</td>
<td>Very non-U</td>
</tr>
</tbody>
</table>

Figures

- The dome of the D
- The bump of the B
- Either side of the common line
- Looks like a Y
- First upstroke of the A
- Adjusting downstroke of the N
- First downstroke of the V
- The upstroke of the K
- The two sides of the W
- Curl round for C
- Make a tail from the central O

Additional Symbols

- Everything except your index
- Zig zag between the keys for Z
- Full stop come to a point
- Hyphen
- Comma

Apostrophe

- Command Key
- Pairs of letters have been highlighted by outlining
"In light of the fundamental differences between the two typing keyboards in their skill components, one can conclude that it appears to be easier for humans to commit 52 chords to memory and activate them upon request, than to learn the ways of the hand to a similar number of keys spread out on a typing keyboard."

The study performed by Gopher and Koenig raises questions about the effectiveness of mnemonics for learning chords.

This study addressed the issue of task acquisition and the usefulness of mnemonics in learning the various chords and eliminating errors. Both conditions of chord learning, with or without mnemonics, were compared to the performance on the 4X4 keypad.

For the 4X4 keypad condition, the alphabetic keying method used was that described by Stealey (1985) to be the most efficient of those tested in that study. This is the method of pressing the key with the desired letter and then specify which of the three letters on that key is correct by pressing the key which specifies the letter position; left, center, or right. For example, if the letter "M" was desired, the "6" key was pressed and then the left arrow key (see Figure 4).

Study Objectives

The objectives of this study are summarized as follows:
1. Determine which of the keypads, Microwriter or the 4X4 keypad, gives the best performance with limited amounts of training and practice.
2. Determine if the use of mnemonics for chord keypad training leads to a reduction in the number of errors or if the absence of these mnemonics leads to confusion among different chords.
3. Determine the length of time to gain a set level of proficiency of alphanumeric entry on the chord keyboard and on the 4X4 keypad. As an arbitrary level, 50% of the average speed on the beginning QWERTY typing test will be used. Failing to attain that level, the proficiency level on the keypads will be calculated to the nearest 5% of the QWERTY test.
4. Determine if practice on the 4X4 keypad will affect entry rate on the 4X4 keypad.
FIGURE 4

4X4 Keypad

METHOD

Research Participants

A total of 15 research participants (10 female, 5 male) participated in this study. The mean age of all research participants was 22.7 years. The range was 20 to 29 years. All of the research participants were students at Texas A&M University; 10 of them were undergraduates, the remainder were graduate students. Average amount of education was 16.5 years with all graduate students seeking a Masters degree. All research participants volunteered their time. Research participants were categorized into one of three typing skill levels (high, medium, and low skill typists), according to their performance on an initial 5 minute typing test taken from a standard typing text (see Appendix A).

Equipment and Facilities

The study was based on the only commercially available six key handprint keyboard, the Microwriter from Microwriter USA Ltd. It is a book-size device with approximately four pages of memory and a 15 character liquid crystal display (see Figure 5). For a full description and critique refer to Freff (1984). The display on the Microwriter was covered by opaque tape so all research participants would use the Apple monitor described below. The Microwriter, which produces standard ASCII output was interfaced to an Apple IIe microcomputer via a standard communications card.

The Apple accessory numeric keypad was used for the 4X4 keypad. The legends on the keys were covered by a dark covering and new numbers and letters, in white, were inscribed on top. This was necessary so that the keypad which is calculator format, that is "7 8 9" on the top row, could be used in phone format which has "1 2 3" on the top row. Also the letters were labeled on the proper keys as well as the directional arrows (see Figure 4). Software was used to allow the computer to translate the keypad’s signals (see Appendix B).

The microcomputer collected speed and error rate information from both the keypad and the Microwriter. Applied Engineering’s Timemaster II H.O. clock card was used to gather the time data for all conditions (see Appendix B for all programs used). Apple’s standard 30.1 mm /12 inch monochrome monitor served as the display for all conditions (see Figure 6). Another monitor was used for the experimenter’s station (see Figure 7).
FIGURE 5

Microwriter Keyboard
FIGURE 6

Standard Apple Ile Monochrome Monitor with Menu on Screen
FIGURE 7

Experimenter's Workstation
Procedure

Each research participant was required to read and sign an informed consent form. This document specified the nature of the study and advised the research participant that he or she was free to withdraw from the study at any time for any reason, without bias (see Appendix C).

The initial task performed at the first session was a standardized timed typing test to determine skill on a standard typewriter. This skill level was only used in the assignment to groups, and was not used in the analysis. An IBM Selectric was used. The assignment of research participants to groups was based on the test. A balance of three of medium skill and one each of low and high skill was assigned to each group.

For the chord keyboard groups, training material was similar to the documentation which comes with the Microwriter, but was reprinted and rearranged to eliminate information unnecessary to the experiment and tailored for the two conditions (see Appendices D and E). Also included in the materials for the Microwriter condition were one-sheet cue cards. The cue cards for each condition were equivalent in format, the only difference being that the memory aids were drawn in for the mnemonic condition operators. Appendix F has copies of both cue cards. For the 4X1 group the training material consisted of one sheet explaining the method of keying (see Appendix G).

There was a one hour period scheduled for each research participant each day for a duration of five consecutive days. At the beginning of the first session was the typing test following the completion of the informed consent form, and a demographic sheet. Then after assignment to a group, the research participant was given the training materials appropriate to the condition assigned. The keyboard used by the research participant could be repositioned as needed. All that was in front of the research participant was the keyboard being used, the Apple monitor, and any training material needed. See Figure 9. A 30 minute training and practice session followed. Training was self paced. A proficiency test was then given. All of the Microwriter research participants were able to become acquainted with all letters and numbers within the first session.

The test consisted of two runs of 25 sequences each. The first list was 25 "syllables" of four random letters. The second run was again 25 sequences, but of seven random numbers. These lists were presented on a single sheet of paper, see Figure 9. During the following days the sequences were not changed, but the order in which they were presented changed. This was to compensate for what learning might be possible for essentially meaningless
FIGURE 8

Operator's Workstation with Microwriter and Training Material
<table>
<thead>
<tr>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFDL</td>
</tr>
<tr>
<td>FPHN</td>
</tr>
<tr>
<td>NQZV</td>
</tr>
<tr>
<td>HFAXW</td>
</tr>
<tr>
<td>ZWDC</td>
</tr>
<tr>
<td>RYDQ</td>
</tr>
<tr>
<td>SLVD</td>
</tr>
<tr>
<td>UZLM</td>
</tr>
<tr>
<td>NWUS</td>
</tr>
<tr>
<td>DVIW</td>
</tr>
<tr>
<td>EFDN</td>
</tr>
<tr>
<td>ZTNS</td>
</tr>
<tr>
<td>FGHIH</td>
</tr>
<tr>
<td>ZAEN</td>
</tr>
<tr>
<td>GSUI</td>
</tr>
<tr>
<td>LMBE</td>
</tr>
<tr>
<td>EOGM</td>
</tr>
<tr>
<td>KBDH</td>
</tr>
<tr>
<td>CDJD</td>
</tr>
<tr>
<td>VSEBG</td>
</tr>
<tr>
<td>DJGC</td>
</tr>
<tr>
<td>SEBC</td>
</tr>
<tr>
<td>SNCP</td>
</tr>
<tr>
<td>NFJR</td>
</tr>
<tr>
<td>ZJEM</td>
</tr>
</tbody>
</table>

1. 0215755
2. 0554655
3. 1487160
4. 3847674
5. 9731261
6. 1174269
7. 4336128
8. 9380620
9. 4954013
10. 3676872
11. 0709252
12. 4510015
13. 6157006
14. 3155263
15. 5704895
16. 0924344
17. 9795525
18. 9375254
19. 7262111
20. 6122674
21. 9785985
22. 8916097
23. 2556688
24. 6144321
25. 1172225

FIGURE 9
Sequence Lists as Presented to Operators
material. The characters appeared on the screen as they were entered. No corrections were allowed and the screen cleared as soon as the sequence of four or seven characters was completed. The computer kept track of the sequence time, while total time to complete the list was tracked by stopwatch. Henceforth the term "sequence" will refer to individual groups of four letters or seven numbers. The term "list" will refer to the summary of the 25 sequences.

The computer also kept track of those alphanumeric characters missed on the test. The printout listed the number of incorrect characters entered in the sequence, what was entered, what should have been entered and the time it took to enter it (see Figure 10). This was done to give the research participant an easy comparison between an error and the correct response. The record for the alphabetic list was printed in another room as the research participant was being tested on the numeric list. When the numeric list test was completed, that record was printed out immediately and the entire page with the results of both runs was given to the research participant for review. The experimenter went over the list with the operator and pointed out the mistakes and had the research participant compare finger motions of what was erroneously entered and what was the correct character.

This testing and feedback was repeated every day after the 30 minute practice sessions. The practice sessions were spent typing in news articles which contained both numbers and letters (see Appendix H for example).

Experimental Design

The model for the study was repeated measures complete block design: condition by days with repeated measures over days. The independent variables in this experiment were condition, which was determined by the keyboard (4X4 keypad, chord keyboard with memory aids, and chord keyboard without memory aids); task (letters and numbers); days 1, 2, 3, 4, and 5; and research participants (1 through 15).

Dependent Variables

The dependent variables for this experiment were errors-per-list, sequence times, and list times. Sequence time is that interval between the keypress for the first and last letter or number in the sequence. The time was recorded in this way for all 25 sequences in the list. A digital stopwatch used to collect list times was activated manually by the experimenter. The time was started upon hearing the first keypress and stopped upon hearing the disk drive start on the computer which was, for all practical purposes, instantaneous with the final keypress of the last sequence.
Figure 10

Sample Test Results

21
One error was counted for each character that was incorrect, or omitted, or if an extra character was entered. The program could not determine if a character was omitted or an extra one entered, therefore if the string was one character off, they were all counted wrong by the program. This was corrected when the errors were tabulated by hand; a determination was made as to what type of error had occurred.
RESULTS AND DISCUSSION

The data collected in the study was analyzed using a two way Analysis of Variance with repeated measures. Separate Analyses of Variance were run for each dependent variable: errors, sequence times, and list times. The model used for all Analyses of Variance were the same: conditions by days with repeated measures across days. Duncan's multiple range tests were performed for all main effects found significant by each Analysis of Variance.

Throughout this discussion, the 4X4 numeric keypad will be referred to as "the keypad." The conditions using the Microwriter with the original memory aids and without the aids will be referred to as "mnemonic" and "plain" respectively.

The research participants were randomly assigned to matched groups based on the skill level exhibited on the initial typing test. The categorization was three levels: high, medium, and low. The results of the test and the grouping can be seen in Table 1. The overall range for the typing test was 27.6 to 64.3 words per minute. Those typing above 40 words per minute were considered high skill, those typing below 30 words per minute were considered low skill. The operators whose scores fell between these boundaries were considered medium. The upper boundary reflects a natural break in the scores. The lower boundary was set rather arbitrarily by grouping the three lowest scores together. This grouping and balancing was done to control any tendency for experienced typists to do better on manual dexterity tasks than research participants inexperienced with conventional keyboards.

The discussion of the data gathered on the three dependent variables involved in the analysis: sequence time, list time, and errors, is better divided by group of tests, beginning or ending. This division forms a logical outline from which to discuss the results.

Mean Times for Sequences

Letters: The mean times for each keyboard per day are shown in Figure 11. The actual values for the means are listed in Table 2. Initial inspection shows that on the first day's test, mnemonic started with a slightly higher mean (5.83 sec.) than the other two conditions (5.53 for keypad, 5.34 for plain). By the second day the keypad had the highest mean and remained in the top position. The corresponding Analysis of Variance for the test (Table 3), shows that neither condition nor the interaction of condition and days is significant. Again, "days" shows up as being significant. The Duncan Multiple Range test in Table 4 lists days 2, 3, and 4 as being significantly different from each other, while days 4 and 5 are not.
TABLE 1

Results of Typing Test: Means and Standard Deviations (all figures in words per minute)

<table>
<thead>
<tr>
<th></th>
<th>MNEMONIC</th>
<th>PLAIN</th>
<th>KEYPAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOW</td>
<td>28.0 wpm</td>
<td>29.6 wpm</td>
<td>27.6 wpm</td>
</tr>
<tr>
<td>MEDIUM</td>
<td>31.5</td>
<td>38.4</td>
<td>31.6</td>
</tr>
<tr>
<td></td>
<td>36.8</td>
<td>37.3</td>
<td>38.4</td>
</tr>
<tr>
<td></td>
<td>33.3</td>
<td>39.6</td>
<td>38.6</td>
</tr>
<tr>
<td>HIGH</td>
<td>58.5</td>
<td>64.3</td>
<td>58.3</td>
</tr>
<tr>
<td>AVERAGE</td>
<td>37.62</td>
<td>41.84</td>
<td>38.90</td>
</tr>
<tr>
<td>STANDARD DEVIATION</td>
<td>12.10</td>
<td>13.15</td>
<td>11.81</td>
</tr>
</tbody>
</table>
FIGURE 11
Mean Time by Condition Over Days for Letter Sequence Tests
TABLE 2

Means and Variances for Letter Sequence Times

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>DAY</th>
<th>N</th>
<th>MEAN</th>
<th>VAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>KEYPAD</td>
<td>1</td>
<td>5</td>
<td>5.53</td>
<td>1.05</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>5</td>
<td>4.39</td>
<td>0.73</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>5</td>
<td>3.61</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>5</td>
<td>3.27</td>
<td>0.26</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>5</td>
<td>3.03</td>
<td>0.56</td>
</tr>
<tr>
<td>MNEMON</td>
<td>1</td>
<td>5</td>
<td>5.83</td>
<td>1.16</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>5</td>
<td>3.71</td>
<td>0.88</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>5</td>
<td>3.11</td>
<td>0.44</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>5</td>
<td>2.59</td>
<td>0.18</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>5</td>
<td>2.58</td>
<td>0.30</td>
</tr>
<tr>
<td>PLAIN</td>
<td>1</td>
<td>5</td>
<td>5.34</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>5</td>
<td>3.63</td>
<td>0.38</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>5</td>
<td>3.08</td>
<td>0.22</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>5</td>
<td>2.61</td>
<td>0.26</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>5</td>
<td>2.41</td>
<td>0.13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>ALL</th>
<th>25</th>
<th>MEAN</th>
<th>VAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>KEYPAD</td>
<td>ALL</td>
<td>25</td>
<td>3.97</td>
<td>1.37</td>
</tr>
<tr>
<td>MNEMON</td>
<td>ALL</td>
<td>25</td>
<td>3.56</td>
<td>2.01</td>
</tr>
<tr>
<td>PLAIN</td>
<td>ALL</td>
<td>25</td>
<td>3.41</td>
<td>1.34</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DAY</th>
<th>ALL</th>
<th>15</th>
<th>MEAN</th>
<th>VAR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>15</td>
<td>5.57</td>
<td>0.72</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>15</td>
<td>3.91</td>
<td>0.69</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DAY</th>
<th>ALL</th>
<th>15</th>
<th>MEAN</th>
<th>VAR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>15</td>
<td>3.27</td>
<td>0.40</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>15</td>
<td>2.82</td>
<td>0.31</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>15</td>
<td>2.68</td>
<td>0.35</td>
</tr>
<tr>
<td>ALL</td>
<td>ALL</td>
<td>75</td>
<td>3.65</td>
<td>1.58</td>
</tr>
</tbody>
</table>
TABLE 3

Analysis of Variance for Letter Sequence Times

<table>
<thead>
<tr>
<th>Source</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>P(F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condition</td>
<td>2</td>
<td>2.0431</td>
<td>1.04</td>
<td>0.3842</td>
</tr>
<tr>
<td>Day</td>
<td>4</td>
<td>20.6819</td>
<td>190.64</td>
<td>0.0001 *</td>
</tr>
<tr>
<td>Condition x Day</td>
<td>8</td>
<td>0.2141</td>
<td>1.97</td>
<td>0.0704</td>
</tr>
<tr>
<td>Error Subject(Condition)</td>
<td>12</td>
<td>1.9702</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error Subject*Day(Condition)</td>
<td>48</td>
<td>0.1085</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>74</td>
<td>1.5862</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Significant at \(p < 0.05 \)
Table 4
Duncan's Multiple Range Test for Comparison of Days for Letter Sequence Times

\[\alpha = 0.05 \quad df = 48 \quad MSE = 0.10849 \]

<table>
<thead>
<tr>
<th>Grouping</th>
<th>Mean</th>
<th>N</th>
<th>Days</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5.5664</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>3.9069</td>
<td>15</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3.2658</td>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2.8249</td>
<td>15</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>2.6762</td>
<td>15</td>
<td>5</td>
</tr>
</tbody>
</table>
Numbers: In Figure 12 there are the mean times for each condition; actual values are listed in Table 5. The difference between conditions is significant at the 0.05 level. The table on page 35 has the Duncan Multiple Range test for condition and it shows that pairs: mnemonic and plain, plain and keypad, are not significantly different. Mnemonic and keypad are shown to be different. The difference between days in the Analysis of Variance (Table 6) is shown to be highly significant; the corresponding condition and day interaction is also calculated as being significant to the 0.0001 level. Table 8 shows the Duncan Multiple range test for days.

Mean Times for Lists

Letters: Figure 13 shows the means by condition over days. The actual values for each point of the graph are listed in Table 9. The corresponding Analysis of Variance in Table 10 gives the predictable significant difference for days, but shows no significance for conditions or the interaction of condition and day. The pertinent Duncan Multiple Range test for days is listed in Table 11. Note that although not significant, the times for day 5 were longer than for day 4.

Numbers: The means of the sequence times for the number test are arranged by condition over days in Figure 14; the actual values for each point can be found in Table 12. The Analysis of Variance (Table 13) shows the usual high significance between days to the 0.0001 level; it also shows the same level of significance for the condition-day interaction term. The Duncan Multiple Range test in Table 14 indicates no significant difference for days 3, 4, and 5.

Mean Errors

Letters: Figure 15 shows the trend of each condition over time. Keypad, obviously has the lowest error rate, starting with 2.40 error on the first day and finishing with 0.20 errors on the fifth. The complete list of actual values can be found in Table 15. The Analysis of Variance (Table 16) shows condition to be significant beyond the 0.05 level. Day is also significant. In the Duncan's Multiple Range test for condition (Table 17), it is further determined that only keypad is significantly different from the other two. The Duncan's Multiple Range test for days appears in Table 18 and shows that only day one is significantly different.
FIGURE 12
Mean Time by Condition Over Days for Number Sequence Tests
TABLE 5

Means and Variances for Number Sequence Times

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>DAY</th>
<th>N</th>
<th>MEAN</th>
<th>VAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>KEYPAD</td>
<td></td>
<td>5</td>
<td>4.31</td>
<td>1.76</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>5</td>
<td>3.62</td>
<td>1.66</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>5</td>
<td>3.23</td>
<td>1.31</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>5</td>
<td>3.01</td>
<td>0.95</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>5</td>
<td>2.88</td>
<td>1.19</td>
</tr>
<tr>
<td>MNEEMON</td>
<td></td>
<td>5</td>
<td>7.05</td>
<td>1.18</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>5</td>
<td>5.18</td>
<td>0.88</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>5</td>
<td>3.91</td>
<td>0.21</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>5</td>
<td>3.64</td>
<td>0.09</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>5</td>
<td>3.48</td>
<td>0.06</td>
</tr>
<tr>
<td>PLAIN</td>
<td></td>
<td>5</td>
<td>5.04</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>5</td>
<td>4.06</td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>5</td>
<td>3.85</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>5</td>
<td>3.35</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>5</td>
<td>3.37</td>
<td>0.07</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>ALL</th>
<th>N</th>
<th>MEAN</th>
<th>VAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>KEYPAD</td>
<td></td>
<td>25</td>
<td>3.39</td>
<td>1.42</td>
</tr>
<tr>
<td>MNEEMON</td>
<td></td>
<td>25</td>
<td>4.65</td>
<td>2.27</td>
</tr>
<tr>
<td>PLAIN</td>
<td></td>
<td>25</td>
<td>3.90</td>
<td>0.49</td>
</tr>
<tr>
<td>DAY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALL</td>
<td></td>
<td>15</td>
<td>5.47</td>
<td>2.31</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>15</td>
<td>4.25</td>
<td>1.26</td>
</tr>
<tr>
<td>ALL</td>
<td></td>
<td>3</td>
<td>3.61</td>
<td>0.57</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>15</td>
<td>3.33</td>
<td>0.40</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>15</td>
<td>3.25</td>
<td>0.46</td>
</tr>
<tr>
<td>ALL</td>
<td></td>
<td>75</td>
<td>3.98</td>
<td>1.63</td>
</tr>
<tr>
<td>Source</td>
<td>df</td>
<td>MS</td>
<td>F</td>
<td>PR>F</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>----</td>
<td>--------</td>
<td>-----</td>
<td>-------</td>
</tr>
<tr>
<td>Condition</td>
<td>2</td>
<td>10.0846</td>
<td>4.00</td>
<td>0.04bc*</td>
</tr>
<tr>
<td>Day</td>
<td>4</td>
<td>12.6910</td>
<td>66.31</td>
<td>0.0001*</td>
</tr>
<tr>
<td>Condition x Day</td>
<td>8</td>
<td>1.2893</td>
<td>6.74</td>
<td>0.0001*</td>
</tr>
<tr>
<td>Error Subject(Condition)</td>
<td>12</td>
<td>2.5240</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error Subject*Day(Condition)</td>
<td>48</td>
<td>0.1914</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>74</td>
<td>1.6314</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Significant at $p < 0.05$
Table 7

Duncan's Multiple Range Test for Comparison of Conditions for Number Sequence Times

*Conditions for Number Sequence Times

Alpha = 0.05 df = 12 MSE = 2.52396

<table>
<thead>
<tr>
<th>Grouping</th>
<th>Mean</th>
<th>N</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4.6522</td>
<td>20</td>
<td>Mnemonic</td>
</tr>
<tr>
<td></td>
<td>3.9016</td>
<td>20</td>
<td>Plain</td>
</tr>
<tr>
<td></td>
<td>3.3894</td>
<td>20</td>
<td>Keypad</td>
</tr>
</tbody>
</table>
Table 8
Duncan’s Multiple Range Test for Comparison of Days for Number Sequence Times

Alpha = 0.05 df = 48 MSE = 0.19138

<table>
<thead>
<tr>
<th>Grouping</th>
<th>Mean</th>
<th>N</th>
<th>Days</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5.4680</td>
<td>1b</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>4.2502</td>
<td>15</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3.6105</td>
<td>1b</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>3.3304</td>
<td>1b</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>3.2461</td>
<td>1b</td>
<td>5</td>
</tr>
</tbody>
</table>
FIGURE 13
Mean Time by Condition Over Days for Letter List Tests
TABLE 9

Means and Variances for Letter List Times

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>DAY</th>
<th>MEAN</th>
<th>VAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>KEYPAD</td>
<td>1</td>
<td>214.00</td>
<td>789.50</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>170.60</td>
<td>924.30</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>145.80</td>
<td>492.70</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>132.80</td>
<td>29.70</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>130.20</td>
<td>193.20</td>
</tr>
<tr>
<td>MNEMON</td>
<td>1</td>
<td>210.00</td>
<td>1042.5</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>152.80</td>
<td>2486.2</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>124.40</td>
<td>1036.8</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>100.20</td>
<td>196.70</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>101.00</td>
<td>340.50</td>
</tr>
<tr>
<td>PLAIN</td>
<td>1</td>
<td>199.60</td>
<td>170.70</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>134.40</td>
<td>298.30</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>114.40</td>
<td>358.80</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>97.20</td>
<td>357.70</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>100.40</td>
<td>149.30</td>
</tr>
<tr>
<td>CONDITION</td>
<td>KEYPAD</td>
<td>ALL</td>
<td>MEAN</td>
</tr>
<tr>
<td>KEYPAD</td>
<td>25</td>
<td>158.68</td>
<td>1415.1</td>
</tr>
<tr>
<td>MNEMON</td>
<td>25</td>
<td>137.68</td>
<td>2597.4</td>
</tr>
<tr>
<td>PLAIN</td>
<td>25</td>
<td>129.24</td>
<td>1698.3</td>
</tr>
<tr>
<td>CONDITION</td>
<td>PLAIN</td>
<td>ALL</td>
<td>MEAN</td>
</tr>
<tr>
<td>DAY</td>
<td>1</td>
<td>207.93</td>
<td>610.50</td>
</tr>
<tr>
<td>2</td>
<td>152.60</td>
<td>1293.7</td>
<td></td>
</tr>
<tr>
<td>ALL</td>
<td>3</td>
<td>128.20</td>
<td>723.31</td>
</tr>
<tr>
<td>4</td>
<td>110.07</td>
<td>445.35</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>110.53</td>
<td>402.41</td>
<td></td>
</tr>
<tr>
<td>ALL</td>
<td>75</td>
<td>141.87</td>
<td>2007.4</td>
</tr>
</tbody>
</table>
TABLE 10

Analysis of Variance for Letter List Times

<table>
<thead>
<tr>
<th>Source</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>P(F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condition</td>
<td>2</td>
<td>5745.6134</td>
<td>2.83</td>
<td>0.0982</td>
</tr>
<tr>
<td>Day</td>
<td>4</td>
<td>29474.453</td>
<td>107.63</td>
<td>0.0001*</td>
</tr>
<tr>
<td>Condition x Day</td>
<td>8</td>
<td>211.8467</td>
<td>0.91</td>
<td>0.5140</td>
</tr>
<tr>
<td>Error Subject(Condition)</td>
<td>12</td>
<td>2027.4533</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error Subject*Day(Condition)</td>
<td>48</td>
<td>232.0450</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>74</td>
<td>2007.4414</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Significant at $p < 0.05$
Table 11
Duncan's Multiple Range Test for Comparison of Days for Letter List Times

Alpha = 0.05 df = 48 MSE = 232.045

<table>
<thead>
<tr>
<th>Grouping</th>
<th>Mean</th>
<th>N</th>
<th>Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>207.93</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>152.60</td>
<td>15</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>128.20</td>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>110.53</td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>110.07</td>
<td>15</td>
<td>4</td>
</tr>
</tbody>
</table>
FIGURE 14

Mean Time by Condition Over Days for Number List Tests
<table>
<thead>
<tr>
<th>CONDITION</th>
<th>DAY</th>
<th>N</th>
<th>MEAN</th>
<th>VAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>KEYPAD</td>
<td>1</td>
<td>5</td>
<td>163.80</td>
<td>1152.2</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>5</td>
<td>138.00</td>
<td>1164.0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>5</td>
<td>127.00</td>
<td>1272.5</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>5</td>
<td>122.80</td>
<td>1018.7</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>5</td>
<td>119.80</td>
<td>1171.7</td>
</tr>
<tr>
<td>MNEMON</td>
<td>1</td>
<td>5</td>
<td>217.60</td>
<td>591.30</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>5</td>
<td>151.20</td>
<td>1033.2</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>5</td>
<td>121.00</td>
<td>316.00</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>5</td>
<td>120.40</td>
<td>94.80</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>5</td>
<td>117.80</td>
<td>323.70</td>
</tr>
<tr>
<td>PLAIN</td>
<td>1</td>
<td>5</td>
<td>163.00</td>
<td>57.50</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>5</td>
<td>134.80</td>
<td>47.20</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>5</td>
<td>119.20</td>
<td>105.70</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>5</td>
<td>108.20</td>
<td>65.20</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>5</td>
<td>120.80</td>
<td>222.70</td>
</tr>
<tr>
<td>CONDITION</td>
<td>ALL</td>
<td>25</td>
<td>134.28</td>
<td>1229.8</td>
</tr>
<tr>
<td>KEYPAD</td>
<td>ALL</td>
<td>25</td>
<td>145.60</td>
<td>1901.6</td>
</tr>
<tr>
<td>MNEMON</td>
<td>ALL</td>
<td>25</td>
<td>130.40</td>
<td>545.50</td>
</tr>
<tr>
<td>PLAIN</td>
<td>ALL</td>
<td>25</td>
<td>130.40</td>
<td>545.50</td>
</tr>
<tr>
<td>DAY</td>
<td>ALL</td>
<td>15</td>
<td>183.47</td>
<td>1143.6</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>15</td>
<td>141.33</td>
<td>695.24</td>
</tr>
<tr>
<td>DAY</td>
<td>ALL</td>
<td>3</td>
<td>122.40</td>
<td>405.97</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>15</td>
<td>117.13</td>
<td>380.55</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>15</td>
<td>119.47</td>
<td>496.84</td>
</tr>
<tr>
<td>ALL</td>
<td>ALL</td>
<td>75</td>
<td>136.76</td>
<td>1234.6</td>
</tr>
</tbody>
</table>
TABLE 13

Analysis of Variance for Number List Times

<table>
<thead>
<tr>
<th>Source</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>PK>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condition</td>
<td>2</td>
<td>1559.6400</td>
<td>0.69</td>
<td>0.5197</td>
</tr>
<tr>
<td>Day</td>
<td>4</td>
<td>11598.386</td>
<td>73.80</td>
<td>0.0001 *</td>
</tr>
<tr>
<td>Condition x Day</td>
<td>8</td>
<td>905.7367</td>
<td>5.76</td>
<td>0.0001 *</td>
</tr>
<tr>
<td>Error Subject (Condition)</td>
<td>12</td>
<td>2255.1200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error Subject x Day (Condition)</td>
<td>48</td>
<td>157.1/00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>74</td>
<td>1234.6443</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Significant at $p < 0.05$
Table 14

Duncan's Multiple Range Test for Comparison of Days for Number List Times

$\alpha = 0.05 \quad df = 48 \quad MSE = 157.17$

<table>
<thead>
<tr>
<th>Grouping</th>
<th>Mean</th>
<th>N</th>
<th>Days</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>183.47</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>141.33</td>
<td>15</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>122.40</td>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>119.47</td>
<td>15</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>117.13</td>
<td>15</td>
<td>5</td>
</tr>
</tbody>
</table>
FIGURE 1b
Mean Error by Condition Over Days for Letter Tests
Table 15

Means and Variances for Letter Error Count

<table>
<thead>
<tr>
<th>Condition</th>
<th>Day</th>
<th>N</th>
<th>Mean</th>
<th>Var</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keypad</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>5</td>
<td>2.40</td>
<td>11.30</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>5</td>
<td>1.40</td>
<td>2.80</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>5</td>
<td>1.20</td>
<td>0.70</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>5</td>
<td>1.60</td>
<td>0.80</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>5</td>
<td>0.20</td>
<td>0.20</td>
</tr>
<tr>
<td>Mnemon</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>5</td>
<td>6.00</td>
<td>6.50</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>5</td>
<td>3.20</td>
<td>3.70</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>5</td>
<td>3.20</td>
<td>8.20</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>5</td>
<td>3.80</td>
<td>28.70</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>5</td>
<td>2.80</td>
<td>2.70</td>
</tr>
<tr>
<td>Plain</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>5</td>
<td>7.00</td>
<td>12.50</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>5</td>
<td>3.00</td>
<td>8.50</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>5</td>
<td>2.80</td>
<td>4.70</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>5</td>
<td>1.80</td>
<td>0.70</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>5</td>
<td>2.40</td>
<td>0.30</td>
</tr>
<tr>
<td>Condition</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Keypad</td>
<td>All</td>
<td>25</td>
<td>1.36</td>
<td>3.16</td>
</tr>
<tr>
<td>Mnemon</td>
<td>All</td>
<td>25</td>
<td>3.80</td>
<td>9.83</td>
</tr>
<tr>
<td>Plain</td>
<td>All</td>
<td>25</td>
<td>3.40</td>
<td>9.00</td>
</tr>
</tbody>
</table>

Day

<table>
<thead>
<tr>
<th>All</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15</td>
<td>5.13</td>
<td>12.84</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>2.53</td>
<td>4.98</td>
<td></td>
</tr>
</tbody>
</table>

All

<table>
<thead>
<tr>
<th>Day</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>15</td>
<td>2.40</td>
<td>4.69</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td>2.40</td>
<td>9.69</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>15</td>
<td>1.80</td>
<td>2.60</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>All</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>75</td>
<td>2.85</td>
<td>7.96</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE 16

Analysis of Variance for Letter Error Count

<table>
<thead>
<tr>
<th>Source</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>PR>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condition</td>
<td>2</td>
<td>42.5133</td>
<td>3.95</td>
<td>0.0482*</td>
</tr>
<tr>
<td>Day</td>
<td>4</td>
<td>25.5800</td>
<td>5.05</td>
<td>0.0018*</td>
</tr>
<tr>
<td>Condition x Day</td>
<td>8</td>
<td>3.5300</td>
<td>0.70</td>
<td>0.6922</td>
</tr>
<tr>
<td>Error Subject (Condition)</td>
<td>12</td>
<td>10.8467</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error Subject x Day (Condition)</td>
<td>48</td>
<td>5.0633</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>74</td>
<td>7.9647</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Significant at $p < 0.05$
Table 17

Duncan's Multiple Range Test for Comparison of Conditions for Letter Error Count

\[\alpha = 0.05 \quad df = 12 \quad MSE = 10.8467 \]

<table>
<thead>
<tr>
<th>Grouping</th>
<th>Mean</th>
<th>N</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3.8000</td>
<td>20</td>
<td>Mnemonic</td>
</tr>
<tr>
<td></td>
<td>3.4000</td>
<td>20</td>
<td>Plain</td>
</tr>
<tr>
<td></td>
<td>1.3600</td>
<td>20</td>
<td>Keypad</td>
</tr>
</tbody>
</table>
Table 18

Duncan's Multiple Range Test for Comparison of
Days for Letter Error Count

\[\text{Alpha} = 0.05 \quad df = 48 \quad \text{MSE} = 5.06333 \]

<table>
<thead>
<tr>
<th>Grouping</th>
<th>Mean</th>
<th>N</th>
<th>Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.1333</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2.5333</td>
<td>15</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2.4000</td>
<td>15</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>2.4000</td>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1.8000</td>
<td>15</td>
<td>5</td>
</tr>
</tbody>
</table>
Numbers: Figure 16 and Table 19 come from the data for the error count on the numbers test. The Analysis of Variance (Table 20) shows condition and day as significant and the interaction term approaching significance. The Duncan Multiple Range tests for conditions and days are listed in Table 21 and 22 respectively. Of note, but not statistically significant, is the fact that the days are not in the regular chronological order. Days 3, 4, and 5 are reversed but are not significantly different from one another.

Confusion Errors

Table 23 shows which letters were confused with other letters for the two chord keypad conditions. Since there were four letters in each sequence and 25 sequences in each list, a letter should occur an average of approximately four times in each list. The list was presented to the research participant five times meaning that the participant would have an opportunity to enter a particular letter 20 times over the course of the experiment. If a letter was put in place of another letter four or more times it appears in the table. This is an error rate of 20 percent or more. For example, the letter 'D' was entered in place of the letter 'C' more than four times by the subjects in the plain condition. As is shown by the chart only two letters appear in both conditions, those are the letter 'F' being entered instead of the letter 'D' and 'Z' instead of 'O'.
FIGURE 16
Mean Error by Condition Over Days for Number Tests
<table>
<thead>
<tr>
<th>CONDITION</th>
<th>DAY</th>
<th>N</th>
<th>MEAN</th>
<th>VAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>KEYPAD</td>
<td>1</td>
<td>5</td>
<td>2.40</td>
<td>5.30</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>5</td>
<td>1.40</td>
<td>2.80</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>5</td>
<td>1.20</td>
<td>0.20</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>5</td>
<td>0.80</td>
<td>0.70</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>5</td>
<td>1.40</td>
<td>1.30</td>
</tr>
<tr>
<td>MNEMON</td>
<td>1</td>
<td>5</td>
<td>8.00</td>
<td>16.50</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>5</td>
<td>4.40</td>
<td>15.30</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>5</td>
<td>1.40</td>
<td>2.30</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>5</td>
<td>2.60</td>
<td>2.80</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>5</td>
<td>4.60</td>
<td>4.80</td>
</tr>
<tr>
<td>PLAIN</td>
<td>1</td>
<td>5</td>
<td>6.20</td>
<td>8.20</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>5</td>
<td>6.20</td>
<td>9.20</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>5</td>
<td>2.20</td>
<td>1.20</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>5</td>
<td>2.60</td>
<td>8.80</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>5</td>
<td>2.60</td>
<td>0.80</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>DAY</th>
<th>N</th>
<th>MEAN</th>
<th>VAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>KEYPAD</td>
<td>ALL</td>
<td>25</td>
<td>1.44</td>
<td>2.01</td>
</tr>
<tr>
<td>MNEMON</td>
<td>ALL</td>
<td>25</td>
<td>4.20</td>
<td>12.17</td>
</tr>
<tr>
<td>PLAIN</td>
<td>ALL</td>
<td>25</td>
<td>3.96</td>
<td>8.21</td>
</tr>
<tr>
<td>DAY</td>
<td>ALL</td>
<td>15</td>
<td>5.53</td>
<td>14.41</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>15</td>
<td>4.00</td>
<td>12.00</td>
</tr>
<tr>
<td>ALL</td>
<td>3</td>
<td>15</td>
<td>1.80</td>
<td>1.26</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>15</td>
<td>2.00</td>
<td>4.29</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>15</td>
<td>2.87</td>
<td>3.84</td>
</tr>
<tr>
<td>ALL</td>
<td>ALL</td>
<td>75</td>
<td>3.20</td>
<td>8.84</td>
</tr>
</tbody>
</table>

Table 19

Means and variances for number error count.
Table 20

Analysis of Variance for Number Error Count

<table>
<thead>
<tr>
<th>Source</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>PR>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condition</td>
<td>2</td>
<td>58.4400</td>
<td>5.59</td>
<td>0.0193 *</td>
</tr>
<tr>
<td>Day</td>
<td>4</td>
<td>38.2333</td>
<td>9.40</td>
<td>0.0001 *</td>
</tr>
<tr>
<td>Condition x Day</td>
<td>8</td>
<td>63.3867</td>
<td>1.95</td>
<td>0.0742</td>
</tr>
<tr>
<td>Error Subject(Condition)</td>
<td>12</td>
<td>10.4600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error Subject*Day(Condition)</td>
<td>48</td>
<td>4.0683</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total | 74 | 8.8378 |

* Significant at $p < 0.05$
Table 21

Duncan's Multiple Range Test for Comparison of Conditions for Number Error Count

Alpha = 0.05 df = 12 MSE = 10.46

<table>
<thead>
<tr>
<th>Grouping</th>
<th>Mean</th>
<th>N</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4.2000</td>
<td>20</td>
<td>Mnemonic</td>
</tr>
<tr>
<td></td>
<td>3.9600</td>
<td>20</td>
<td>Plain</td>
</tr>
<tr>
<td></td>
<td>1.4400</td>
<td>20</td>
<td>Keypad</td>
</tr>
</tbody>
</table>
Table 22
Duncan's Multiple Range Test for Comparison of Days for Number Error Count

\[
\begin{array}{llll}
\text{Grouping} & \text{Mean} & \text{N} & \text{Days} \\
1 & 5.5333 & 15 & 1 \\
2 & 4.0000 & 15 & 2 \\
3 & 2.8667 & 15 & 5 \\
4 & 2.0000 & 15 & 4 \\
5 & 1.6000 & 15 & 3 \\
\end{array}
\]

\[\text{Alpha} = 0.05 \quad \text{df} = 48 \quad \text{MSE} = 4.06833\]
TABLE 23

Confusion Matrix:
Matrix of letters which were entered more than four times incorrectly for a particular letter.

<table>
<thead>
<tr>
<th>Correct entry</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>INCORRECT ENTRIES</td>
<td></td>
<td></td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mnemonic:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plain:</td>
<td></td>
<td>M</td>
<td>D</td>
<td>F</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Correct entry</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>M</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>INCORRECT ENTRIES</td>
<td></td>
<td></td>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mnemonic:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plain:</td>
<td>L</td>
<td>K</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Correct entry</th>
<th>U</th>
<th>P</th>
<th>Q</th>
<th>R</th>
<th>S</th>
<th>T</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>INCORRECT ENTRIES</td>
<td></td>
<td></td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mnemonic:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plain:</td>
<td>Z</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Correct entry</th>
<th>V</th>
<th>W</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>INCORRECT ENTRIES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mnemonic:</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plain:</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CONCLUSIONS AND RECOMMENDATIONS

To summarize, neither keypad, given the constraints of training and practice time, was found to be superior in terms of speed. The 4X4 keypad was however, found to have significantly less errors than the Microwriter. The second objective of the study dealt with the difference in errors due to the use or non-use of the memory aids. There was slight evidence to show that mnemonics increases the number of errors. Confusion between different letters occurred by the use or nonuse of the memory aids.

The third objective dealt with an arbitrarily set level of proficiency to be gained on the various keypads. This was set at 50% of the average speed demonstrated on the beginning OWERTY typing test. The average speed was calculated to be 39.45 words per minute or 197.25 characters per minute. The 50% level would therefore be 98.63. This level was not gained on any of the conditions. The 25% level, however, was attained by all conditions (see Table 24).

For the fourth objective of this study, it was found that slight practice on the 4X4 keypad does show improvement in performance, at least during the first four days. There was some evidence that a plateau of behavior was exhibited during the fifth day.

Given the short time each operator had in training (2.5 hours during five days) neither Microwriter or 4X4 keypad shows a really definite advantage in terms of speed. On the test for numbers, condition is shown to be significant beyond the 0.05 level (Table 6). Upon inspection of Figure 12 it can be seen that it is the mnemonic condition which caused the difference by having such relatively high times for the first two days. The difference is gone by the third day, the line converging with the rest. This convergence gives rise to the significant interaction term.

Figures 17 and 18 show the overall means by condition for sequence times. In these figures, it is apparent that there is very little difference in times. The keypad tends to show an enlarged difference in comparison to the conditions on the Microwriter when tested with numbers but it was still not significant. Figures 19 and 20 are bar charts showing the overall means by condition for list times. Again visible is the tendency (nonsignificant for keypad to take longer for letters and shorter for numbers). This is not surprising since it takes two separate and distinct keypresses and even a visual search for the correct key in order to get one letter. It was expected that the keypad would take a much shorter time for keying because of the familiarization with the keyboard that all
TABLE 24

Data Entry Rates by Condition and by Type of Test

<table>
<thead>
<tr>
<th></th>
<th>SEQUENCE</th>
<th></th>
<th></th>
<th></th>
<th>LIST</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BEGIN</td>
<td>END</td>
<td>AVERAGE</td>
<td>BEGIN</td>
<td>END</td>
<td>AVERAGE</td>
<td>BEGIN</td>
<td>END</td>
</tr>
<tr>
<td>KEYPAD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALPHA</td>
<td>73.2</td>
<td>79.2</td>
<td>76.2</td>
<td>46.2</td>
<td>46.1</td>
<td>46.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NUMERIC</td>
<td>80.8</td>
<td>83.3</td>
<td>82.1</td>
<td>50.9</td>
<td>50.1</td>
<td>50.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AVERAGE</td>
<td>77.0</td>
<td>81.2</td>
<td>79.1</td>
<td>48.5</td>
<td>48.1</td>
<td>48.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MNEMONIC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALPHA</td>
<td>83.6</td>
<td>93.0</td>
<td>88.3</td>
<td>57.7</td>
<td>59.4</td>
<td>58.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NUMERIC</td>
<td>66.3</td>
<td>69.0</td>
<td>67.6</td>
<td>51.0</td>
<td>50.9</td>
<td>51.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AVERAGE</td>
<td>75.0</td>
<td>81.9</td>
<td>78.0</td>
<td>54.4</td>
<td>55.2</td>
<td>54.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLAIN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALPHA</td>
<td>88.9</td>
<td>99.6</td>
<td>94.2</td>
<td>60.4</td>
<td>59.8</td>
<td>60.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NUMERIC</td>
<td>71.4</td>
<td>71.2</td>
<td>71.3</td>
<td>54.6</td>
<td>49.7</td>
<td>52.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AVERAGE</td>
<td>80.2</td>
<td>85.4</td>
<td>82.8</td>
<td>57.5</td>
<td>54.7</td>
<td>56.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
research participants had. Expectations were that the more familiar with the phone, the faster the person should be.

Where the keyboards differ greatly is in terms of errors. Condition is significant in both of the Analyses of Variance for error. In each (Tables 16 and 20), condition is significant to beyond the 0.05 level. The corresponding Duncan tests (Tables 17 and 21) register keypad differently than the other two conditions. The keypad had fewer errors at the end. It is of note that there is an absence of a significant interaction term in both, yet the relevant graphs (Figures 15 and 16 respectively) show many changes in angle of the lines.

Looking at Figure 21 which has the overall error means by condition for letter tests it is seen that keypad has a smaller error rate than the other two. For the numbers tests, Figure 22 is of importance. In both analyses, the keypad was found to have significantly less errors than both of the Microwriter conditions.

For the confusion of letters for the chord keypad, only two letters appear in both conditions as being confused with the same letter four or more times in each condition. From this it is evident that the use or nonuse of the memory aids does lead to different errors.

All research participants were able to become familiar with all of the chords within the first session. The sequence time values of the first test given (when most chords were not learned and extensive use of the cue card was necessary) should give an indication of the difference in search time for the two conditions. Looking at the proper figures and tables (tests for the first day: Figures 11 and 12, and Tables 2 and 5), searching for the correct chord does not seem to be a problem for letters and only marginally for the numbers.

Entry rate on the keypad improved marginally over the duration of the study. As shown in the various interaction graphs (Figures 17 through 20) all keypad lines have a general downward trend. All Analyses of Variance dealing with time values have day as significant, although whether this is significant for just keypad is doubtful. A follow-up study readily suggests itself at this point.

Relying on these conclusions, chord keyboards of the handprint type tested here should not be used in applications which do not warrant long training times. Applications which cannot provide a large amount of training and which also have severe consequences for errors should not use a handprint chord keyboard. The 4X4 keypad should be used only in those situations which require infrequent and brief entry. It is possible that a 4X4 keypad could be used in a heads-up data entry task, but only after a long period of training. Further study is needed to ascertain how feasible this is, and whether other encoding methods would work better.
Figure 17
Comparison of Mean Sequence Encoding Times Between Conditions on Letter Tests
Figure 13
Comparison of Mean Sequence Encoding Times Between Conditions on Number Tests
Figure 19
Comparison of Mean List Encoding Times Between Conditions on Letter Tests
Figure 20
Comparison of Mean List Encoding Times Between Conditions on Number Tests
beyond the 0.05 level. The corresponding Duncan tests (Tables 17 and 21) register keypad differently than the other two conditions. The keypad had fewer errors at the end. It is of note that there is an absence of a significant interaction term in both, yet the relevant graphs, (Figures 15 and 16 respectively) show many changes in angle of the lines.

Looking at Figure 21 which has the overall error means by condition for letter tests it is seen that keypad has a smaller error rate than the other two. For the numbers tests, Figure 22 is of importance. In both analyses, the keypad was found to have significantly less errors than both of the Microwriter conditions.

For the confusion of letters for the chord keypad, only two letters appear in both conditions as being confused with the same letter four or more times in each condition. From this it is evident that the use or nonuse of the memory aids does lead to different errors.

All research participants were able to become familiar with all of the chords within the first session. The sequence time values of the first test given (when most chords were not learned and extensive use of the cue card was necessary) should give an indication of the difference in search time for the two conditions. Looking at the proper figures and tables (tests for the first day: Figures 11 and 12, and Tables 2 and 5), searching for the correct chord does not seem to be a problem for letters and only marginally for the numbers.
Figure 21
Comparison of Mean Errors Between Conditions on Letter Tests
Figure 22
Comparison of Mean Errors Between Conditions
on Number Tests
A number of other follow-up studies and related studies are suggested by the research documented here. Starting with the results of the QWERTY skills test which was used for classification of research participants into groups, but was otherwise unused in the final analysis, a study should be done to investigate transfer effects between the conventional typewriter and different types of chord keyboards. The question of whether skill on a QWERTY board or the manual dexterity involved has an effect on beginner chord users can be investigated using skilled typists and accomplished pianists.

Due to the limited amount of time at the keyboard that volunteers were willing to endure, asymptotic behavior was not reached although a plateau to speed was. A longer study using longer practice sessions, a longer span of days or both should be done to establish a learning curve for both keyboards, the upper limits to speed, and if the chord keyboard actually meets performance claims made by the manufacturer. Research participants for this study would have to have some external motivation greater than the intrinsic rewards available in this study.

The effects of different activation force curves for the keys and different key technologies, different curvatures of the palm rest and even an adjustable palm rest should all be investigated to make the chord keyboard more acceptable to the novice user. Retention of skill over weeks or even months for relatively long time users would make another good study.

The use of various operator populations also lends itself to study. The chord keyboard has been integrated into control columns of certain aircraft for in-flight data entry. Keying ability under workload or stress, with gloves, and in various acceleration environments such as those found in military aviation should be investigated with chord keyboards.
REFERENCES

SUPPLEMENTAL REFERENCES

APPENDIX A
COPY OF TEXT USED FOR TYPING TEST

Exercise 161

From the common-sense standpoint, everyone understands, or considers
that he understands, what is meant by time or duration; but an appreciation
of its real nature, with its assumed infinite duration in the past and its
infinity in the future, has always baffled the philosopher. According to
Newton, absolute, true and mathematical time, by itself, flows uniformly
on without respect to anything external. He thus conceived time as some-
thing which would continue even if there were no other physical
phenomena, no material bodies, and no human being in existence. No
method, however, can be imagined whereby such absolute time could be
directly measured, and it is clear that for time measurement it is necessary
to consider other physical changes in addition to time itself.

The change with which time can be most conveniently associated for this
purpose is motion, and time-measurement is based upon the observation of
a standard uniform motion, the rotation of the earth on its axis being that
actually employed.

The theory of relativity, with which Einstein's name is associated, has
for long attracted considerable attention, and it includes an idea of time
quite different from that enunciated by Newton. According to this theory,
there is no universal absolute time, and the measurements of both time and
length will vary with the motion of the observer making the measurements.
Two observers on different moving systems will fail to agree as to what
constitutes equal periods of time or equal lengths of bodies, and they will
not always agree as to whether two events occur simultaneously or otherwise
even after adjustments have been made for the time taken by light to travel
from the observed bodies to the observers. Measurements of the velocity of
light, however, give the same result for both observers. The differences
between the measurements of time and length by the two observers are
wholly inappreciable for motions relative to one another which come within
the range of human experience, and no practical difficulties, in connection
with clocks and watches, arise from this theory.

The rotation of the earth, upon which practical time measurement is
based, is determined by the apparent motions of the heavenly bodies, and
some acquaintance with astronomical principles is necessary to appreciate
the methods employed.

Although the stars are at different distances from the earth, they can all
be imagined as projected upon a sphere of which the earth forms the centre.

<table>
<thead>
<tr>
<th>Strokes</th>
<th>68</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>143</td>
</tr>
<tr>
<td></td>
<td>217</td>
</tr>
<tr>
<td></td>
<td>290</td>
</tr>
<tr>
<td></td>
<td>362</td>
</tr>
<tr>
<td></td>
<td>435</td>
</tr>
<tr>
<td></td>
<td>498</td>
</tr>
<tr>
<td></td>
<td>565</td>
</tr>
<tr>
<td></td>
<td>633</td>
</tr>
<tr>
<td></td>
<td>709</td>
</tr>
<tr>
<td></td>
<td>771</td>
</tr>
<tr>
<td></td>
<td>842</td>
</tr>
<tr>
<td></td>
<td>914</td>
</tr>
<tr>
<td></td>
<td>989</td>
</tr>
<tr>
<td></td>
<td>1007</td>
</tr>
<tr>
<td></td>
<td>1078</td>
</tr>
<tr>
<td></td>
<td>1152</td>
</tr>
<tr>
<td></td>
<td>1226</td>
</tr>
<tr>
<td></td>
<td>1300</td>
</tr>
<tr>
<td></td>
<td>1373</td>
</tr>
<tr>
<td></td>
<td>1444</td>
</tr>
<tr>
<td></td>
<td>1519</td>
</tr>
<tr>
<td></td>
<td>1594</td>
</tr>
<tr>
<td></td>
<td>1669</td>
</tr>
<tr>
<td></td>
<td>1744</td>
</tr>
<tr>
<td></td>
<td>1817</td>
</tr>
<tr>
<td></td>
<td>1885</td>
</tr>
<tr>
<td></td>
<td>1959</td>
</tr>
<tr>
<td></td>
<td>2034</td>
</tr>
<tr>
<td></td>
<td>2082</td>
</tr>
<tr>
<td></td>
<td>2149</td>
</tr>
<tr>
<td></td>
<td>2221</td>
</tr>
<tr>
<td></td>
<td>2293</td>
</tr>
<tr>
<td></td>
<td>2314</td>
</tr>
<tr>
<td></td>
<td>2388</td>
</tr>
<tr>
<td></td>
<td>2463</td>
</tr>
</tbody>
</table>

493 words

71
APPENDIX B

ALL PROGRAMS USED IN EXPERIMENT
TEST MAIN

20 RD = -16384:CL = -16388
30 DS = CHR$(13) + CHR$(4)
40 TEXT : HUME : VTAB 8
50 PRINT "[1] ENTRY OF DATA"
60 PRINT "[2] EDITING OF DATA"
70 PRINT
80 PRINT "[3] TESTING PROCESS"
90 PRINT "[4] PRACTICE SESSION"
100 PRINT
110 PRINT "[5] PRINT DATA"
120 PRINT "[6] PRINT RESULTS"
130 PRINT
140 PRINT "[7] EXIT TO SYSTEM PROMPT"
150 VTAB 2U
160 PRINT "PLEASE CHOOSE (1-7) :");
170 GET Z$: PRINT Z$
180 IF VAL (Z$) < 1 OR VAL (Z$)
190 THEN 40
200 UN VAL (Z$) GOTO 220,200,48
210 PRINT Z$: "RUN TEST.EDIT"
220 PRINT Z$: "RUN TEST.PRACTICE"
230 REM

ENTRY OF DATA

230 GOSUB 1540
240 HUME : VTAB 5: HTAB 11
250 PRINT "PLEASE INPUT DATA"
260 VTAB 8
270 FOR X = 1 TO 12
280 PRINT SPC ((X < 10));X;".
290 INPUT "";AS$(X)
300 NEXT X
310 FOR X = 13 TO 25
320 VTAB X - 5: HTAB 2U
330 PRINT X;".
340 INPUT "";AS$(X)
350 NEXT X

74
400 VAR X = 1 TO ZB
410 PRINT US; "WRITE "TSS",R":RE. + X
420 PRINT AS(X)
430 NEXT X
440 PRINT US; "WRITE "TSS",R";
450 PRINT REC + 25
460 PRINT US; "CLOSE "TSS"
470 GOTO 40
480 REM

TESTING PROCESS

490 HUME
500 VTAB 12
510 PRINT "1. TEST WITH KEYBOARD"
520 PRINT "2. TEST WITH MICROCOMPUTER"
530 PRINT
540 PRINT "PLEASE CHOOSE (1/2) : ";
550 GET Z$: PRINT Z$
560 IF VAL(Z$) < 1 OR VAL(Z$) > 4 THEN 490
570 ON VAL(Z$) GOTO 580,590
580 PRINT US; "RUN TEST.KEYBOARD"
590 PRINT US; "RUN TEST.MICRO"
600 REM

PRINT DATA

610 HUME
620 GOSUB 1540
630 VTAB 12
640 INPUT "PRINTER SLOT:";PR
650 PRINT US; "PR#":PR
660 PRINT US; "OPEN "TSS",L2U"
670 PRINT US; "READ "TSS",R"
680 INPUT REC
690 FOR X = 1 TO REC
700 PRINT US; "READ "TSS",R":X
710 INPUT A$
720 PRINT SPC((X < 10));X;"."; A$
730 IF PK = U THEN FOR C = 1 TO 500: NEXT C
740 NEXT X
750 PRINT US;"CLOSE "TS$
760 PRINT US;"PR#U"
770 PRINT : PRINT "PLEASE PRESS
ANY KEY TO CONTINUE": WAIT
RD,12$: PUKE CL,0
780 GOTO 40
790 REM

PRINT RESULTS

800 HUME
810 VTAB 12
820 INPUT "PRINTER SLUT ";PR
822 PRINT "PRINT ONE FILE UK ALL
(1/A) ";
824 GET US: PRINT US
826 IF US <> "1" AND US < > "A" THEN VTAB 13: GOTO 822
828 IF US = "1" THEN JJS2
830 DIM TS$(255)
840 PRINT US;"OPEN TEST.RESULTS"
850 PRINT US;"READ TEST.RESULTS"
860 UNERK GOTO 900
870 X = X + 1
880 INPUT TS$(X)
890 GOTO 870
900 PUKE 216,U
910 PRINT US;"CLOSE TEST.RESULTS"
920 FOR NUM = 1 TO X - 1
930 PRINT US;"OPEN "TS$(NUM)
940 PRINT US;"READ "TS$(NUM)
950 INPUT N1$: INPUT N2$: INPUT
960 INPUT NMBK
970 FOR Z = 1 TO NMBK
980 INPUT AIS(Z),A2$(Z),A3S(Z),A$
990 NEXT Z
1000 PRINT US;"CLOSE "TS$(NUM,
1010 PRINT US;"PR#":PR
1020 PRINT SPC(40 - (LEN IN) :
1030 PRINT SPC(40 - (LEN(N2$) / 2));N2$
1040 PRINT SPC(40 - (LEN(N3$) / 2));N3$
1050 PRINT
1060 FOR L = 1 TO NUMR STEP 5
1070 PRINT A1$(Z);
1080 FOR Q = 2 TO 5
1090 PRINT SPC(16 - LEN(A1$(Q + Z - 2)));A1$(Q + Z - 1);
1100 NEXT Q
1110 PRINT
1120 PRINT A2$(Z);
1130 FOR Q = 2 TO 5
1140 PRINT SPC(16 - LEN(A2$(Q + Z - 2)));A2$(Q + Z - 1);
1150 NEXT Q
1160 PRINT
1170 PRINT A3$(Z);
1180 FOR Q = 2 TO 5
1190 PRINT SPC(16 - LEN(A3$(Q + Z - 2)));A3$(Q + Z - 1);
1200 NEXT Q
1210 PRINT
1220 PRINT A4$(Z);
1230 FOR Q = 2 TO 5
1240 PRINT SPC(16 - LEN(A4$(Q + Z - 2)));A4$(Q + Z - 1);
1250 NEXT Q
1260 PRINT : PRINT
1270 NEXT Z
1280 PRINT : PRINT
1290 FOR Q = 1 TO 79: PRINT "-"; : NEXT Q
1300 PRINT
1310 PRINT US;"PR#U"
1320 NEXT NUM
1330 GOTO 40
1332 REM
 PRINT UNE
1333 HUME : VTAB 12,
1334 INPUT "PRINT WHO? ;";TS$;1.
1336 UNEHR GOTO 1339
1337 NUM = 1:X = 2
1338 GOTO 920
1339 HUME : VTab 12: PRINT TS$="I" IS NOT ON FILE PLEASE": PRINT "CHECK SPELLING AND TRY AGAIN"
N": VTab 23: INVERSE : PRINT "PRESS ANY KEY TO CONTINUE": NORMAL : WAIT - 16384,128:
PUKE - 16388,U: PUKE 216,0 : GOTO 40U
1340 REM

EXIT TO SYSTEM

1350 HUME
1360 VTab 8
1370 PRINT "***************
***************"
1380 PRINT "*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
TEST.EDIT

10 UNEEK GOTO 800
20 U$ = CHR$(13) + CHR$(4)
30 TEXT : HUME
40 VTAB 12
50 PRINT "1) LIST DATA"
60 PRINT "2) EDIT DATA"
70 PRINT "3) RETURN TO MAIN MENU"
80 PRINT : PRINT
90 PRINT "CHOOSE 1-3 ;"
100 GET A$
110 PRINT A$
120 A = VAL (A$)
130 IF A < 1 OR A > 3 THEN 30
140 ON A GOTO 150, 330, 630
150 REM

LIST DATA

160 GOSUB 730
170 HUME
180 VTAB 12
190 INPUT "PRINT# SLUT ;";PR
200 PRINT U$;";PR#";PR
210 PRINT U$;"OPEN ;";TSS$;";L2U"
220 PRINT U$;"READ ;";TSS$;";R";
230 INPUT REC
240 FOR A = 1 TO REC
250 PRINT U$;"READ ;";TSS$;";R";A
260 INPUT A$
270 PRINT A$; "A$;"
280 NEXT A
290 PRINT U$;"PR#U"
300 PRINT U$;"CLOSE ;";TSS
310 GOSUB 330
320 GOTO 70
330 REM

EDIT DATA

340 GOSUB 730
350 HUME
360 VTAB 12
370 INPUT "EDIT DATA # ;";LU
380 PRINT U$;"OPEN ;";TSS$;";L2C"
390 PRINT U$;"READ ;";TSS$;";R";L.
400 INPUT AS
410 PRINT US;"CLOSE ";TS$
420 HUMEx
430 VTab 12
440 PRINT "DATA CURRENTLY IS ";
450 INPUT "CHANGE TO ";
460 VTab 16
470 PRINT "CHANGE ";AS;" TO ";BS " ? (Y/N) ";
480 GET US
490 PRINT
500 IF US < > "Y" AND US < > "N" THEN 460
510 IF US < > "Y" THEN 560
520 PRINT DS;"OPEN ";TS$;",L2U"
530 PRINT US;"WRITE ";TS$;",R";E U
540 PRINT BS
550 PRINT US;"CLOSE ";TS$.
560 HUMEx
570 VTab 12
580 PRINT "EDIT ANOTHER ? ";
590 GET US
600 IF US < > "Y" AND US < > "N" THEN 560
610 IF US = "N" THEN 50
620 GOTO 550
630 REM

RUN MAIN MENU

640 PRINT DS;"RUN TEST.MAIN"
650 REM

SUBROUTINES

660 VTab 26
670 INVERSE
680 PRINT "PRESS ANY KEY TO CONTINUE"
690 WAIT - 16384,120
700 POKE - 16386,0
710 NORMAL
720 RETURN
730 HUME
740 VTAB 12
750 INPUT "USE DATA SET #:"; A$
760 PRINT
770 HUME: VTAB 12
780 TSS = "TEST.DAT" + A$
790 RETURN
800 REM

ERRRK

810 HUME
820 VTAB 12
830 PRINT "YOU MUST FIRST ENTER THE DATA!"
840 FOR X = 1 TO 1500: NEXT X
850 PUKE 216,0
860 GOTO 630
TEST.MICRO

1 HUME: IF PEEK (768) = 76 THEN CALL 777
2 IF PEEK (768) = 76 THEN GOTO 4
3 US$ = CHR$(4): PRINT US$"BLUAD
B,MILLISECUNDS"
4 CALL 768: REM SET UP INTERRUPT
TS
5 B = 256: HUME: REM QUESTIONABLE USE OF VAR B
6 HUME
20 TEXT : HUME : SPLIT = 2
30 PK = - 16384
40 US$ = CHR$(4): RU = PK: CL = ND + 1b
50 DIM AS$(29), INCR$(29)
70 INPUT "USE DATA SET # "; UT
80 TS$ = "TEST.DATA" + STR$(UT)
90 HUME : VTab 12
100 INPUT "SUBJECT NAME "; N1$
110 INPUT "TESTING DATE "; N2$
120 INPUT "TEST METHOD "; N3$
130 PRINT US$; "OPEN "TS$", L2U"
140 PRINT US$; "READ "TS$", RU"
150 INPUT REC
160 IF REC = 0 THEN 690
170 FOR X = 1 TO REC
180 PRINT US$; "READ "TS$", RU"
190 INPUT AS$(X)
200 NEXT X
210 PRINT US$; "CLOSE "TS$
220 X = 1
230 PRINT CHR$(4); "IN#2"
240 HUME : VTab 3: PRINT SPC(15); "ENTER DATA"
250 VTab 4: PRINT SPC(15); "NUM BER :"; X
260 PRINT US$; PRINT SPC(15); "ENT ER ";
270 GET TS
300 IF ASC (TS) < 97 THEN 320
310 TS$ = CHR$ (ASC (TS) - 32)
320 PRINT TS$;
325 CALL 771: REM RESET COUNT A
ND STARTS TIMER
330 QS = QS + TS
350 GET TS
380 IF ASC (TS) < 97 THEN 400
390 TS$ = CHR$ (ASC (TS) - 32)
400 QS = QS + TS
410 PRINT TS$;
420 IF LEN (U$) < LEN (A$(X)) THEN
350 PRINT
430 CALL 774: REM STOP TIMER
431 MS = U: FOR A = 780 TO 783: MS = MS * B + PEEK (A): NEXT
433 C = MS / 1024: S = INT (C): MS = (C - S) * 1000
440 FOR Q = 1 TO LEN (A$(X))
450 IF MID$ (U$, Q, 1) < > MID$ (A$(X), Q, 1) THEN WR = WR + 1
460 NEXT Q
461 TIME = S + (MS / 1000)
462 TIME = TIME * 1000
463 TIME = INT (TIME): TIME = TIME / 1000
480 INCR$ (X) = STR$ (WR) + CHR$ (13) + Q$ + CHR$ (13) + A$(X) + CHR$ (13) + STR$ (TIME) + " sec"
490 X = X + 1
500 U$ = "": TIME = 0: WR = 0
510 IF X < REC THEN 240
511 SLUT = 4
530 TT$ = "TEST.RESULTS"
540 PRINT D$: "APPEND "TT$
550 PRINT U$: "WRITE "TT$
560 PRINT N1$
570 PRINT U$: "CLOSE "TT$
580 PRINT D$: "OPEN "N1$
590 PRINT U$: "WRITE "N1$
600 PRINT N1$: PRINT N2$: PRINT N3$: PRINT REC
610 FOR X = 1 TO 25
620 PRINT INCR$ (X)
630 NEXT X
640 PRINT U$: "CLOSE "N1$
650 GOTO 720
660 PRINT U$: "OPEN "TT$
670 PKE 216, U
680 GOTO 550
690 HUME: VTab 12
700 PRINT "YOU MUST HAVE FIRST ENTERED THE DATA TO BE TESTED!!"
710 FOR X = 1 TO 1000: NEXT X
720 PRINT U$: "IN#U"
730 PRINT U$: "RUN TEST.MAIN"
10 TEXT : HUME
20 PRINT "PRESS CTRL-OPEN APPLE-
 RESET TO EXIT"
30 PUKE 34,1
40 SLOT = 2
50 UNEER GUTO 12U
60 PRINT CHR$ (4);"IN#";SLOT
70 GET A$
80 IF A$ = CHR$ (3) THEN 12U
90 IF A$ = CHR$ (8) THEN PRINT
 CHR$ (8);" ";
100 PRINT A$;
110 GUTO /U
120 PRINT CHR$ (4);"IN#U"
130 PRINT CHR$ (4);"PR#U"
140 PUKE 216,0
150 TEXT
160 PRINT CHR$ (4);"RUN TEST.MA
170 In"
I HUI: IF PEEK (768) = 76 THEN CALL 777
2 IF PEEK (768) = 76 THEN GOTO 4
3 US = CHR$ (4): PRINT US"BLUADV
B, MILLISECONDS"
4 CALL 768: REM SET UP INTERRUPTS
5 B = 256
6 HUME
20 US = CHR$ (4): RD = -16384: C
30 L = -16388
30 UIM AS (25), INCX$ (25)
40 HUME: VTAB 12
50 INPUT "USE DATA SET #:"; DT
60 TS$ = "TEST,DATA" + STR$ (UT)
70 UNERR GOTO 720
80 GOSUB 760
90 HUME
100 VTAB 12
110 INPUT "SUBJECT NAME ":; N1$
120 INPUT "TESTING DATE ":; N2$
130 INPUT "TEST METHOD ":; N3$
140 PRINT DS$:"OPEN "TS$",L20"
150 PRINT US$:"READ "TS$",RD"
160 INPUT REC
170 IF REC = 0 THEN 720
180 FOR X = 1 TO 25
190 PRINT US$:"READ "TS$", R"X
200 INPUT AS (X)
210 NEXT X
220 PRINT US$:"CLOSE "TS$
230 X = 1
240 HUME: VTAB 3: PRINT SPC (1
5): "ENTER DATA"
250 VTAB 4: PRINT SPC (15): "NUMBER ":; X
260 IF PEEK (RD) < 127 THEN 260
270 Q1$ = CHR$ (PEEK (RD) - 128)
280 IF Q1$ = CHR$ (13) THEN 450
290 POKE CL, U
300 CALL 771: REM START COUNTER
310 IF PEEK (RD) < 127 THEN 310
320 Q = VAL (Q1$): Q1$ = CHR$ (PEEK (RD) - 128): POKE CL,0
330 GOSUB 880
340 VTAB 12: HTAB 12: PRINT US
350 IF PEEK (RD) < 127 THEN 350
360 Q1$ = CHR$ (PEEK (RD) - 128): POKE CL,0
370 IF Q1$ = CHR$ (13) THEN 450
380 IF PEEK (RD) < 127 THEN 380
390 Q = VAL (Q1$): Q1$ = CHR$ (PEEK (RD) - 128): POKE CL,0
400 GOSUB 880
410 VTAB 12: HTAB 12: PRINT US
420 IF LEN (Q$) = LEN (A$(X)) THEN
430 450
440 GOTO 350
450 POKE CL,0
455 CALL 774: REM STOP TIMER
460 MS = 0: FOR A = 780 TO 783: MS = MS * 8 + PEEK (A): NEXT
461 C = MS / 1024: S = INT (C): MS = (C - S) * 1000
462 TIME = S + (MS / 1000)
463 TIME = TIME * 1000
464 TIME = INT (TIME): TIME = TIME / 1000
470 FOR Z = 1 TO LEN (A$(X))
480 IF MID$ (A$(X),Z,1) < > MID$ (Q$,Z,1) THEN WR = WR + 1
490 NEXT Z
500 INCR$ (X) = STKS (WR) + CHR$ (13) + Q$ + CHR$ (13) + A$(X) + CHR$ (13) + STKS (TIME) + " sec"
510 WR = U: TIME = U: Q$ = ""
520 X = X + 1
530 IF X > REC THEN 550
540 GOTO 240
550 UNERR GOTO 690
560 TTS = "TESTRESULTS"
570 PRINT US; "APPEND TTS
580 PRINT US; "WRITE TTS
590 PRINT NIS
600 PRINT US; "CLOSE TTS
610 PRINT US; "OPEN " NIS
620 PRINT US; "WRITE " NIS
630 PRINT NIS; PRINT NIS: PRINT NIS: PRINT
NIS: PRINT REC

86
DATA VARIABLES

770 LS(1) = "STU"
780 LS(2) = "VWX"
790 LS(3) = "YZ"
800 LS(4) = "JKL"
810 LS(5) = "MNU"
820 LS(6) = "PQR"
830 LS(7) = "ABC"
840 LS(8) = "UEF"
850 LS(9) = "GHI"
860 RETURN
870 REM

SUB-SPLITTING

880 IF Q1$ = "U" THEN US = US + LEFT$(LS(U),1)
890 IF Q1$ = "X" THEN US = US + MID$(LS(U),2,1)
900 IF Q1$ = "Y" THEN US = US + RIGHTS$(LS(U),1)
910 RETURN
INSTRUMENT TO OBTAIN INFORMED CONSENT

I, ______________________________________, have been informed by Mr. Sheldon A. Wolstein that I have been selected to participate in a study concerning the learning and use of a new single-handed version of a 4x4 numeric keypad.

1. I have been given an explanation of the procedures to be followed, including an identification of those which are experiments.

2. I have been given a description of the attendant discomforts and risks, which include having in date on both types of keyboards which is presented by a cassette tape player.

3. I have been given a description of the benefits to be expected.

4. I have been given a description of appropriate alternative procedures that would be advantageous to me.

5. I have been offered an answer to any inquiries concerning the procedures.

6. I have been instructed that I am free to withdraw my consent and to discontinue my participation in the project or activity at any time.

7. I have been assured that steps will be taken to ensure confidentiality of the results.

8. I understand that in the event of physical injury resulting from the research procedures described to me that there will be no financial compensation or free medical treatment offered to me.

9. I have not been requested to waive or release the institution, its agents or sponsors from liability for the negligence of its agents or employees.

I, the undersigned, have understood the above explanations and give my consent to my voluntary participation in Mr. Sheldon Wolstein’s research project.

__

Signature of subject

Date: ____________________________

Location: ____________________________

Principal Investigator: Sheldon A. Wolstein

1211 University Dens, C.S., T (409) 696-751

Another Contact Person: Dr. Rodger Koppa

Texas Transportation Institute Human Factors Division, C.S., T

(409) 845-2521
APPENDIX D

TRAINING MATERIAL FOR MNEMONIC CONDITION
Thank you again for agreeing to participate in this study.

The purpose of this part of the study is to teach you how to use the Microwriter keyboard.

If you have any questions please don't hesitate to ask.

ABOUT THE MICROWRITER

The Microwriter is a relatively new device, developed by an American film director living in England, Cy Enfield. The company marketing the device is called Microwriter LTD., and is wholly owned by Mercantile Life Assurance Co., which is a large insurance firm from England.

Microwriter is known as a single hand, six key, handprint chord keyboard. That it is single hand operation on six keys is important. "Handprint" means that the keys are laid out so the hand rests naturally on the keys as opposed to having the keys in a 2 x 3 matrix. "Chord" refers to the fact that generally more than one key must be struck to produce a character, similar to piano chords.

THINGS YOU NEED TO KNOW FIRST

It's not like a conventional keyboard. There are only 6 keys on the MAIN KEYBOARD plus the "COMMAND KEY" (which we won't need for a while so try to ignore it).

Here is a picture of the keyboard, showing where each finger on your right hand is supposed to go.

- **Middle Finger**
 - Here
- **Ring Finger**
 - Middle finger is here
- **Index Finger**
 - Middle finger is here
- **Thumb**
 - Thumb is here
- **Command**
 - Command is there for now

Now there is a very important point:

DON'T wave your fingers about on the keys or use them on any key other than the one they're supposed to use (as shown on the chart above).
In one-finger-typing correlation will make the microwriter easier to use. Microwriting is using two to four keys together at the same time to produce one letter, number, punctuation mark, etc. An important thing to remember at this stage is that using the wrong finger on a wrong key will slow down your learning and lead to lots of mistakes.

Also, once you start, you'll notice a couple of things about the keys themselves which make them different from the conventional typewriter. First, the keys are touch-sensitive, much lighter than on a typewriter. This helps you to get very fast, but does mean that you'll have mistakes to begin with. Second, the letters you type are not created when the keys are pressed but instead they're generated when the keys are released. This means that you don't have to get all the keys down at the same instant, just so long as all of the necessary keys get pressed.

Take a little time now, with the machine on, to get acquainted with it and to get used to the feel of the keys and the positions of the fingers. Get into the habit of keeping each finger on its own key, and your thumb nearest on the OFFER of the 2 thumb keys.

One note about the lower thumb key, the COMMAND key. If you press it by accident, different characters will be produced. If you notice that the incorrect characters are being produced by the correct chord, just press both thumb keys together to clear it.
HOW TO FORM THE LETTERS

It will all be based on this chart:

This chart will show which keys are to be depressed for each character. For example, the letter "I"

The dotted circles correspond to the keys which must be pressed for that letter.

Please do not turn the page.

If you have any questions so far, please ask them now. I will inform Sheldon that you are ready to begin.
You will notice that in the example "I", the keys pressed can be related to the shape of the handwritten letter.

This is how you handwrite the letter "I" You Microwrite the letter "I" like this, creating the shapes with your finger tips.

This is a memory aid to help you learn the alphabet. All the letters will have this.

The "L" works the same way:

This is how you handwrite the letter "L" You Microwrite the letter "L" like this

You will find that a lot of the letters form natural pairs of opposites based on the SHAPES, which can be thought of as "mirror images". Try to remember the letters as these pairs; it's easier. For instance, the opposites of the two you've done so far are "G" and "J":

G

"G"

the downstroke of "G"

J

opposites

I
Here is a useful pair to remember as a pair: they're used together so often:

The Top of the "T" Horizontal for "H"

These are written using only ONE key:

Easiest finger for E in the middle: looks like a target
Signet ring finger for "S" Little finger: very "U"

Line to Apex of "A" Down line of "N"

Shape of small "f" Upstroke of the "k"

Have any mistakes yet? Don't worry, just continue on, but remember accuracy first, speed later.

You've just covered half of the alphabet. Here's the rest:
AN EXPERIMENTAL STUDY OF A SIX KEY HANDPRINT CHORD KEYBOARD(U) TEXAS TRANSPORTATION INST COLLEGE STATION S A WULSTEIN MAY 86 RF-7053-21 DAAA15-86-K-0010
First Four Fingers For "F"
Most fingers Make "M"

Dome of the "D"
Back of the "E"

Curl round for "C"
Make the tail from the centre.

Complete Press for "P"
KvK - the upstroke of the "K"

V - downstroke of the "V"

Y looks like a "Y"

X - All except your index

W - The two sides of the "W"

Z - Zig Zag between the keys

Now if you want to practice some writing, try an old standard:

THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG

Don't forget to use the cue card if necessary.

Now try:

THE ZEAL OF THE ARCHITECT WAS BEING EXERCISED CONTINUALLY IN CONJUNCTION WITH A KEEN QUANTITY SURVEYOR IN THE DESIGN OF QUAIN'T BUT PRETTY MAISONETTES.
Now you're ready for numbers. If you recall, we mentioned only briefly the command key and how to clear it. Now we have to use it to get to the numbers. To change to the mode which has the numbers you press the command key and the chord for the letter "N" (for "N"umber).

Pressing the command "N" once will make the next regular letter you type a number, then the Microwriter will automatically shift back into the alphabet mode. If you have more than one number in a row to type you should lock into the number mode by pressing the command "N" twice. Type the line of numbers and when you have another letter to type, shift back to the alphabet mode by pressing both thumb keys at the same time.

Here are the numbers. Go ahead and lock the machine into the number mode and practice some.

That's all you have to learn. Now for the practice sessions to gain speed. Remember at first you should concentrate on accuracy, with speed secondary. After a while you should be able to increase your speed without increasing errors.
APPENDIX E

TRAINING MATERIAL FOR PLAIN CONDITION
Thank you again for agreeing to participate in this study.

The purpose of this part of the study is to teach you how to use the Microwriter keyboard.

If you have any questions please don’t hesitate to ask.

ABOUT THE MICROWRITER

The Microwriter is a relatively new device, developed by an American film director living in England, Cy Enfield. The company marketing the device is called Microwriter LTD., and is wholly owned by Hambro Life Assurance Co. which is a large insurance firm from England.

Microwriter is known as a single hand, six key, handprint chord keyboard. That it is single hand operation on six keys is obvious. "Handprint" means that the keys are laid out so the hand rests naturally on the keys as opposed to having the keys in a 2 X 3 matrix. "Chord" refers to the fact that generally more than one key must be struck to produce a character, similar to piano chords.

THINGS YOU NEED TO KNOW FIRST

It’s not like a conventional keyboard. There are only 5 keys on the MAIN KEYBOARD plus the "COMMAND KEY" (which we won’t need for a while so try to ignore it).

Here is a picture of the keyboard, showing where each finger on your right hand is supposed to go.

```
MIDDLE finger

this key is
is for your
INDEX finger

RING finger key

LITTLE finger
does on this

THUMB usually here

COMMAND key (pretend it’s not there for now)
```

Now there is a very important rule:
DON’T wave your fingers about on the keys or use them on any key other than the one they’re supposed to use (as shown on the chart above).
This one-finger-to-one-key correspondence is what makes the Microwriter so easy to use. Microwriting is using one or more keys together at the same time to produce one letter, number, punctuation mark, etc. The important thing to remember at this stage is that using the wrong finger on the wrong key will slow down your learning and lead to lots of mistakes.

Also, once you start, you’ll notice a couple of things about the keys themselves which make them different from the conventional typewriter. First, the keys are very touch-sensitive, much lighter than on a typewriter. This helps you to get very fast, but does mean that you’ll make mistakes to begin with. Second, the letters you type are not created when the keys are pressed but instead they are generated when the keys are released. This means that you don’t have to get all the keys down at the same instant, just so long as all of the necessary keys get pressed.

Take a little time now, with the machine off, to get acquainted with it and to get used to the feel of the keys and the positions of the fingers. Get into the habit now of keeping each finger on its own key and your thumb normally on the upper of the 2 thumb keys.

One note about the lower thumb key, the COMMAND key. If you press it by accident, different characters will be produced. If you notice that the incorrect characters are being produced by the correct chord, just press both thumb keys together to clear it.
HOW TO FORM THE LETTERS

It will all be based on this chart:

This chart will show which keys are to be depressed for each character. For example, the letter "l"
These are the letter chords. Please feel free to practice as you go along.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>G</td>
<td>H</td>
<td>I</td>
<td>J</td>
</tr>
<tr>
<td>K</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>O</td>
</tr>
<tr>
<td>P</td>
<td>Q</td>
<td>R</td>
<td>S</td>
<td>T</td>
</tr>
<tr>
<td>U</td>
<td>V</td>
<td>W</td>
<td>X</td>
<td>Y</td>
</tr>
</tbody>
</table>

Now if you want to practice some writing, try an old standard:

THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG

Don't forget to use the cue card if necessary.

Use to

THE BELLS ARE BEING EXERCISED CONTINUALLY IN
CONJUNCTION WITH A FEED-DOWN SURVEY OF
THE DESIGN OF DURANT BUT

105
Are you ready for numbers? If you recall, we mentioned only briefly the command key and how to clear it. Now we have to use it to get to the numbers. To change to the mode which has the numbers, you press the command key and the chord for the letter "N" (for "N"umber).

Pressing the command "N" once will make the next regular letter you type a number, then the Microwriter will automatically shift back into the alphabet mode. If you have more than one number in a row to type you should lock into the number mode by pressing the command "N" twice. Type the line of numbers and when you have another letter to type, shift back to the alphabet mode by pressing both thumb keys at the same time.

Here are the numbers. Go ahead and lock the machine into the number mode and practice some.

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

That's all you have to learn. Now for the practice sessions to gain speed. Remember at first you should concentrate on accuracy, with speed secondary. After a while you should be able to increase your speed without increasing errors.
APPENDIX F

TRAINING MATERIAL FOR KEYPAD CONDITION

Thank you again for agreeing to participate in this study. The keypad you will be using is a standard 4x4 numeric keypad with two buttons changed. As you can see, on either side of the "0" there are two arrow buttons. These are to be used in entering the alphabet.

When you need to enter a letter, locate it on one of the regular number keys. Press the key with the desired letter and then press either of the arrows or the "0" to show which of the letters is chosen. For instance the letter "M" would be chosen by pressing the "5" key and then the left pointing arrow "_".

That's all there is to it. First there will be a timed run to see how well you can do without any practice, then some practice tasks and at the end of the hour another timed run. If you have any questions now, feel free. Once you have no questions, please let Sheldon know you're ready.
APPENDIX G

ONE SHEET CUE CARDS FOR MICROWRITER
Plain Condition

These are the letter chords. Please feel free to practice as you go along.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>G</td>
<td>H</td>
<td>I</td>
<td>J</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>Q</td>
<td>R</td>
<td>S</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>V</td>
<td>W</td>
<td>X</td>
<td>Y</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NUMBERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>
APPENDIX H
EXAMPLE OF PRACTICE ARTICLE

Barrons reports that earlier this year major financial institutions invested large amounts in airlines. Leading the
airlines in the top 50 net purchases
list was Delta Airlines, with 32.6
million of shares purchased, 202.7
million sold with 117.9 million as the
net transaction from a holding of 1218.0.

For the picture of the high tech
corporations refer to the chart below, all
amounts in millions of dollars:

<table>
<thead>
<tr>
<th>STOCK</th>
<th>PURCHASES SALES HOLDINGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>McDon Doug.</td>
<td>288.8 110.8 1188.4</td>
</tr>
<tr>
<td>Matsush. Elec.</td>
<td>167.5 17.9 379.5</td>
</tr>
<tr>
<td>Viacom</td>
<td>191.2 57.6 420.4</td>
</tr>
<tr>
<td>Xerox</td>
<td>280.9 164.5 2456.7</td>
</tr>
<tr>
<td>Tandy</td>
<td>272.3 151.8 1777.7</td>
</tr>
<tr>
<td>Martin Marietta</td>
<td>229.1 121.5 1059.7</td>
</tr>
<tr>
<td>ITT</td>
<td>355.5 250.6 1721.0</td>
</tr>
<tr>
<td>E Systems</td>
<td>172.7 71.4 280.7</td>
</tr>
<tr>
<td>Boeing</td>
<td>504.6 406.1 3612.7</td>
</tr>
</tbody>
</table>

For other companies stock activity
was also brisk. Disney shares of 292.6
were bought, 118.4 were sold, and a
holding of 887.5 was reported. For
McDonalds bought were 150.6, sold were
202.3, and a holding of 1333.2.
Reporting institutions also sold 20.6,
bought 125.2, and held 711.4 of Dillard's
Stores stock.

On the down side where these
institutions sold off more than they
purchased are particular companies
stock were such blue chips as Phillips
Petroleum with 920.5 million, Eastern
Foods with 526.1 and 141.6 of Atlantic
Richfield. Also dumped were 224.6
million of IBM, 155.7 of Ford, and 68.4
of Coca-Cola.

Overall, the biggest groups bought out
were electric power with 1240.9 million
in net purchases, drugs with 855.6, air-
transport with 686.7, and 677.4 worth of
entertainment companies. The biggest
sales were in hotels and motels with
356.1 million in net sales, foods with
522.7, 288.1 in natural gas pipe and
26.8 in radio-ty broadcasting.
Computers, business machines,
semiconductors, and electronic equipment
which are facing the same slowdown in
their shared market when combined
accounted for 414.5 million in net
sales.
END
11-87
DTIC