BATTLEFIELD FIRES FROM TACTICAL NUCLEAR WEAPONS

W. L. Woodie
D. Remetch
R. D. Small
Pacific-Sierra Research Corporation
12340 Santa Monica Boulevard
Los Angeles, CA 90025-2587

15 November 1984

Technical Report

CONTRACT No. DNA 001-84-C-0271

Approved for public release;
distribution is unlimited.

THIS WORK WAS SPONSORED BY THE DEFENSE NUCLEAR AGENCY
UNDER RDT&E RMC CODE B3500844662 RM RK 00102 25904D.

Prepared for
Director
DEFENSE NUCLEAR AGENCY
Washington, DC 20305-1000

DTIC ELECTED
SEP 2 3 1987
Destroy this report when it is no longer needed. Do not return to sender.

PLEASE NOTIFY THE DEFENSE NUCLEAR AGENCY ATTN: TITL, WASHINGTON, DC 20305 1000, IF YOUR ADDRESS IS INCORRECT, IF YOU WISH IT DELETED FROM THE DISTRIBUTION LIST, OR IF THE ADDRESSEE IS NO LONGER EMPLOYED BY YOUR ORGANIZATION.
DISTRIBUTION LIST UPDATE

This mailer is provided to enable DNA to maintain current distribution lists for reports. We would appreciate your providing the requested information.

☐ Add the individual listed to your distribution list.

☐ Delete the cited organization/individual.

☐ Change of address.

NAME: ______________________________

ORGANIZATION: ______________________________

<table>
<thead>
<tr>
<th>OLD ADDRESS</th>
<th>CURRENT ADDRESS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TELEPHONE NUMBER: (____)

SUBJECT AREA(s) OF INTEREST:

- ____________________________
- ____________________________
- ____________________________

DNA OR OTHER GOVERNMENT CONTRACT NUMBER: ____________________________

CERTIFICATION OF NEED-TO-KNOW BY GOVERNMENT SPONSOR (if other than DNA):

SPONSORING ORGANIZATION: ____________________________

CONTRACTING OFFICER OR REPRESENTATIVE: ____________________________

SIGNATURE: ____________________________
BATTLEFIELD FIRES FROM TACTICAL NUCLEAR WEAPONS

This work was sponsored by the Defense Nuclear Agency under RDT&E RMC Code 83200844662 RM RK 00102 25904D.

Fires from tactical weapon exchanges in open terrain can be an important factor in assessing casualties and damage as well as managing troop deployments and operations. In addition to "prompt" thermal effects and fire starts, spread may also be an important factor on the battlefield. In this report, a model describing the initiation and spread of battlefield fires is presented. The initial ignition distribution is related to the weapon yield, slant range, local atmospheric properties, fuel type and ignition threshold. The fire spread analysis is based on an established U.S. Forest Service prediction algorithm. The present tactical ignition and fire spread (TIFS) model predicts the fire movement over variable terrains and accounts for ambient wind vectors, moisture, changing vegetation, and an arbitrary number of firebreaks. An example calculation illustrating the initial fire area and subsequent...
spread in a complex terrain is presented for a 10-KT explosion. The results show the fires extending the effective weapon-damage radius, and identify regions to which the fires do not spread.
PREFACE

This report was prepared for the Defense Nuclear Agency (DNA) under contract DNA 001-84-C-0271 and supervised by Dr. Michael J. Frankel.

In previous Pacific-Sierra Research Corporation studies of fires started by nuclear weapon bursts, the physics of large area urban fires were considered. In this report, we examine fires started in battlefield areas by tactical nuclear bursts. The fires may spread far beyond the initial ignition zone. A computer program that calculates the initial ignition radius and the subsequent fire spread has been developed. A version of the tactical fire and spread program has been developed for inclusion in a battlefield assessment algorithm.

This report was presented at the DNA Conference on Large Scale Fire Phenomenology, September 1984, in Gaithersburg, Maryland, and will appear in the conference proceedings.
CONVERSION TABLE

Conversion factors for U.S. Customary to metric (SI) units of measurement

<table>
<thead>
<tr>
<th>MULTIPLY TO GET</th>
<th>BY</th>
<th>TO GET DIVIDE</th>
</tr>
</thead>
<tbody>
<tr>
<td>angstrom</td>
<td>1.000 000 X E -10</td>
<td>meters (m)</td>
</tr>
<tr>
<td>atmosphere (normal)</td>
<td>1.013 25 X E +2</td>
<td>kilo pascal (kPa)</td>
</tr>
<tr>
<td>bar</td>
<td>1.000 000 X E +2</td>
<td>kilo pascal (kPa)</td>
</tr>
<tr>
<td>barn</td>
<td>1.000 000 X E -28</td>
<td>meter² (m²)</td>
</tr>
<tr>
<td>British thermal unit (thermochemical)</td>
<td>1.054 350 X E +3</td>
<td>joule (J)</td>
</tr>
<tr>
<td>calorie (thermochemical)</td>
<td>4.184 000</td>
<td>joule (J)</td>
</tr>
<tr>
<td>cal (thermochemical)/cm²</td>
<td>4.184 000 X E -2</td>
<td>mega joule/m² (MJ/m²)</td>
</tr>
<tr>
<td>curie</td>
<td>3.700 000 X E +1</td>
<td>megas becquerel (GBq)</td>
</tr>
<tr>
<td>degree (angle)</td>
<td>1.745 329 X E -2</td>
<td>radian (rad)</td>
</tr>
<tr>
<td>degree Fahrenheit</td>
<td>'F = (°F - 32) * 1.8</td>
<td>degree kelvin (K)</td>
</tr>
<tr>
<td>electron volt</td>
<td>1.602 19 X E -19</td>
<td>joule (J)</td>
</tr>
<tr>
<td>erg</td>
<td>1.000 000 X E -7</td>
<td>joule (J)</td>
</tr>
<tr>
<td>erg/second</td>
<td>1.000 000 X E -7</td>
<td>watt (W)</td>
</tr>
<tr>
<td>foot</td>
<td>3.048 000 X E -1</td>
<td>meter (m)</td>
</tr>
<tr>
<td>foot-pound-force</td>
<td>1.555 818</td>
<td>joule (J)</td>
</tr>
<tr>
<td>gallon (U.S. liquid)</td>
<td>3.785 412 X E -3</td>
<td>meter³ (m³)</td>
</tr>
<tr>
<td>inch</td>
<td>2.540 000 X E -2</td>
<td>meter (m)</td>
</tr>
<tr>
<td>jerk</td>
<td>1.000 000 X E +9</td>
<td>joule (J)</td>
</tr>
<tr>
<td>joule/kilogram (J/kg) (radiation dose absorbed)</td>
<td>1.000 000</td>
<td>Gray (Gy)</td>
</tr>
<tr>
<td>kilotons</td>
<td>4.183</td>
<td>terajoules</td>
</tr>
<tr>
<td>kip (1000 lb)</td>
<td>4.648 222 X E +3</td>
<td>newton (N)</td>
</tr>
<tr>
<td>kip/inch² (kip)</td>
<td>6 894 757 X E +3</td>
<td>kilo pascal (kPa)</td>
</tr>
<tr>
<td>kip/m² (kip)</td>
<td>1.000 000 X E +2</td>
<td>newton-second/m² (N·s/m²)</td>
</tr>
<tr>
<td>micron</td>
<td>1.000 000 X E -5</td>
<td>meter (m)</td>
</tr>
<tr>
<td>mile (international)</td>
<td>2.540 000 X E -5</td>
<td>meter (m)</td>
</tr>
<tr>
<td>mile (international)</td>
<td>1.609 344 X E +3</td>
<td>meter (m)</td>
</tr>
<tr>
<td>mile (international)</td>
<td>2.834 952 X E -2</td>
<td>kilogram (kg)</td>
</tr>
<tr>
<td>pound-force (lbx avoirdupois)</td>
<td>4.448 222</td>
<td>newton (N)</td>
</tr>
<tr>
<td>pound-force inch</td>
<td>1.129 848 X E +1</td>
<td>newton-meter (N·m)</td>
</tr>
<tr>
<td>pound-force/foot²</td>
<td>1.751 368 X E +2</td>
<td>newton-meter (N·m)</td>
</tr>
<tr>
<td>pound-force/inch² (psi)</td>
<td>4.789 026 X E -2</td>
<td>kilo pascal (kPa)</td>
</tr>
<tr>
<td>pound-force/inch³ (psi)</td>
<td>6.894 757</td>
<td>kilo pascal (kPa)</td>
</tr>
<tr>
<td>pound-mass (lbm avoirdupois)</td>
<td>4.535 924 X E -1</td>
<td>kilogram (kg)</td>
</tr>
<tr>
<td>pound-mass/foot³ (moment of inertia)</td>
<td>4.214 011 X E -2</td>
<td>kilogram-meter² (kg·m²)</td>
</tr>
<tr>
<td>pound-mass/foot³ (moment of inertia)</td>
<td>1.601 846 X E +1</td>
<td>kilogram-meter² (kg·m²)</td>
</tr>
<tr>
<td>rad (radiation dose absorbed)</td>
<td>1.000 000 X E +2</td>
<td>Gray (Gy)</td>
</tr>
<tr>
<td>roentgen</td>
<td>2.579 760 X E -4</td>
<td>coulomb/gram (C/g)</td>
</tr>
<tr>
<td>shake</td>
<td>1.000 000 X E -8</td>
<td>second (s)</td>
</tr>
<tr>
<td>slug</td>
<td>1.459 390 X E +1</td>
<td>kilogram (kg)</td>
</tr>
<tr>
<td>torr (mm Hg, 0°C)</td>
<td>1.333 22 X E -1</td>
<td>kilo pascal (kPa)</td>
</tr>
</tbody>
</table>

*The becquerel (Bq) is the SI unit of radioactivity; 1 Bq = 1 event/s.
**The Gray (Gy) is the SI unit of absorbed radiation.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREFACE</td>
<td>iii</td>
</tr>
<tr>
<td>CONVERSION TABLE</td>
<td>iv</td>
</tr>
<tr>
<td>LIST OF ILLUSTRATIONS</td>
<td>vi</td>
</tr>
<tr>
<td>1 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2 INITIAL IGNITIONS</td>
<td>3</td>
</tr>
<tr>
<td>3 FIRE SPREAD</td>
<td>11</td>
</tr>
<tr>
<td>4 SAMPLE CALCULATION</td>
<td>14</td>
</tr>
<tr>
<td>5 CONCLUSIONS</td>
<td>17</td>
</tr>
<tr>
<td>6 LIST OF REFERENCES</td>
<td>18</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>1</td>
<td>Ignition thresholds for black α-cellulose exposed to simulated weapon pulse</td>
</tr>
<tr>
<td>2</td>
<td>Probability of forest floor exposure as function of source elevation angle</td>
</tr>
<tr>
<td></td>
<td>for various conditions of forest canopy</td>
</tr>
<tr>
<td>3</td>
<td>Blowdown velocities and radiant exposures from 35-KT burst 500 ft above</td>
</tr>
<tr>
<td></td>
<td>level terrain</td>
</tr>
<tr>
<td>4</td>
<td>Sample calculation of fire spread resulting from 10-KT detonation over</td>
</tr>
<tr>
<td></td>
<td>forest region surrounded by brush</td>
</tr>
</tbody>
</table>
SECTION 1
INTRODUCTION

Weapon systems are vulnerable to fire damage; however, there are currently no algorithms available to analyze this threat. Traditionally, there has been considerable uncertainty associated with the prediction of fire effects, and thus a reluctance to account for battlefield fires. In some cases, localized fires can spread large distances, and influence a battle area for a prolonged period of time.

On the nuclear battlefield, fires and fire spread may be a much greater threat. The thermal flash (even from low-yield weapons) can endanger equipment and personnel at large distances from the burst (especially for airbursts), and fire starts over large areas may result. The occurrence of sustainable ignitions depends on many factors, only some of which are weather dependent. Enough thermal energy is available such that ignitions are likely to occur, despite snow cover or precipitation. Furthermore, it is possible that these fires may spread from the initially ignited areas, greatly increasing the threat.

A large number of ignitions does not imply spread. However, should the fires spread, damage radii may be greatly increased, positions threatened, and operations restricted by the course and anticipated arrival time of the fire front. Also, smoke from either fixed or spreading fires might conceal operational movements, limit the use of optical imaging devices, and in general, influence battle management.

Conditions at the time of burst may not favor either an extensive ignition distribution or fire spread from the initial burning area. In western Europe, for example, fire spread is not probable during most of the year. Snow cover or wet conditions reduce the probability of fire spread. Nevertheless, periods of dryness favoring extensive spread can occur in normal weather patterns.
In this report, we summarize the development of a fire initiation and fire spread model for the nuclear battlefield. Although this study represents only a first battlefield fire model, the results indicate the potential effect with a fair degree of confidence. The model was developed using established routines that calculate wildland ignitions from a prescribed nuclear burst, and fire spread in an arbitrary terrain. The spread calculations are based on tested methods and routines developed by the U.S. Forest Service for a variety of vegetations, terrains, and weather conditions.

In Sec. 2, the fire-start model is described. The spread prediction method is outlined in Sec. 3, and an example calculation is presented in Sec. 4.
SECTION 2
INITIAL IGNITIONS

Fire starts from a nuclear burst are influenced by the weapon parameters, vegetation and terrain, and weather conditions. All are important variables and not completely independent. For example, shadowing by forest stands or terrain features can reduce the ignition radius for very low (or surface) heights of burst.

In the tactical ignition and fire spread code (TIFS) we have developed, standard methods are used to predict (thermal) fire starts. There are, nevertheless, several approximations in the treatment of initial ignitions. Blast modification of the fuel bed and subsequent changes in the fire-start distribution are not considered. In general, such effects are not well modeled. The transport of flaming material from high overpressure areas may increase the number of ignitions at larger radii, assuming of course that the nascent ignitions are maintained. It is not clear, however, that such redistribution occurs. It also has been argued (and demonstrated in simple shock-tube tests) that the blast wave may actually blow out ignitions in high overpressure regions. Both of those effects support an annular fire hypothesis, and make subsequent fire spread likely.

Another blast modification of the fuel bed involves stripping of branches and toppling of trees (in high overpressure regions). A layering of live material over dead fuels results. Since live fuels do not usually sustain ignitions, the number of fire starts may be overestimated.

Other factors also modify forest ignitions. The canopy shields dead fuel material on the forest floor from the thermal radiation. Thus, ignitions will probably be spotty (although extensive) and dependent on season and foliage. If there is extensive dead material in the trees, crown fires are likely. Although not unusual, such fires do not occur often. It is also possible that the vapor (steam) from desiccation of the canopy could absorb some of the thermal radiation.
and limit the number and extent of ignitions. This, however, may be a more important consideration for multiple burst attacks.

Although there are several unresolved issues, each of which warrants research, a large number of ignitions are probable. For fuel beds other than forests (such as brush, grass fields, croplands, etc.), many of the modifying effects do not significantly influence the fire-start distribution.

The type of vegetation, in particular its ignition threshold, is the second principal parameter needed to determine the fire-start distribution. Threshold levels have been determined experimentally for many fuels, and parameter influences such as yield, orientation, dimensions, albedo, have been investigated. Sufficient information is available to prescribe ignition conditions for most wildland fuels; however, more data would be useful.

Moisture is an important variable both for the calculation of sustained fire starts and prediction of fire spread. It is doubtful there would be large numbers of ignitions if there is heavy precipitation or snow cover. Similarly, the fire intensity and the probability of fire spread depend on the absorbed fuel moisture. At some level (moisture of extinction), fires do not spread. The amount of fuel moisture can vary significantly with the weather—principally with the frequency and amount of precipitation. For most applications, it is the moisture levels in the 1- and 10-h time lag classes (fuel sizes to 1 in.) that are important. Although in this first TIFS model, only a simple moisture correction based on humidity is used, the more elaborate National Fire Danger Rating System (NFDRS) method could be implemented.

The surface heating experienced by thin tinder fuel elements during a specified exposure is described by one universal function over a wide range of yield and fuel parameters. That function, shown in Fig. 1 [Kerr et al., 1971*], is built into the current computer model. For a given normalized fireball duration (pulse duration divided by

* See Table 4-2.
the thermal relaxation time of the fuel particle), Fig. 1 indicates
the normalized radiant exposure required to raise the surface of the
fuel to ignition temperature.

The physical parameters of the fuel particles needed to predict
ignition criteria have been measured in previous studies [Kerr et al.,
1971]. The three parameters used in the TIFS ignition model include
(1) the thermal relaxation time, τ_0 sec; (2) the normalized specific
heat $\rho C_p L$ (cal/cm2 oC); and (3) the average absorption coefficient A
(dimENSIONLESS). Values for some typical forest fuels are shown in
Table 1 [Kerr et al., 1971]. Predicted and measured ignition
thresholds for those fuels agree to within ±30 percent.

An ignition decision in TIFS is computed as follows. First, based
on the particular fuel thermal relaxation time τ_0, the ratio t_{max}/τ_0
is evaluated. The source parameter t_{max} is the time to peak radiant
intensity and is given by [Glasstone and Dolan, 1977]
Table 1. Material parameters for ignition determination of typical weathered wildland fuels.

<table>
<thead>
<tr>
<th>Fuel Type</th>
<th>L Thickness (cm)</th>
<th>ρ Specific Gravity</th>
<th>τ Relaxation Time (s)</th>
<th>ρC_pL Normalized Specific Heat (10^-3 cal/cm^2)</th>
<th>A Absorbivity (dimensionless)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cheatgrass leaves</td>
<td>0.011</td>
<td>0.25</td>
<td>0.05</td>
<td>0.82</td>
<td>0.3</td>
</tr>
<tr>
<td>Wheat straw</td>
<td>0.037</td>
<td>0.35</td>
<td>0.64</td>
<td>3.89</td>
<td>0.6</td>
</tr>
<tr>
<td>Beech leaves</td>
<td>0.009</td>
<td>0.39</td>
<td>0.04</td>
<td>1.05</td>
<td>0.6</td>
</tr>
<tr>
<td>Chestnut oak leaves</td>
<td>0.018</td>
<td>0.37</td>
<td>0.15</td>
<td>2.00</td>
<td>0.8</td>
</tr>
<tr>
<td>Rhododendron leaves</td>
<td>0.025</td>
<td>0.50</td>
<td>0.32</td>
<td>3.75</td>
<td>0.8</td>
</tr>
<tr>
<td>Shortleaf pine needles</td>
<td>0.058</td>
<td>0.52</td>
<td>1.73</td>
<td>9.05</td>
<td>0.8</td>
</tr>
<tr>
<td>Engleman spruce leaves</td>
<td>0.074</td>
<td>0.56</td>
<td>2.87</td>
<td>12.40</td>
<td>0.7</td>
</tr>
</tbody>
</table>
\[t_{\text{max}} = 0.043W^{0.43} \left(\frac{\rho}{\rho_0} \right)^{0.42} \text{ s}, \]

where \(W \) is the yield in kilotons, and \(\rho/\rho_0 \) is the air density at the burst point normalized to the sea level value. From Fig. 1, the required normalized radiant exposure \(T_{\text{req}} \) for sustained ignition is determined. Using the absorption coefficient and the normalized specific heat of the fuel, the value of \(Q_{\text{req}} \), the incident radiant exposure (cal/cm\(^2\)) needed to ignite the dry fuel is determined. In order to account for the moisture content of the fine dead fuel, the radiant exposure needed for ignition of dry fuel is increased by a factor \((1 + \omega/2)\) [Kerr et al., 1971], where \(\omega \) is the local relative humidity. Thus, for moist fuel the required radiant exposure is

\[Q_{\text{req}}^\text{wet} = Q_{\text{req}}^\text{dry} \left(1 + \frac{\omega}{2}\right). \]

The delivered radiant exposure \(Q_{\text{del}} \) is calculated using the local atmospheric visibility conditions and slant range. If \(Q_{\text{del}} \) is greater than \(Q_{\text{req}} \), ignition occurs; for smaller values, ignitions are not sustained.

The delivered radiant exposure [Small and Brode, 1983], modified by an exposure function \(P_e(\theta) \), is given by

\[Q_{\text{del}} = P_e(\theta) \frac{W}{\tilde{R}^2} \left(1 + \frac{a\tilde{R}}{V}\right) e^{-b\tilde{R}/V} \text{ cal/cm}^2, \]

where \(W \) is the yield in kilotons, \(\tilde{R} \) the slant range in miles, \(V \) the visibility lengths in miles, and \(a, b \) are dimensionless coefficients that describe the atmospheric albedo and absorption, respectively. Median values are \(a = 1.5, b = 2.5 \). The \(P_e(\theta) \) accounts for a covering forest canopy and defines the probability of fuel exposure; \(\theta \) is the elevation angle between the fireball and the horizon.
The probable forest floor exposure depends on tree type, distribution and density, tree foliage condition (season), and tree height. In Kerr et al. [1971], an exposure probability function for a standard northern European forest is described. Figure 2 shows that function for a point source and an extended source fireball with an apparent diameter of 10 deg. For the current version of the TIFS computer model, we have assumed $P_e = 1/2$ for all angles.

The effect of blast winds on the newly ignited flames is not included in the current model. In several atmospheric tests it was observed that the blast wave extinguished some flames (though not all) [Arnold, 1952]. In general [Smiley, 1980], flame extinction is not expected below about 5 psi (wind speed = 100 mph). Figure 3 shows radiant exposure and blast wind speed versus ground range for a 35 KT weapon detonated at a height of 500 ft. The 100 mph level occurs at a ground range of about 8000 ft. The corresponding radiant exposure is about 15 cal/cm2.

This level of radiant exposure is sufficient to ignite dry fine fuels provided there is no forest canopy, but falls short of the required ignition level when the probability of exposure due to a dense canopy is taken into account. For many field conditions, there are a variety of terrain factors that could modify both the expected wind speed and canopy cover. With enough variety in the forest fuel geometry, many scattered points of sustained ignition could persist even after the blast wave arrival and that some flaming fuels could be transported to unignited areas. If even one point of ignition survives, the possibility of fire spread is preserved.
Figure 2. Probability of forest floor exposure as function of source elevation angle for various conditions of forest canopy.

Source: Kerr et al. [1971].
Figure 3. Blowdown velocities and radiant exposures from 35-KT burst 500 ft above level terrain.
SECTION 3
FIRE SPREAD

There are many parameters that influence the course and rate of a spreading fire. The particular fuel composition, distribution, and loading; weather and its influence on fuel moisture levels; wind and terrain features; all affect the fire intensity and the forward transmission of heat. In general, such parameters are difficult to characterize, and rigorous analysis at best can only calculate spread for simple idealized fuels and geometries.

The U.S. Forest Service fire-spread routines used in TIFS are based on an integral formulation [Fransden, 1971] that relates the quasi-steady propagation of a combustion wave to the forward flux of heat (principally radiative and convective transfer). The methodology developed by Rothermel [1972] and Albini [1976a,b] substitutes in the energy formulation, empirical relations describing complex physical phenomena for analytical terms. Two algebraic relations form the basis of the empirical development. The first treats the reaction intensity of a given fuel, and requires characterization of the effective fuel properties. The second considers the rate of spread and is defined by an energy flux propagation equation that includes the influence of parameters such as wind and slope.

The fire's reaction intensity I_R (the energy released per unit area per unit time in the reaction zone) is proportional to the fuel loading w, the fuel heat content h, and the reaction time T_R (the time taken for the fire front to travel a distance equivalent to the depth of one reaction zone) by

$$I_R = \frac{wh}{T_R} \eta_m \eta_s,$$ \hspace{1cm} (4)

where η_m and η_s are moisture and mineral content damping coefficients. The reaction intensity depends on the fuel, and determines the amount
of energy available for transmission forward to unburned fuel elements. The required coefficients and properties have been measured and cataloged for several fuel models [Anderson, 1982].

The propagating flux I_p (the amount of heat entering the unburned fuel bed per unit area per unit time), the rate of spread R, the effective fuel bulk density ρ_e (the mass per unit volume of fuel involved in the ignition process), and the heat of ignition Q_{ig} are related by

$$R = \frac{I_p}{\rho_e Q_{ig}} (1 + \phi_s + \phi_w), \quad (5)$$

where the functions ϕ_w and ϕ_s account for the effect of wind and slope. The sum of horizontal and vertical heat fluxes is represented by I_p. Equations (4) and (5) are related by the ratios

$$\varepsilon = \frac{\rho_e}{\rho_b}, \quad (6)$$

and

$$\xi = \frac{I_p}{I_R}, \quad (7)$$

where ρ_b is the fuel bulk density and ξ is the forward heat transmission parameter. The factor ε represents the fraction of fuel heated to ignition and is related to the characteristic surface area to volume ratio σ, for a particular fuel. The transmission parameter ξ is also related (empirically) to fuel parameters such as σ and the "packing ratio" β. For zero wind and slope conditions

$$\xi = \frac{\exp[(0.792 + 0.681 \sqrt{\sigma})(\beta + 0.1)]}{192 + 0.259 \sigma}. \quad (8)$$
When similar expressions are substituted for ϕ_s and ϕ_w [see Eq. (5)], fire spread for more general conditions can be calculated.

The above equations form the framework of the fire-spread model; the various quantities required are either physical constants related to the fuel or functional fits of experimental data. Multiple fuel classes are included by an appropriate weighting of the parameters. The U.S. Forest Service spread model has been validated in a number of comparisons between predictions and field results [Andrews, 1980].
SECTION 4
SAMPLE CALCULATION

An example problem chosen to demonstrate the utility of TIFS considers a possible tactical encounter in a low, rolling, mountain pass typical of western Europe. In the example, a forested ridge rising from a brush-covered plain is presumed to have an enemy location on its northeast flank. A 10-KT weapon is detonated at a 200 m height of burst. The atmospheric visibility is assumed to be 10 km, and the dead fuel moisture content is assumed to be zero. The initial fire area and its subsequent spread in the battlefield area are the desired outputs.

The terrain and fuel boundaries used as input for the example TIFS calculation are shown in Fig. 4, along with the calculated fire time-of-arrival contours. The source map used for this example contains the information on the forest type (deciduous or evergreen), roadway locations that act as potential firebreaks, and values of local slope (from elevation contours). The variation of direction and magnitude of slope in the forested area are used to define 23 region boundaries (see Fig. 4); in each region slope is assumed constant. In this example, a timber litter with understory fuel model is used for the 23 small forested regions, and a brush fuel model for the large surrounding region. In this version of TIFS, all regions have the same moisture content, but each region has a unique moisture of extinction according to fuel type.

Roadways indicated on the source map are considered potential firebreaks. Since there were many minor roads shown (probably serving as logging or residential roads), only a fraction were used in this calculation. The widths of the roads are not indicated on the source map, and, arbitrary width assignments varying from 4 to 20 m were made. The fire could cross a break if the tilted flame spans at least one-half the firebreak width in the wind direction [Woodie, Remetch, and Small, 1984]. Only about 10 percent of the firebreaks in
Figure 4. Sample calculation of fire spread resulting from 10-KT detonation over forest region surrounded by brush.
this example were effective in stopping the spread (indicated by the darkened lines).

The results of the fire-spread calculations for the example data are shown in Fig. 4 as fire front time-of-arrival contours. The time (in hours) elapsed since detonation is indicated on each contour line. The contour lines labeled "0.1" approximately outline the initial ignition area from the airburst. Had there been only one fuel type, the ignition area would have been nearly circular. The initial noncircular contour is due to greater ignition ranges for brush than for timber litter, terrain variations, and also the biasing ambient wind.

The fire front time-of-arrival contours shown in Fig. 4 provide a suggestion of possible use in tactical planning. In particular, the results define unburned forest sectors that could be used as friendly strongholds without fire-related limitations. Alternatively, enemy forces in those areas would survive the fire. There were two large sectors that escaped the advancing fire up to 12 h later. One includes the western quarter of the forested area, and the other a wedge-shaped sector covering approximately one-fourth of the forested area on the southeast side. The fire moved more rapidly in the surrounding brush-covered plains, especially in the westerly direction of the wind.

The prediction of safe areas, areas subject to intense burning, and the time for the fire to pass designated sectors suggests that criteria for both optimum weapon employment and troop movements can be developed. In this sample calculation, the fire did not spread to two sectors on the ridge. An alternative detonation point (in the eastern quadrant) would increase the area exposed to fire damage. A slightly larger yield weapon would also extend the range at which primary ignitions occur, thus obviating the firebreak effectiveness.
SECTION 5

CONCLUSIONS

The TIFS algorithm described here allows an estimate of potential fire effects on the nuclear battlefield. Although a first model, the use of well established routines and procedures for prediction of initial ignitions and fire spread provides some confidence in the algorithm. Certainly there are more effects that should be included and other models of effects that could be improved. Nevertheless, at least some statements can be made as to the effect of fire on the tactical battlefield. Future efforts might consider more general or additional fuel models, weather conditions, and terrains and the development of the TIFS algorithm into an operational program.
SECTION 6
LIST OF REFERENCES

DISTRIBUTION LIST

<table>
<thead>
<tr>
<th>Department</th>
<th>Agency/Office</th>
<th>ATTN:</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEPARTMENT OF DEFENSE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARMED FORCES RADIOBIOLOGY RSCH INST</td>
<td></td>
<td>V BOGO</td>
</tr>
<tr>
<td>ASSISTANT TO THE SECRETARY OF DEFENSE</td>
<td></td>
<td>COL T HAWKINS</td>
</tr>
<tr>
<td>ATOMIC ENERGY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEFENSE INTELLIGENCE AGENCY</td>
<td></td>
<td>N BARON</td>
</tr>
<tr>
<td>DEFENSE NUCLEAR AGENCY</td>
<td></td>
<td>R T WALSH</td>
</tr>
<tr>
<td>DEFENSE TECHNICAL INFORMATION CENTER</td>
<td></td>
<td>M R Frankel</td>
</tr>
<tr>
<td>NATIONAL DEFENSE UNIVERSITY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OFFICE OF THE SEC OF DEFENSE</td>
<td></td>
<td>LTCOL G BETOURNE</td>
</tr>
<tr>
<td>OFFICE OF THE SECRETARY OF DEFENSE</td>
<td></td>
<td>COL A RAMSAY</td>
</tr>
<tr>
<td>DEPARTMENT OF THE NAVY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEPARTMENT OF THE ARMY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NATIONAL WAR COLLEGE</td>
<td></td>
<td>COL S GARDINER</td>
</tr>
<tr>
<td>U S ARMY ATMOSPHERIC SCIENCES LAB</td>
<td></td>
<td>R SUTHERLAND</td>
</tr>
<tr>
<td>U S ARMY CORPS OF ENGINEERS</td>
<td></td>
<td>DAEN-RDM R GOMEZ</td>
</tr>
</tbody>
</table>

U S ARMY CORPS OF ENGINEERS		
ATTN:		R ZIEGLER
ATTN:		R BECKER
U S ARMY ENGR WATERWAYS EXPER STATION		L LINK
U S ARMY MISSILE INTELLIGENCE AGENCY		J GAMBLE
U S ARMY NATICK RSCH DEV & ENGRG CENTER		H M EL-BISI
U S ARMY STRATEGIC DEFENSE COMMAND		
ATTN:		DR J LILLY
ATTN:		G EDLIN
ATTN:		J VEE NEMAN
ATTN:		M CAPP S
ATTN:		R BRADSHAW
DEPARTMENT OF THE NAVY		
CNO EXECUTIVE PANEL		CAP L BROOKS
NAVAL RESEARCH LABORATORY		
NAVAL SURFACE WEAPONS CENTER		K-44 S MASTERS
DEPARTMENT OF THE ARMY		
AIR FORCE GEOFYSICS LABORATORY		
AIR FORCE INSTITUTE OF TECHNOLOGY/EN		
AIR FORCE OFFICE OF SCIENTIFIC RSCH		
AIR FORCE SPACE DIVISION		
ATTN:		YNC CAPT K O’BRYAN
HUGHES AIRCRAFT
ATTN: E DIVITA

INFORMATION SCIENCE, INC
ATTN: W DUDZIAK

INSTITUTE FOR DEFENSE ANALYSES
ATTN: C CHANDLER
ATTN: E BAUER
ATTN: F ALBINI

JOHNS HOPKINS UNIVERSITY
ATTN: M LENEVSKY
ATTN: R FRISTROM
ATTN: W BERL

KAMAN SCIENCES CORP
ATTN: J RUSH
ATTN: J SCRUGGS

KAMAN SCIENCES CORP
ATTN: P GRIFFIN
ATTN: P TRACY

KAMAN TEMPO
ATTN: B GAMBILL
ATTN: D FOXWELL
ATTN: DASIAC
ATTN: E MARTIN
ATTN: R RUTHERFORD
ATTN: R YOUNG
ATTN: S FIFER
ATTN: W KNAPP

KAMAN TEMPO
ATTN: D ANDERSON
ATTN: DASIAC

LOCKHEED MISSILES & SPACE CO, INC
ATTN: J HENLEY
ATTN: J GLADIS
ATTN: J PEREZ

LOCKHEED MISSILES & SPACE CO, INC
ATTN: P DOLAN
ATTN: W MORAN

MIT LINCOLN LAB
ATTN: S WEINER

MARTIN MARIETTA DENVER AEROSPACE
ATTN: D HAMPTON

MAXIM TECHNOLOGIES, INC
ATTN: J MARSHALL

MCDONNELL DOUGLAS CORP
ATTN: R C ANDREWS
ATTN: T CRANOR
ATTN: T TRANER

MCDONNELL DOUGLAS CORP
ATTN: A MONA
ATTN: F SAGE
ATTN: G BATUREVICH
ATTN: J GROSSMAN
ATTN: R HALPRIN
ATTN: S JAEGER
ATTN: W YUCKER

MERIDIAN CORP
ATTN: E DANIELS
ATTN: F BAITMAN

MIDWEST RESEARCH INSTITUTE
ATTN: J S KINSEY

MISSION RESEARCH CORP
ATTN: R ARMSTRONG

MISSION RESEARCH CORP
ATTN: C LONGMIRE
ATTN: D ARCHER
ATTN: D KNEPP
ATTN: D SOWLE
ATTN: F FAJEN
ATTN: K R COSNER
ATTN: M SCHEIBE
ATTN: R BIGONI
ATTN: R CHRISTIAN
ATTN: R GOLDFLAM
ATTN: R HENDRICK
ATTN: T OLD
ATTN: W WHITE

MITRE CORPORATION
ATTN: J SAWYER

MRJ INC
ATTN: D FREIWALD

NATIONAL ADVISORY COMMITTEE
ATTN: J ALMAZAN
ATTN: J BISHOP

NATIONAL INST. FOR PUBLIC POLICY
ATTN: K PAYNE

NICHOLS RESEARCH CORP, INC
ATTN: H SMITH
ATTN: J SMITH
ATTN: M FRASER
ATTN: R BYRN

NORTHROP SERVICES INC
ATTN: T OVERTON

ORLANDO TECHNOLOGY INC
ATTN: R Szczechowski
PACIFIC-SIERRA RESEARCH CORP
2 CYS ATTN: D REMETCH
ATTN: G ANNO
ATTN: H BRODE, CHAIRMAN SAGE
ATTN: M DORE
2 CYS ATTN: R SMALL
2 CYS ATTN: W WOODIE
PALOMAR CORP
ATTN: B GARRETT
ATTN: C FELDBAUM
PHOTOMETRICS, INC
ATTN: I L KOFSKY
PHOTON RESEARCH ASSOCIATES
ATTN: J MYER
PHYSICAL RESEARCH CORP
ATTN: A CECERE
PHYSICAL RESEARCH INC
ATTN: H FITZ
PHYSICAL RESEARCH INC
ATTN: D MATUSKA
PHYSICAL RESEARCH INC
ATTN: A WARSHAWSKY
ATTN: J WANG
ATTN: W SHIH
PHYSICAL RESEARCH INC
ATTN: R JORDANO
PHYSICAL RESEARCH, INC
ATTN: D WESTPHAL
ATTN: D WHITENER
ATTN: H WHEELER
ATTN: R BUFF
ATTN: R DELIBERIS
ATTN: T STEPHENS
ATTN: W C BLACKWELL
PHYSICAL RESEARCH, INC
ATTN: G HARNEY
ATTN: J DEVORE
ATTN: J THOMPSON
ATTN: R STOECKLY
ATTN: W SCHLEUTER
PHYSICAL RESEARCH, INC
ATTN: H SUGIUCHI
POLYTECHNIC OF NEW YORK
ATTN: B J BULKIN
ATTN: G TESORO
PRINCETON UNIVERSITY
ATTN: J MAHLMAN
QUADRI CORP
ATTN: H BURNSWORTH
R & D ASSOCIATES
ATTN: A KUHL
ATTN: F GILMORE
ATTN: G JONES
ATTN: J SANBORN
ATTN: R TURCO
R & D ASSOCIATES
ATTN: B YOON
R J EDWARDS INC
ATTN: R SEITZ
RADIATION RESEARCH ASSOCIATES, INC
ATTN: B CAMPBELL
ATTN: M WELLS
RAND CORP
ATTN: G L DONOHUE
ATTN: P ROMERO
RAND CORP
ATTN: J GERTLER
ROCKWELL INTERNATIONAL CORP
ATTN: S I MARCUS
ROCKWELL INTERNATIONAL CORP
ATTN: J KELLEY
S-CUBED
ATTN: B FREEMAN
ATTN: K D PYATT, JR
ATTN: R LAFRENZ
S-CUBED
ATTN: C NEEDHAM
ATTN: S HIKIDA
ATTN: T CARNEY
SCIENCE APPLICATIONS INC
ATTN: R EDELMAN
SCIENCE APPLICATIONS INTL CORP
ATTN: C HILL
SCIENCE APPLICATIONS INTL CORP
ATTN: D HAMLIN
SCIENCE APPLICATIONS INTL CORP
ATTN: B MORTON
ATTN: B SCOTT
ATTN: D SACHS
ATTN: G T PHILLIPS
ATTN: J BENGSTOM

Dist-6
<table>
<thead>
<tr>
<th>Company</th>
<th>Attorneys</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCIENCE APPLICATIONS INTL CORP</td>
<td>ATTN: J SONTOWSKI</td>
</tr>
<tr>
<td>SCIENCE APPLICATIONS INTL CORP</td>
<td>ATTN: T HARRIS</td>
</tr>
<tr>
<td>SCIENTIFIC RESEARCH ASSOC, INC</td>
<td>ATTN: B WEINBERG</td>
</tr>
<tr>
<td>SPARTA INC</td>
<td>ATTN: R HARPER</td>
</tr>
<tr>
<td>SRI INTERNATIONAL</td>
<td>ATTN: R BRAMHALL, ATTN: R WOOLFOLK, ATTN: W VAIL</td>
</tr>
<tr>
<td>STAN MARTIN ASSOCIATES</td>
<td>ATTN: S B MARTIN</td>
</tr>
<tr>
<td>STANTON CONSULTING</td>
<td>ATTN: M STANTON</td>
</tr>
<tr>
<td>SWETL, INC</td>
<td>ATTN: T Y PALMER</td>
</tr>
<tr>
<td>SYSTEM PLANNING CORP</td>
<td>ATTN: J SCOURAS, ATTN: M BIENVENU, ATTN: R SCHEERBAUM</td>
</tr>
<tr>
<td>SYSTEMS AND APPLIED SCIENCES CORP</td>
<td>ATTN: M KAPLAN</td>
</tr>
<tr>
<td>TECHNOLOGY INTERNATIONAL CORP</td>
<td>ATTN: W BOQUIST</td>
</tr>
<tr>
<td>TELEDYNE BROWN ENGINEERING</td>
<td>ATTN: D ORMOND, ATTN: F LEOPARD, ATTN: J FORD</td>
</tr>
<tr>
<td>TELEDYNE BROWN ENGINEERING</td>
<td>ATTN: D GUICE</td>
</tr>
<tr>
<td>TEXAS ENGR EXPERIMENT STATION</td>
<td>ATTN: W H MARLOW</td>
</tr>
<tr>
<td>TOYON RESEARCH CORP</td>
<td>ATTN: C TRUAX, ATTN: J GARBARINO, ATTN: J ISE</td>
</tr>
<tr>
<td>TRW</td>
<td>ATTN: H BURNSWORTH, ATTN: J BELING</td>
</tr>
<tr>
<td>TRW ELECTRONICS & DEFENSE SECTOR</td>
<td>ATTN: M HAAS</td>
</tr>
<tr>
<td>VISIDYNE, INC</td>
<td>ATTN: H SMITH, ATTN: J CARPENTER</td>
</tr>
<tr>
<td>WASHINGTON, UNIVERSITY OF</td>
<td>ATTN: J I KATZ</td>
</tr>
<tr>
<td>FOREIGN</td>
<td></td>
</tr>
<tr>
<td>AERE ENVIRONMENTAL AND MEDICAL SC</td>
<td>ATTN: S PENKETT</td>
</tr>
<tr>
<td>ATOMIC WEAPONS RESEARCH ESTABLISHMENT</td>
<td>ATTN: P F A RICHARDS</td>
</tr>
<tr>
<td>ATOMIC WEAPONS RESEARCH ESTABLISHMENT</td>
<td>ATTN: D L JONES, ATTN: D M MOODY</td>
</tr>
<tr>
<td>AUSTRALIA EMBASSY</td>
<td>ATTN: DR LOUGH, ATTN: MAJ GEN H J COATES, ATTN: P PROSSER</td>
</tr>
<tr>
<td>BRITISH DEFENCE STAFF</td>
<td>ATTN: C FENWICK, ATTN: J CRANIDGE</td>
</tr>
</tbody>
</table>
DNA-TR-86-235 (DL CONTINUED)

ATTN: J EDMONDS
ATTN: M NORTON
ATTN: P WEST

CANADIAN FORESTRY SERVICE
ATTN: B STOCKS
ATTN: T LYNNHAM

CSIRO
ATTN: I GALBALLY

CSIRO: ATMOSPHERIC RESEARCH
ATTN: A PITTOCK

EMBASSY OF BELGIUM
ATTN: L ARNOULD

ISRAEL EMBASSY
ATTN: N BELKIND

MAX-PLANCK INSTITUTE FOR CHEMISTRY
ATTN: P J CRUTZEN

MINISTRY OF DEFENCE
ATTN: R RIDLEY

NATIONAL DEFENCE HEADQUARTERS
ATTN: H A ROBITALLE

TRINITY COLLEGE
ATTN: F HARE

DIRECTORY OF OTHER

ATMOS. SCIENCES
ATTN: G SISCOE

BROWN UNIVERSITY
ATTN: R K MATTHEWS

BUCKNELL UNIVERSITY
ATTN: O ANDERSON

CALIFORNIA, UNIVERSITY
ATTN: R WILLIAMSON

CALIFORNIA, UNIVERSITY OF
ATTN: L BADASH/DEPT OF HISTORY

COLORADO, UNIVERSITY LIBRARIES
ATTN: J BIRKS
ATTN: R SCHNELL

DREXEL UNIVERSITY
ATTN: J FRIEND

DUKE UNIVERSITY
ATTN: F DELUCIA

GEORGE MASON UNIVERSITY
ATTN: PROF S SINGER
ATTN: R EHRLICH

GEORGE WASHINGTON UNIVERSITY
ATTN: R GOULARD

GEORGIA INST OF TECH
ATTN: E PATTERSON

HARVARD COLLEGE LIBRARY
ATTN: W PRESS

HARVARD UNIVERSITY
ATTN: G CARRIER

HARVARD UNIVERSITY
ATTN: D EARDLEY

IOWA, UNIVERSITY OF
ATTN: HISTORY DEPT/S PYNE

MARYLAND UNIVERSITY OF
ATTN: A ROBOCK DEPT METEOROLOGY
ATTN: A VOGELMANN DEPT METEOROLOGY
ATTN: R ELLINGSON DEPT METEOROLOGY

MIAMI LIBRARY UNIVERSITY OF
ATTN: C CONVEY

MIAMI UNIV LIBRARY
ATTN: J PROSPERO ATMOS SC

NEW YORK STATE UNIVERSITY OF
ATTN: R CESS

OAK RIDGE ASSOCIATED UNIVERSITIES
ATTN: C WHITTLE

PENNSYLVANIA STATE UNIVERSITY
ATTN: D WESTPHAL

SOUTH DAKOTA SCH OF MINES & TECH LIB
ATTN: H ORVILLE

TENNESSEE, UNIVERSITY OF
ATTN: K FOX

UNIVERSITY OF SOUTH FLORIDA
ATTN: S YING

UNIVERSITY OF WASHINGTON
ATTN: C LEOY
ATTN: L RAOKE
ATTN: P HOBBS

VIRGINIA POLYTECHNIC INST LIB
ATTN: M NADLER

WASHINGTON STATE UNIVERSITY
ATTN: DR A CLARK

WISCONSIN UNIVERSITY OF
ATTN: P WANG

Dist-8
END
11-87
DTIC