1a. REPORT SECURITY CLASSIFICATION
UNCLASSIFIED

2a. SECURITY CLASSIFICATION AUTHORITY
N/A

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE
N/A

4. PERFORMING ORGANIZATION REPORT NUMBER(S)
NBL No. 930

6a. NAME OF PERFORMING ORGANIZATION
University of California

6b. OFFICE SYMBOL (if applicable)

7a. NAME OF MONITORING ORGANIZATION
Office of Naval Research

7b. ADDRESS (City, State, and ZIP Code)
Code 1141
800 North Quincy Ave
Arlington, VA 22217-5000

8a. NAME OF FUNDING/SPONSORING ORGANIZATION
Office of Naval Research

8b. OFFICE SYMBOL (if applicable)

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
N00014-81-C-0570

10. SOURCE OF FUNDING NUMBERS
PROGRAM ELEMENT NO.
61153N
PROJECT NO.
RR041-05
TASK NO.
RR041-05-03
WORK UNIT ACCESSION NO.
NR204-123

11. TITLE (Include Security Classification)
(U) STRUCTURE OF THE E. Coli hisT OPERON

12. PERSONAL AUTHOR(S)
Marvel, Christopher C., Arps, Peggy J. and Winkler, Malcolm E.

13a. TYPE OF REPORT
Summary Report

13b. TIME COVERED
FROM 840201 TO 850131

14. DATE OF REPORT (Year, Month, Day)
1985

15. PAGE COUNT
1

16. SUPPLEMENTARY NOTATION
Proceeding 11th International tRNA Workshop, Banz FDR 1985.

17. COSATI CODES

<table>
<thead>
<tr>
<th>FIELD</th>
<th>GROUP</th>
<th>SUB-GROUP</th>
</tr>
</thead>
<tbody>
<tr>
<td>06</td>
<td>03</td>
<td></td>
</tr>
</tbody>
</table>

18. SUBJECT TERMS
Keywords: hisT gene, tRNA modification enzyme, Pseudouridine Synthase I (PSUI)

9 ABSTRACT (Continue on reverse if necessary and identify by block number)

The hisT gene codes for the tRNA modification enzyme, pseudouridine synthase I (PSUI). Recently we reported that this gene is a component of an operon that encodes at least one additional protein unrelated to PSUI.
Structure of the E. coli his T Operon

Christopher C. Marvel, Peggy J. Arps*, and Malcolm E. Winkler*

Naval BioSciences Laboratory, School of Public Health, University of California-Berkeley, Berkeley, CA 94720
*Northwestern University Medical School, Chicago, Ill.

The his T gene codes for the tRNA modification enzyme, pseudouridine synthase I (PSUI). Recently we reported that this gene is a component of an operon that encodes at least one additional protein unrelated to PSUI.

The DNA sequence of a 2.3 kilobase segment of the his T operon has now been determined. An open reading frame corresponding to the structural gene for PSUI has been identified. Genetic mapping and N-terminal analysis of purified PSUI confirm this identification. The gene codes for a 30,399 dalton polypeptide whose translation start overlaps the stop codon of an upstream gene. The upstream gene codes for a 36,364 dalton polypeptide of unknown function. Computer analysis at the protein and DNA level demonstrates that the upstream gene and PSUI gene are evolutionarily, structurally, and functionally unrelated.

Codon usage in the upstream gene is radically different from the PSUI gene and may be important in explaining the differential gene expression seen in vitro. The codon usage for the PSUI gene contains rare codons and is similar to that seen in the low translation products of the dnaG, urvC, and trmD genes. The observation that both his T and trm D (which encodes the tRNA modification enzyme m^G methyltransferase) are organized into differentially-expressed operons may suggest a common arrangement for genes that encode modification enzymes.

END
9-87
DTIC