MONOCLONAL ANTIBODIES: BASIC AND MEDICAL APPLICATIONS FOR PATHOGENIC FUNGI


SUMMARY REPORT FROM 831001 TO 840930, 1984.

XI Int'l Congress for Tropical Medicine and Malaria, Alberta, Canada, Sept 1984.

ABSTRACT

The successful application of monoclonal antibody technology for diagnosing and treating deep fungal infections requires the solution of 3 interrelated problems: (1) characterization of fungal surface antigens associated with IgG as well as IgM responses, (2) identification of epitopes unique to individual fungi, as (3) choice of immunogens for in vivo or in vitro immunization that stimulate antibody producing lymphocytes but not immunosuppressive responses. The most urgently needed immunodiagnostic application is development of enzyme immunoassays, latex agglutination, or others rapid tests for fungal antigens, provided suitable antibodies can be identified. Monoclonal antibodies have numerous other potential applications in studies of fungal taxonomy, morphology and development, immunologic relatedness, affinity purification of antigens, imaging of fungal infection sites, vaccine development and targeted drug therapy.
ABSTRACT FORM FOR SCIENTIFIC PAPERS

MONOCHELONAL ANTIBODIES: BASIC AND MEDICAL APPLICATIONS FOR PATHOGENIC FUNGI

TITLE OF PAPER: (This paper refers to the theme topic number(s)) 31 (Advances in the Mycoses)

PRINCIPAL AUTHOR: Daniel J.P. Gennevois, M.D.

POSITION TITLE AND ADDRESS: Asst. Research Immunologist, Naval Biosciences Lab., Oakland CA

CO-AUTHOR: John W. Hoffman, Hillel B. Levine, Ph.D., and Alexander E. Karu, Ph.D.

WHO WILL PRESENT THE PAPER? NAME: Dr. Daniel J.P. Gennevois

POSITION TITLE AND ADDRESS: see above

HAVE YOU ALREADY BEEN INVITED TO PRESENT THIS PAPER BY A CONVENOR/ORGANIZER: Yes ☑ No ☐

The successful application of monoclonal antibody technology for diagnosing and treating deep fungal infections requires the solution of 3 interrelated problems: (1) characterization of fungal surface antigens associated with IgG as well as IgM responses, (2) identification of epitopes unique to individual fungi, and (3) choice of immunogens for in vivo or in vitro immunization that stimulate antibody-producing lymphocytes but not immunosuppressive responses. Fungal antigens must be characterized at the macromolecule level and associated with morphologic and developmental stages. Immunoprecipitation, immunoblotting, epitope mapping, competition enzyme immunoassay, and immunoaffinity chromatography are powerful techniques which use appropriate monoclonal antibodies to identify and purify antigens. The most urgently needed immunodiagnostic application is development of enzyme immunoassays, latex coagglutination, or other rapid tests for fungal antigens, provided suitable antibodies can be identified. Monoclonal antibodies have numerous other potential applications in studies of fungal taxonomy, morphology and development, immunologic relatedness, affinity purification of antigens, imaging of fungal infection sites, vaccine development and targeted drug therapy.

We will describe several strategies we are using to obtain monoclonal antibodies to Coccidioides immitis suitable for these applications, including (a) immunoblot and immunoassay analysis of the antigens which elicit human and murine immune responses to C. immitis antigens, (b) comparison of the responses of different mouse strains immunized with different particulate and soluble antigen preparations, (c) immunization of mouse splenocytes in vitro, (d) production of hybridomas from lymph node B-cells, and (e) selection of hybridoma clones making specific antibodies that have changed subclass from IgM to IgG through natural selection or in vitro mutagenesis. The current status of similar efforts on other fungal systems will also be discussed. [These studies were supported by Contract N00014-81-C-0570 from the U.S. Office of Naval Research.]
END
10-87
DTIC