ON COLOR POLYNOMIALS OF FIBONACCI GRAPHS(U) GEORGIA
UNIV ATHENS DEPT OF CHEMISTRY S EL-BASIL 11 AUG 87
TR-52 N00014-84-K-0365
On Color Polynomials of Fibonacci Graphs

by

Sherif El-Basil

Prepared for Publication
in the

Journal of Computational Chemistry

University of Georgia
Department of Chemistry
Athens, Georgia 30602

August 11, 1987

Reproduction in whole or in part is permitted for any purpose of the United States Government

This document has been approved for public release and sale; its distribution is unlimited.
Graph Theory
Fibonacci Graphs
Color Polynomials
King Polyomino Graphs

A recursion exists among the coefficients of the color polynomials of some of the families of graphs considered in recent work of Balasubramanian and Ramaraj \(^1\). Such families of graphs have been called Fibonacci graphs. Application to king patterns of lattices is given. The method described here applies only to the so-called Fibonacci graphs.
On Color Polynomials of Fibonacci Graphs

Sherif El-Basil*

Chemistry Department, University of Georgia
Athens, GA 30602 U.S.A.

Abstract

A recursion exists among the coefficients of the color polynomials of some of the families of graphs considered in recent work of Balasubramanian and Ramaraj. Such families of graphs have been called Fibonacci graphs. Application to king patterns of lattices is given. The method described here applies only to the so called Fibonacci graphs.

Key words

Graph Theory
Fibonacci Graphs
Color Polynomials

*Permanent Address: Faculty of Pharmacy, Kasr El-Aini St. Cairo, Egypt
1. Introduction

Recently Balasubramanian and Ramaraj1 wrote an interesting paper on a newly defined color polynomial of certain graphs. They related their work to the pioneering work of Motoyama and Hosoya2 on king polynomials. Their paper has its merits in both the areas of statistical mechanics and "chemical" graph theory.

The purpose of this communication is to cite an observation on a recursive relation occurring among the coefficients of the color polynomials of some of the families of graphs and their corresponding king patterns which they considered. The observation may be of value from both the computational and graph-theoretical viewpoints. The method which will be described here applies only to the so-called Fibonacci graphs3.

2. Definition of Fibonacci Graphs3

In a homologous series of graphs the set \(\{G_n, G_{n+1}, G_{n+2}, \ldots\} \) where the number of vertices, \(n \), may or may not be finite, has been called a set of Fibonacci graphs3 if the following recursion is satisfied:

\[
\theta(G_{n+2}, k+1) = \theta(G_{n+1}, k+1) + \theta(G_n, k)
\]

(1)

where \(\theta(G,k) \) is some graph-theoretical invariant of \(G \) which may include the following:

i) The number of \(k \)-matchings4 in a graph

ii) The number of \(k \) mutually resonant but nonadjacent sextets when \(G=B \), a benzenoid system

iii) The number of \(k \) independent sets of vertices when \(G=C \), the so-called Clar graph5,6.

Inter-relations among these invariants have been recently published7. Hosoya8 seems to be the first who observed recursive relations of the type of eqn. 1 but only for the paths and the cycles when $\theta(G, k)$ becomes the number of matchings and G is either a path or a cycle. Recently this author3 and Gutman9 generalized the concept to other types of graphs which obey eqn. (1) and to several graph invariants.

3. **Construction of Fibonacci Graphs**

The (finite or infinite) set \{G\(_n\), G\(_{n+1}\), ... G\(_{n+s}\)\}, n \geq 0, s > n+1 is called a set of Fibonacci graphs. Further, if either v_0 or v_1 is of degree one, then also \{G\(_{-1}\), G\(_0\), ..., G\(_n\)\} is a set of Fibonacci graphs. Such a set must possess at least three elements. The above construction is illustrated in Fig. 1 on the molecular graph of the benzyl radical. There are two modes of graph growth leading to Fibonacci graphs, i.e. "Fibonacci growth", viz., (a) external graph growth (path growth) and (b) internal graph growth (cycle growth).

4. **Application to Color Polynomials1 and king Patterns1,2**

First we observe that the color polynomials given in ref. 1 are equivalent to the independence polynomials5,6 introduced earlier. Thus $O(G, k)$ is defined5,6 to be the number of selections of k independent vertices from G. This is precisely the number of ways of coloring k vertices black so that no two black vertices are adjacent. Table VI1 of ref. 1 lists color polynomials of some cycles. Of course a homologous series of rings form a set of Fibonacci graphs and thus should conform to eqn. 1 where $I(G, k) = O(C; k)$, $C = c; c \leq e$. The coefficients (i.e. $O(C; k)$'s)

*Balasubramanian and Ramaraj1 have shown that the coefficients of the color polynomials of the paths are the **Fibonacci numbers** while those of the cycles are **manage numbers**.
are reproduced here to demonstrate the validity of eqn. 1.

\[
\begin{array}{cccc}
\alpha & \beta & \gamma & \delta \\
2 & 1 & 2 & 0 \\
3 & 1 & 3 & 0 \\
4 & 1 & 4 & 2 & 0 \\
5 & 1 & 5 & 5 & 0 \\
6 & 1 & 6 & 9 & 2 & 1 \\
7 & 1 & 7 & 14 & 7 & 0 \\
\end{array}
\]

As a further application of the concept of Fibonacci graphs we calculate the color polynomial of \(G_{10,14} \); a graph on 25 vertices.

\[
G_{10,14}
\]

There are a number of routes for the homologation to \(G_{10,14} \) from smaller graphs.

One such route is indicated below

Homologation to \(G_{2,14} \) is shown in Table 1. To obtain \(G_{10,14} \) from \(G_{2,14} \) we need the color polynomial of \(G_{3,14} \) which is calculated using recursion 27
where $C(G;x)$ is the cycle polynomial1,6,7 of G and other symbols have their usual meanings. If one chooses the tetravalent vertex the polynomial is obtained in terms of (the known) path polynomials:

$$C(G_3;14;x) = 1 + 18X + 134X^2 + 535X^3 + 1243X^4 + 1708X^5 + 1352X^6 + 575X^7 + 115X^8 + 8X^9$$

Then $G_{2,14}$ and $G_{2,15}$ are the first two leading Fibonacci graphs for the second internal growth in ring B (Table 2).

Obviously $G_{10,14}$ corresponds to the lattice in Fig. 2.

5. **Conclusion**

Recursive relations of form 1 are very helpful in construction of counting polynomials of potentially very large graphs. Such a buildup from very small units is conceptually similar to expanding the secular determinant of a graph by pruning it down to smaller fragments10. The identification of a particular family of a Fibonacci graph is certainly of topological and computational importance and is probably equivalent to a botanical identification of a plant family.

Acknowledgments

I thank the U.S. Office of Naval Research for partial support of this work. Illuminating discussions of Professor R.B. King are appreciated. Travel assistance from Fulbright Commission in Cairo is acknowledged.
References

Fig. Legends

Fig. 1
The two types of Fibonacci growths of graphs:
(a) External subdivision and (b) Internal subdivision.

Fig. 2
The lattice graph corresponding to $G_{10,14}$. There are 34362 king patterns generated when 6 kings assume nontaking positions. (c.f. Tables 1 and 2). Observe that $G_{10,14}$ is the dualist graph of the above lattice.
Homologation from $G_{2,2}$ to $G_{2,14}$. Numbers are coefficients of color polynomials.

Relation 1 is observed throughout. The computation involves 12 "Fibonacci-growths".

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>13</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>19</td>
<td>14</td>
</tr>
<tr>
<td>1</td>
<td>9</td>
<td>26</td>
<td>27</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>34</td>
<td>46</td>
</tr>
<tr>
<td>1</td>
<td>11</td>
<td>43</td>
<td>72</td>
</tr>
<tr>
<td>1</td>
<td>12</td>
<td>53</td>
<td>106</td>
</tr>
<tr>
<td>1</td>
<td>13</td>
<td>64</td>
<td>149</td>
</tr>
<tr>
<td>1</td>
<td>14</td>
<td>76</td>
<td>202</td>
</tr>
<tr>
<td>1</td>
<td>15</td>
<td>89</td>
<td>266</td>
</tr>
<tr>
<td>1</td>
<td>16</td>
<td>103</td>
<td>342</td>
</tr>
<tr>
<td>1</td>
<td>17</td>
<td>118</td>
<td>431</td>
</tr>
</tbody>
</table>
Table 2

Homolgation $G_{2,14} + G_{10,14}$ via 8 internal Fibonacci growths. Numbers are coefficients of color polynomials.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>17</th>
<th>118</th>
<th>431</th>
<th>890</th>
<th>1038</th>
<th>644</th>
<th>183</th>
<th>16</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>18</td>
<td>134</td>
<td>535</td>
<td>1243</td>
<td>1708</td>
<td>1352</td>
<td>575</td>
<td>115</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>151</td>
<td>653</td>
<td>1674</td>
<td>2598</td>
<td>2390</td>
<td>1219</td>
<td>298</td>
<td>24</td>
<td>0</td>
</tr>
</tbody>
</table>

$1, 25, 274, 1732, 6989, 18822, 34362, 42344,$

$34438, 17689, 5320, 819, 48, 0.$
TECHNICAL REPORT DISTRIBUTION LIST, GEN

Office of Naval Research	2 copies	Dr. David Young	1 copy
Attn: Code 1113		Code 334	
800 N. Quincy Street		NORDA	
Arlington, Virginia 22217-5000		NSTL, Mississippi 39529	
Dr. Bernard Duda	1 copy	Naval Weapons Center	1 copy
Naval Weapons Support Center		Attn: Dr. Ron Atkins	
Code 50C		Chemistry Division	
Crane, Indiana 47522-5050		China Lake, California 93555	
Naval Civil Engineering Laboratory	1 copy	Scientific Advisor	1 copy
Attn: Dr. R. W. Drisko, Code L52		Commandant of the Marine Corps	
Port Hueneme, California 93401		Code RD-1	
Defense Technical Information Center	12 copies	U.S. Army Research Office	1 copy
Building 5, Cameron Station		Attn: CRD-AA-IP	
Alexandria, Virginia 22314		P.O. Box 12211	
high quality		Research Triangle Park, NC 27709	
DTNSRDC	1 copy	Mr. John Boyle	1 copy
Attn: Dr. H. Singerman		Materials Branch	
Applied Chemistry Division		Naval Ship Engineering Center	
Annapolis, Maryland 21401		Philadelphia, Pennsylvania 19112	
Dr. William Tolles	1 copy	Naval Ocean Systems Center	1 copy
Superintendent		Attn: Dr. S. Yamamoto	
Chemistry Division, Code 6100		Marine Sciences Division	
Naval Research Laboratory		San Diego, California 91232	
Washington, D.C. 20375-5000			
END
10-81
DTIC