New Materials for electrochemical cells

Abstract

Thermochemical, structural and basic electrochemical properties have been determined for the hydrogen insertion compounds of V_2O_5, V_6O_{13}, VO_2, $Mo_2W_1-yO_3$, ReO_3 and for both hydrogen and lithium insertion into the uranium oxides U_3O_8, α-, γ- and δ-U_3O_8.

The lithium insertion and extraction reactions of ternary oxides $Li[M_2]O_4$ with the spinel framework have been studied for $M = V$, Mn, Fe, Ti. Attempts to design new lithium cell cathode materials have centred on the thiospinels $Li_{1-x}[M_2]S_4$ where $M = Zr$ and Ti.
COMPLETED PROJECT SUMMARY

1. TITLE: New Materials for Electrochemical cells

2. PRINCIPAL INVESTIGATORS: Prof. John B. Goodenough
 Dr. P.G. Dickens
 Inorganic Chemistry Laboratory
 University of Oxford
 Oxford, OX1 3QR
 ENGLAND

4. GRANT NUMBER: AFOSR-83-0052

5. COSTS AND FY SOURCE: $43184, FY83; $35112, FY84;
 $47974, FY85; $59892, FY86;

6. SENIOR RESEARCH PERSONNEL:
 B. Ellis
 S. Hibble
 S. Pericard
 R.A. Burnham
 M.T. Weller
 A. Manthiram
 T. Murugesan
 S. Crouch-Baker
 D.A. Claridge

7. JUNIOR RESEARCH PERSONNEL:
 G.S. James
 M.G.S.R. Thomas
 S.A. Kay
 A.M. Chippindale
 A.V. Powell
 W.D. Macklin

Accession For
NTIS CRA&I
DTIC TAB
Unannounced
Justification

By
Distribution

Availability Codes
Dist
Available
Special

N-1

DTIC
COPY
INSPECTED 6
8. PUBLICATIONS:

(15) S.J. Hibble, P.G. Dickens and J.C. Evison, "LiAlH$_4$ and LiBH$_4$ as reagents for the formation of lithium intercalation compounds of the metal oxides V$_2$O$_5$, WO$_3$, U$_3$O$_8$ and MoO$_3$", Chem. Commun. p.1809 (1985)

(22) P.G. Dickens and M.T. Weller, "Structure and Proton mobility in the defect pyrochlore \((\text{H}_2\text{O})_x\text{H}_2\text{Ta}_2\text{O}_6\)", Solid State Commun., 59 569 (1986)

(25) S.J. Hibble and P.G. Dickens, "Thermochemistry of mixed molybdenum-tungsten oxides, \(\text{Mo}_y\text{W}_{1-y}\text{O}_3\) \((0.25<y<0.69)\) and their hydrogen insertion compounds \(\text{H}_x\text{Mo}_y\text{W}_{1-y}\text{O}_3\) \((0.34<x<0.98)\)\", J. Solid State Chem. 61 98 (1986)

(26) S.J. Hibble and P.G. Dickens, "The thermochemistry of two ammonium vanadium bronzes \((\text{NH}_4)_0.5\text{V}_2\text{O}_5\) and \((\text{NH}_4)_1.84\text{V}_3\text{O}_8\)\", J. Solid State Chem. 63 166 (1986)

(27) A.M. Chippindale and P.G. Dickens: "Hydrogen insertion into \(\text{V}_2\text{O}_5\), \(\text{V}_6\text{O}_{13}\) and \(\text{VO}_2\) (rutile)"", IIIrd European conference on solid state chemistry, Regensburg, (May 1986)

(31) P.G. Dickens, S.J. Hibble and G.S. James, "The preparation and thermochemistry of the ammonium hydrogen insertion compound (NH$_4$)$_{0.23}$H$_{0.08}$MoO$_3$", Solid State Ionics 20 213 (1986)

(34) A.M. Chippindale and P.G. Dickens, "The thermochemistry of the hydrogen vanadium bronzes H$_x$V$_2$O$_5$", Solid State Ionics 23 183 (1987)

(50) W.I.F. David, M.M. Thackeray, L.A. de Picciotto and J.B. Goodenough, "Structure refinement of the spinel-related phases Li$_7$Mn$_2$O$_4$ and Li$_{0.2}$Mn$_2$O$_4$", J. Solid State Chem. 67 316 (1987)

Papers in preparation:

(52) A. Manthiram and J.B. Goodenough, "Topotactic insertion/extraction of lithium into/from LiV$_2$O$_4$", Can. J. Phys. (in press)

(53) S. Crouch-Baker and P.G. Dickens, "Binding energies in the higher oxides of vanadium, molybdenum and tungsten and their ternary phases with hydrogen, lithium and sodium".

(54) D.A. Claridge, P.G. Dickens and J.B. Goodenough, "Studies on H$_x$W$_3$O$_9$".

9. PATENTS
No patents were applied for under this grant.

10. ABSTRACT OF OBJECTIVES AND ACCOMPLISHMENTS

The research had two main aims: (i) determination of the thermochemical, structural and electrochemical properties of insertion compounds and materials showing mixed electronic/ionic conduction, and (ii) the design, preparation and characterisation of new materials for use as electrolytes or cathode materials in solid state cells. The progress of this research has been described in the series of scientific reports and renewal proposals submitted during the research period and discussed in detail through the scientific publications listed above.

New ambient-temperature lithium and hydrogen insertion compounds have been prepared from the uranium oxides U$_3$O$_8$, α-, β-
and γ-UO$_3$. Electrochemical and thermochemical parameters have been determined for these phases and also for the hydrogen insertion compounds of VPO$_5$, V$_6$O$_{13}$, VO$_2$, the mixed molybdenum-tungsten trioxides (Mo$_x$W$_{1-y}$O$_3$) and new structural modifications of MoO$_3$ and WO$_3$; the phase previously known as "hexagonal MoO$_3$" has been shown to be a partially deammoniated and dehydrated ammonium decamolybdate. Where necessary this work has been accompanied by structural studies to locate the preferred insertion sites, and our understanding of the principles of
hydrogen and ammonium insertion into oxide lattices has been summarised in two recent conference papers.

The dynamics of mobile inserted species is another area of research which is central to the evaluation of materials for electrochemical-cell applications. The techniques of a.c.-conductivity and solid-state pulse nmr have been applied to the characterisation of lithium-ion motion in the battery cathode materials Li$_{1-x}$CoO$_2$ and Li$_x$MoO$_3$, and proton motion in the polymer electrolyte Nafton, in electrochomic materials (H$_x$WO$_3$) and other materials of potential interest as solid-state proton conductors (phosphotungstic acid, HTa(Nb)O$_3$, (H$_2$O)$_x$H$_2$Ta$_2$O$_6$).

The design of new cathode materials has centred on materials with the spinel framework. Studies on the lithium insertion and extraction reactions of manganese oxo-spinels have proved of both scientific and technological significance, demonstrating the relationship between the Li$_{1+x}$[Mn$_2$]O$_4$ system and the "γ-MnO$_2" of a partially discharged Li/γ-MnO$_2$ dry cell.

Low-temperature preparations of the spinels Li[V$_2$]O$_4$ and Li[Ni$_2$]O$_4$ have been demonstrated, via lithium extraction from the layered oxides LiVO$_2$ and LiNiO$_2$. The layered oxides LiVO$_2$ and LiCoO$_2$ have already been established as potentially valuable cathode materials.

Although the 3-D network of interstitial sites in the spinel framework permits diffusion of lithium ions, the room-temperature Li$^+$ ion mobility in an oxo-spinel framework is only adequate for low-power applications. In general, lithium-ion mobilities are higher in sulphide lattices. Therefore much attention has been paid to the thio-spinel framework. Lithium thio-spinels have been successfully prepared by the extraction and replacement of copper ions in Cu[Zr$_2$]S$_4$ and Cu[Ti$_2$]S$_4$.

A study of the low-temperature molten-salt system Aluminium Chloride- l-Methyl-3-ethylimidazolium Chloride has revealed that a maximum LiCl solubility of 12 mole-per-cent occurs in the room-temperature melt containing 0.62 mole-fraction of AlCl$_3$. This composition has been shown to be stable against the thiospinel Li$_x$Cu$_{0.1}$[Ti$_2$]S$_4$ and the layered oxide Li$_{1-x}$CoO$_2$. A working cell with these two electrodes is calculated to give an open circuit voltage of about 1.8V, and such a cell was being constructed at the close of the contract period.
END
9-87
DTIC