STRUCTURE AND DESIGN OF MULTIPOTENT PEPTIDE MICROBICIDES (U)
CALIFORNIA UNIV LOS ANGELES DEPT OF MEDICINE 1/1 AUG 07 014-06-K-0525
M E SELSTED 01 AUG 07 N00014-06-K-0525
UNCLASSIFIED F/6 6/15 NL
A family of antimicrobial leukocyte peptides has been isolated from the neutrophils of several species. I am using the consensus structure of the peptides (known as defensins) as a molecular foundation for generating new antimicrobial peptides by synthetic methods. The synthetic approach is directed by correlating the solution structures of various defensins with their distinctive biological activities.
STRUCTURE AND DESIGN OF MULTIPOTENT PEPTIDE MICROBICIDES

ONR-N00014-86-K-0525

Michael E. Selsted, M.D., Ph.D.

UCLA Department of Medicine
Division of Hematology and Oncology
Center for the Health Sciences
Los Angeles, CA 90024

ANNUAL REPORT
August 1, 1987

Project goal. The goal of this project is to design novel peptide antibiotics using a naturally occurring family of peptides, now known as defensins, as models. Defensins are 29-34 amino acid peptides which have homologous structures defined by 8 conserved residues. Although the defensin structures are ca. 25% conserved, the variation which occurs among non-conserved amino acids is responsible for their diverse and selective spectra of antimicrobial activities. By correlating specific biological activities of the various defensins, we seek to design custom peptide antimicrobials which will possess activities determined by novel sequences, thereby generating unique and predictable structures. The approach which we have taken has been to compare the primary, secondary and tertiary structure of numbers of the defensin peptide family. Because of their size, the fact that they are well characterized, and because they are amenable to study by crystallographic and nuclear magnetic resonance methodologies, we have a unique opportunity to establish relationships between polypeptide structure and function using this unique family of biologically active molecules.

Recent accomplishments.

1. Determination of defensin disulfide structure. Each of the defensin peptides contains three intramolecular disulfide bonds. In order to establish the constraints conferred by
the cystines, we sought to determine the disulfide array within a representative member of the peptide family. This was recently completed, and a manuscript describing the findings is in preparation. Briefly, we have found that the disulfide array within one of the human defensins, HNP-2, is formed by a pairing the first and sixth, the second and fourth, and the third and fifth cysteines within the polypeptide chain. We used a novel approach in establishing the disulfide pairs within this defensin, utilizing amino and carboxyl specific tags to determine the pairing of specific cysteine residues. Interestingly, the disulfide array present within the defensins is completely unique, and is distinct from any other known cysteine pairing, e.g., such as those found in the neurotoxins, growth factors, and complement component C9. The establishment of this unique disulfide motif has allowed us to limit the number of potential defensin structures to a relative few.

2. Two-dimensional nuclear magnetic resonance spectroscopy of human and rabbit defensins. 2D-NMR has been used to analyze the solution structures of one rabbit defensin, NP-5, and one human defensin, HNP-1. By methods which are described in detail in an accompanying manuscript proof, the general fold of each of these peptides mentioned above was determined. The structures obtained were derived from data which did not include the disulfide structure which is now known. Interestingly, the location of the disulfide pairs within this defensin are completely consistent with the data obtained by the NMR spectroscopic methods. The NMR approach has generated a family of highly related structures for HNP-1 and NP-5. An example of the structures of NP-5 is shown in Figure 1 below.

*Fig. 1. Stereoview of four different NP-5 structures based on distance geometry conversion of 2-D NMR spectroscopic data.*
3. Crystallographic analysis of defensins. We have grown diffraction quality crystals of five of the defensin peptides and are currently analyzing datasets obtained by x-ray diffraction analysis of the human defensin HNP-1. One goal is to correlate the structures obtained by x-ray crystallography with those of the NMR analysis.

4. Synthetic defensins. We have employed automated solid phase peptide synthesis to construct a full length synthetic version of the rabbit peptide NP-2. Using a commercially available solid phase synthesizer, we have synthesized approximately 10 mg of this peptide, and have generated native, correctly refolded NP-2 which has been purified to homogeneity by reversed phase high performance liquid chromatography. Physical and chemical characterization of this material suggests that it is indistinguishable from native NP-2, and we are currently assessing its biological activities. The yield NP-2 was approximately 10% of the synthetic product. We are presently determining methods to increase the yield by solid phase synthetic methodology.
DISTRIBUTION LIST MOLECULAR BIOLOGY PROGRAM

ANNUAL, FINAL, AND TECHNICAL REPORTS (One copy each except as noted)

Dr. Lewis F. Affronti
George Washington University
Department of Microbiology
2300 I ST NW
Washington, DC 20037

Dr. J. Thomas August
The Johns Hopkins University
School of Medicine
720 Rutland Avenue
Baltimore, MD 21205

Dr. Myron L. Bender
Chemistry Department
Northwestern University
Evanston, IL 60201

Dr. R. P. Blakemore
University of New Hampshire
Department of Microbiology
Durham, New Hampshire 03824

Dr. Ronald Breslow
Columbia University
Department of Chemistry
New York, NY 10027

Dr. James P. Collman
Department of Chemistry
Stanford University
Stanford, California 94305

Dr. Alvin Crumbliss
North Carolina Biotechnology Center
Post Office Box 12235
Research Triangle Park, NC 27709

Dr. Marlene Deluca
University of California, San Diego
Department of Chemistry
La Jolla, CA 92039

Dr. Bruce Erickson
Chemistry Department
University of North Carolina
Chapel Hill, NC 27514

Dr. Richard B. Frankel
Massachusetts Institute of Technology
Francis Bitter National Laboratory
Cambridge, MA 02139

Dr. Hans Frauenfelder
Department of Physics
University of Illinois
Urbana, IL 61801

Dr. Bruce Gaber
Naval Research Laboratory
Code 6190
Washington, DC 20375

Dr. R. W. Giese
Northeastern Univ
Section of Medicinal Chemistry
360 Huntington Ave
Boston, MA 02115

Dr. Barry Honig
Columbia University
Dept of Biochemistry and Molecular Biophysics
630 West 168th St.
New York, NY 10032