<table>
<thead>
<tr>
<th>C2 continuity of piecewise cubic Hermite polynomials with unequal intervals (U)</th>
<th>ARMY ARMAMENT RESEARCH DEVELOPMENT AND ENGINEERING CENTER</th>
<th>UNCLASSIFIED C. N. SHEN JUN 87 ARCCB-TR-87/019</th>
<th>F/G 12/1</th>
<th>NL</th>
</tr>
</thead>
</table>

Cont
THE C^2 CONTINUITY OF PIECEWISE CUBIC HERMITE POLYNOMIALS WITH UNEQUAL INTERVALS

C. N. SHEN

JULY 1987

US ARMY ARMAMENT RESEARCH, DEVELOPMENT AND ENGINEERING CENTER
CLOSE COMBAT ARMAMENTS CENTER
BENÉT WEAPONS LABORATORY
WATERVLIET, N.Y. 12189-4050

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
THE C^2 CONTINUITY OF PIECEWISE CUBIC HERMITE POLYNOMIALS WITH UNEQUAL INTERVALS

C. N. Shen

US Army ARDEC
Benet Weapons Laboratory, SMQR-CCB-TL
Watervliet, NY 12189-4050

July 1987

Approved for public release; distribution unlimited.

Cubic hermite polynomials are usually C^2 continuous. With the introduction of smoothing within the intervals, the second derivatives can be made continuous. This may be applied to the autonomous vehicle problem with unequal laser scanning.

In using a laser range finder to measure the range, the direction of these laser rays can be subjected to angular errors. These errors, in the direction...
20. ABSTRACT (CONT'D)

...of the elevation angle, affect the determination of in-path slopes for navigation of autonomous vehicles. A nonuniform grid may be employed to compute by the spline function method with cubic hermite polynomials. For the purpose of smoothing, it is essential to obtain continuous second derivatives at the grid point from both sides. Keywords: spline functions; laser vision systems.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>RECURSIVE FILTERING AND SMOOTHING PROCEDURE</td>
<td>1</td>
</tr>
<tr>
<td>EXAMPLE FOR C² CONTINUITY</td>
<td>4</td>
</tr>
<tr>
<td>CONCLUSION</td>
<td>6</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>7</td>
</tr>
<tr>
<td>APPENDIX</td>
<td>8</td>
</tr>
</tbody>
</table>

Accession For

<table>
<thead>
<tr>
<th>NTIS GRA&I</th>
<th>DTIC TAB</th>
<th>Unannounced</th>
<th>Justification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

By

<table>
<thead>
<tr>
<th>Distribution/</th>
<th>Availability Codes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Avail and/or Special</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dist</th>
<th>Special</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-1</td>
<td></td>
</tr>
</tbody>
</table>

DTIC COPY INSPECTED 6
INTRODUCTION

The smoothing of gradients can be obtained by using an optimization method for approximation involving spline functions. A nonuniform grid may be employed to compute by the spline function method with cubic hermite polynomials.

Continuous second derivatives at the grid point from both sides are essential for the purpose of smoothing. This method can be applied to solve the following problems: whether the platform can climb on the estimated in-path slope or whether it will tip over the estimated cross-path slope.

RECURSIVE FILTERING AND SMOOTHING PROCEDURE

A spline function $s(\xi)$ is a solution to the optimization problem

\[
J^* = \text{Min.} \left\{ \sum_{i=1}^{N} [h(\beta_i)-m_i]^T R_i^{-1} [h(\beta_i)-m_i] + \rho \sum_{i=2}^{N} \int_{0}^{\xi} [h]^2 \, d\xi \right\}
\]

where for clarity and simplicity in discussion, we only consider the cubic spline case. A higher order polynomial spline can also be treated in a similar manner with more complicated computations.

A cubic spline, s, is a piecewise polynomial of class C^2 which has many good properties, such as the minimum norm property and local base property (refs 1,2). From the approximation theory, we know that for each set $A = \{a_1, \ldots, a_N, a'_1, a'_N\}$, there exists a unique cubic spline $s(\xi;A)$ such that

\[
s(\beta_i;A) = a_i, \quad i = 1, 2, \ldots, N
\]

\[
\dot{s}(\beta_i;A) = a'_i, \quad i = 1, N
\]

where \dot{s} is the first derivative of the function s. The above equations can be

thought of as boundary conditions for the piecewise cubic spline interpolation
given a set of data \((\beta_i, a_i)\), for \(i = 1, 2, \ldots, N\). Thus, solving the problem in
Eq. (1) is equivalent to determining a set of constraints \(A\) for the optimization
problem:

\[
J^* = \operatorname{Min} \left\{ \sum_{i=1}^{N} [s(\xi_i;A)-m_i]^T R_i^{-1} [s(\xi_i;A)-m_i] + \rho \sum_{i=2}^{N} \int_{\beta_{i-1}}^{\beta_i} [s(\xi;A)]^2 d\xi \right\} \tag{4}
\]

Instead of taking a direct approach to find an optimal set of constraints for
the problem above, it is proposed to further transform this problem into a form
which is convenient to be solved. From the theory of numerical analysis (ref
3), it is well known that a piecewise cubic Hermite polynomial \(p(\xi)\) is in the
family of \(C^1\). For each set \(B = AuAc\), where \(Ac\) is a complement of \(A\), i.e., \(Ac = \{a'_i, i = 2, 3, \ldots, N-1\}\), then \(B = \{a_i, a'_i, i=1,2,\ldots,N\}\), there exists a unique
piecewise cubic Hermite polynomial \(p(\xi;A)\) such that

\[
p(\beta_i;B) = a_i, \quad i = 1, 2, \ldots, N \tag{5}
\]
\[
\dot{p}(\beta_i;B) = a'_i, \quad i = 2, \ldots, N \tag{6}
\]

where \(\dot{p}\) is the first derivative of \(p\).

It should also be noted that for each set \(A\), there are an infinite number
of piecewise Hermite polynomials \(p(\xi;A)\) such that

\[
p(\beta_i;A) = a_i, \quad i = 1, 2, \ldots, N \tag{7}
\]
\[
\dot{p}(\beta_i;A) = a'_i, \quad i = 1, N \tag{8}
\]

Let a set of \(p(\xi;A)\) which satisfies the constraints in the equations above be \(P\),
i.e.,

\[
P = \{p(\xi;A) : (5), (6) \text{ satisfied}\} \tag{9}
\]

\cite{Burden, R. L. et al., Numerical Analysis, Prindle, Weber, & Schmidt, 1978.}
Referring to the paper by de Boor (ref 4), it is noted that there exists a unique cubic spline \(s(\xi; A) \) in the set \(P \). Also from the minimum norm property of a cubic spline, we have the following relation:

\[
\sum_{i=2}^{N} \beta_i [s(\xi; A)]^2 < \sum_{i=2}^{N} \beta_i [p(\xi; A)]^2
\]

That is

\[
\sum_{i=2}^{N} \beta_i [s(\xi; A)]^2 = \inf \sum_{i=2}^{N} \beta_i [p(\xi; A)]^2
\]

where

\[
J_p = \sum_{i=2}^{N} \beta_i [p(\xi; A)]^2
\]

Since a cubic spline \(s(\xi; A) \) is unique, a piecewise cubic Hermite polynomial \(p(\xi; A) \) which minimizes the smoothing integral \(J_p \) in the above equation with respect to \(A^C \) becomes a cubic spline \(s(\xi; A) \). To be more precise, we have the following theorem.

THEOREM: Let \(P \) represent a set of piecewise cubic Hermite polynomials \(p \) which satisfies the constraints below:

\[
p(\beta_i; A^C) = a_i, \quad i = 1,2,...N
\]

\[
p(\beta_i; A^C) = a'_i, \quad i = 1,N
\]

where \(p \in C^1 \), \(A \), and \(A^C \) are the same as mentioned before. Then there exists a unique cubic spline \(s(\xi) \) such that

\[
\sum_{i=2}^{N} \beta_i [s(\xi)]^2 d\xi = \inf \sum_{i=2}^{N} \beta_i [p(\xi, A^C)]^2 d\xi
\]

where \(s \) and \(p \) are the second derivatives of functions \(s \) and \(p \) and \(s \in C^2 \). A simple example with \(N = 3 \) is given next.

EXAMPLE FOR C^2 CONTINUITY

For convenience and simplicity, we only consider a special case with \(N = 3 \).
The node points are given as \(\beta_1, \beta_2, \) and \(\beta_3 \). The intervals are not equal, i.e.,
\[
(\beta_2 - \beta_1) \neq (\beta_3 - \beta_2)
\]
(15)

Let a set of piecewise cubic Hermite polynomials \(p \) be
\[
P = \{p(t;A^c) : p \in C'[t_1,t_3], \dot{p}(t_2) = a, a \in A^c\}
\]
which satisfies the constraints in the equations below:
\[
p(t_i;A^c) = a_i \text{, for } i = 1,2,3
\]
\[
\dot{p}(t_i;A^c) = a'_i \text{, for } i = 1,3
\]
(17)

In this special case, a set \(A^c = a'_2 = a \).

We want to show here that the cubic Hermite polynomial \(p(t;A^c) \), which is
obtained by minimizing the smoothing integral, will become a cubic spline func-
tion \(s(t) \in C^2[t_1,t_3] \)
\[
J^* = \text{Min} \left\{ \int_{t_1}^{t_2^-} [p(t;A^c)]^2 dt + \int_{t_2^+}^{t_3} [p(t;A^c)]^2 dt \right\}
\]
\[
= \text{Min} \left\{ \int_{t_1}^{t_2^-} [p(t;a)]^2 dt + \int_{t_2^+}^{t_3} [p(t;a)]^2 dt \right\}
\]
(18)

From Eq. (A14) of the Appendix, the smoothing integral above can be written as
\[
J(a) = (x_2-A_1x_1)B_1^{-1}(x_2-A_1x_1) + (x_3-A_2x_2)B_2^{-1}(x_3-A_2x_2)
\]
(19)
where \(A_i, B_i^{-1} \), and \(x_i \) are defined in the Appendix, and
\[
x_i = (a_i,a'_i)^T \text{, with } a'_2 = a \text{, } i = 1,2,3
\]
(20)
\[
\Delta_i-1 = d_{i-1} = t_i-t_{i-1}
\]
(21)

Using Eqs. (A11) and (A12), the functional \(J(a) \) is written as
\[
\begin{align*}
\begin{bmatrix}
a_2 \\
a \\
a_3 \\
a'_3
\end{bmatrix}
&=
\begin{bmatrix}
1 & d_1 & a_1 \\
0 & 1 & a'_1 \\
1 & d_2 & a_2 \\
0 & 1 & a
\end{bmatrix}
\begin{bmatrix}
a_2 \\
a \\
a_3 \\
a'
\end{bmatrix}
\begin{bmatrix}
12d_1^{-3} & -6d_1^{-2} \\
-6d_1 & 4d_1^{-1} \\
-6d_2 & 4d_2^{-1} \\
-6d_2 & 4d_2^{-1}
\end{bmatrix}
\begin{bmatrix}
a_2 \\
a \\
a_3 \\
a'
\end{bmatrix}
\end{align*}
\]

\[J(a) = 12d_1^{-3} (a_2-a_1-d_1a'_1)^2 - 12d_1^{-2} (a_2-a_1-d_1a'_1)(a-a'_1) + 4d_1^{-1} (a-a'_1)^2 + 12d_2^{-3} (a_3-a_2-d_2a)^2 - 12d_2^{-2} (a_3-a_2-d_2a)(a_3-a) + 4d_2^{-1} (a_3-a)^2 \]

(22)

Taking the partial derivative with respect to \(a \) yields

\[
\frac{\partial J}{\partial a} = -12d_1^{-2} (a_2-a_1-d_1a'_1) + 8d_1^{-1} (a-a'_1) + 24d_2^{-1} (a_3-a_2-d_2a)(-d_2) - 12d_2^{-1} (-d_2)(a_3-a) - 12d_2^{-1} (-1)(a_3-a_2-d_2a) - 8d_2^{-1} (a_3-a) = 0
\]

(23)

Solving the equation above for \(a \), one obtains

\[a^* = \frac{[3d_1^{-2} (a_2-a_1)-d_1 a'_1+3d_2^{-2} a_3-d_2^{-2} a'_1 3a_2-d_2^{-1} a'_3]/[2(d_1^{-1}+d_2^{-1})]}{2(d_1^{-1}+d_2^{-1})} \]

(24)

To show that \(p(t;a^*) \in \mathcal{C}[t_1,t_3] \), we only need to show that

\[
\lim_{t\to t_2^-} p(t;a^*) = \lim_{t\to t_2^+} p(t;a^*)
\]

(25)
That is, for a piecewise cubic Hermite polynomial \(p \),

\[
p_{1,2}(t_2;a^*) = p_{2,3}(t_2;a^*)
\]
(26)

where \(p_{1,2} \) is the cubic Hermite polynomial within the interval \(\beta_1 \) and \(\beta_2 \), and \(p_{2,3} \) is the cubic Hermite polynomial within the interval \(\beta_2 \) and \(\beta_3 \).

Now from the definition of piecewise cubic Hermite polynomial in the Appendix, we have

\[
p_{1,2}(t_2;a^*) = 6d_{1} (a_1-a_2) + 2d_1 a_1' + 4\frac{1}{2} a^*
\]
(27)

By using Eq. (24), the above equation can be expressed as

\[
p_{1,2}(t_2;a^*) = \left[-6a_2(\frac{1}{2}d_1 + d_2) + 6(a_1d_1 + a_3d_2) + 2(a_1'-a_3')\right]/(d_1+d_2)
\]
(28)

In the same manner, omitting the detailed derivation, we obtain easily

\[
p_{2,3}(t_2;a^*) = \left[-6a_2(\frac{1}{2}d_1 + d_2) + 6(a_1d_1 + a_3d_2) + 2(a_1'-a_3')\right]/(d_1+d_2)
\]
(29)

Thus, Eq. (26) is always true, that is, the conclusion in the theorem is valid.

It is proved that the \(C^2 \) continuity exists in the optimization procedure for piecewise cubic Hermite polynomials with unequal intervals.

CONCLUSION

For scanning in the direction of elevation angle from the top of a mast where a laser is located, the intervals needed in angles are small for far away targets, while the same are large for close-by objects. The smoothing algorithm discussed in this report indicates that piecewise cubic Hermite polynomials can be used for unequal intervals or nonuniform grids.
REFERENCES

APPENDIX

EVALUATION OF THE SMOOTHING INTEGRAL

A piecewise cubic Hermite polynomial in the interval \([\beta_{i-1}, \beta_i]\) is represented in terms of the basis functions and the state vectors \(x_i, x_{i-1}\), where the state vectors are defined as in Eq. (20). By changing the independent variable below,

\[t = \xi - \beta_{i-1} \quad (A1) \]

Then the smoothing integral in the interval \([\beta_{i-1}, \beta_i]\) becomes

\[I_{i-1,i} = \int_0^{\Delta_i-1} [\rho_{i-1,i}(t)]^2 dt \quad (A2) \]

where \(\Delta_i-1 = t_i - t_{i-1} = \beta_i - \beta_{i-1}\), \(\Delta_i-1 \neq \Delta_i\).

With the change of the variable above, the second derivative of the Hermite polynomial can be written as

\[
p_{i-1,i}(t) = \begin{bmatrix} \Phi_{i,1}(t) \\ \Phi_{i,0}(t) \\ \psi_{i,1}(t) \\ \psi_{i,0}(t) \\ \vdots \end{bmatrix}^T \begin{bmatrix} x_i \\ x_{i-1} \end{bmatrix} \quad (A3)
\]

where the second derivatives of the basis functions can be derived as follows.

Using the change of variables, we rewrite the basis functions as

\[
\Phi_{i,1}(t) = t^2(3\Delta_{i-1}-2t)/\Delta_{i-1}^3 \\
\Phi_{i,0}(t) = (\Delta_{i-1}-t)^2(\Delta_{i-1}+2t)/\Delta_{i-1}^3 \\
\psi_{i,1}(t) = t(3\Delta_{i-1}-2t)/\Delta_{i-1}^3 \\
\psi_{i,0}(t) = t(\Delta_{i-1}-t)^2/\Delta_{i-1}^2
\quad (A5)\]

8
Then, taking the second derivative with respect to \(t \) yields

\[
\phi_{i,1}(t) = \frac{6(\Delta_{i-1} - 2t)}{\Delta_{i-1}^3}
\]

\[
\psi_{i,1} = \frac{(6t - 2\Delta_{i-1})}{\Delta_{i-1}^2}
\]

\[
\phi_{i,0} = \frac{6(2t - \Delta_{i-1})}{\Delta_{i-1}^3}
\]

\[
\psi_{i,0} = \frac{(6t - 4\Delta_{i-1})}{\Delta_{i-1}^2}
\]

Therefore, the integrand of the smoothing integral is expressed as

\[
[P_{i-1,i}(t)]^2 = \begin{bmatrix} x_i \\ x_{i-1} \end{bmatrix}^T \begin{bmatrix} K_{i-1,i}(t) \end{bmatrix} \begin{bmatrix} x_i \\ x_{i-1} \end{bmatrix}
\]

(A7)

where \(K_{i-1,i}(\mu) \) is defined as

\[
K_{i-1,i}(\mu) = \begin{bmatrix} \phi_{i,1}(\mu)\psi_{i,1}(\mu), \phi_{i,1}(\mu)\psi_{i,1}(\mu), \phi_{i,1}(\mu)\psi_{i,0}(\mu), \phi_{i,1}(\mu)\psi_{i,0}(\mu) \\
\psi_{i,1}(\mu)\phi_{i,1}(\mu), \psi_{i,1}(\mu)\phi_{i,1}(\mu), \psi_{i,1}(\mu)\phi_{i,0}(\mu), \psi_{i,1}(\mu)\phi_{i,0}(\mu) \\
\phi_{i,0}(\mu)\phi_{i,1}(\mu), \phi_{i,0}(\mu)\phi_{i,1}(\mu), \phi_{i,0}(\mu)\phi_{i,0}(\mu), \phi_{i,0}(\mu)\phi_{i,0}(\mu) \\
\psi_{i,0}(\mu)\phi_{i,1}(\mu), \psi_{i,0}(\mu)\phi_{i,1}(\mu), \psi_{i,0}(\mu)\phi_{i,0}(\mu), \psi_{i,0}(\mu)\phi_{i,0}(\mu) \\
\end{bmatrix}
\]

(A8)

By utilizing the above equation, the smoothing integral becomes

\[
I_{i-1,i} = \begin{bmatrix} x_i \\ x_{i-1} \end{bmatrix} \int_0^{\Delta_{i-1}} K_{i-1,i}(t) dt \begin{bmatrix} x_i \\ x_{i-1} \end{bmatrix}
\]

(A9)

Evaluating the above integral, we obtain
\[
\int_0^{\Delta_{i-1}} K_{i-1,i}(t) dt =
\begin{bmatrix}
12/\Delta_{i-1}^3 & -6/\Delta_{i-1}^2 & -12/\Delta_{i-1}^2 & -6/\Delta_{i-1}^2 \\
-6/\Delta_{i-1}^2 & 4/\Delta_{i-1} & 6/\Delta_{i-1}^2 & 2/\Delta_{i-1} \\
-12/\Delta_{i-1}^3 & 6/\Delta_{i-1}^2 & 12/\Delta_{i-1}^3 & 6/\Delta_{i-1}^2 \\
-6/\Delta_{i-1}^2 & 2/\Delta_{i-1} & 6/\Delta_{i-1}^2 & 4/\Delta_{i-1}
\end{bmatrix}
\]

(Matrices \(B_{i-1}\) and \(A_{i-1}\) are defined as follows:

\[
A_{i-1} = \begin{bmatrix} 1 & \Delta_{i-1} \\ 0 & 1 \end{bmatrix}
\]

\[
B_{i-1}^{-1} = \begin{bmatrix} -3 & -2 \\ 12\Delta_{i-1} & -6\Delta_{i-1} \\ -2 & -1 \\ -6\Delta_{i-1} & 4\Delta_{i-1} \end{bmatrix}
\]

where \(B_{i-1}^{-1}\) is a symmetric matrix. Equation (A10) can then be expressed as

\[
\begin{bmatrix}
B_{i-1}^{-1} & -B_{i-1}A_{i-1} \\
(-B_{i-1}A_{i-1})^T & A_{i-1}B_{i-1}A_{i-1}
\end{bmatrix}
\]

where \(B_{i-1}^{-1}\) and \(A_{i-1}\) are functions of the variable \(\Delta_{i-1}\). By using the above notation, Eq. (A9) is rewritten as
\[
\begin{bmatrix}
 x_i \\
 x_{i-1}
\end{bmatrix}
^T
\begin{bmatrix}
 B_{i-1}^{-1} & -B_{i-1}A_{i-1}^{-1} \\
 -A_{i-1}B_{i-1}^{-1} & A_{i-1}B_{i-1}^{-1}A_{i-1}^{-1}
\end{bmatrix}
\begin{bmatrix}
 x_i \\
 x_{i-1}
\end{bmatrix}
\]

\[
\begin{bmatrix}
 x_i \\
 x_{i-1}
\end{bmatrix}
^T
\begin{bmatrix}
 A_{i-1}B_{i-1}^{-1}A_{i-1}^{-1} & A_{i-1}B_{i-1}^{-1} \\
 -B_{i-1}^{-1}A_{i-1}^{-1} & B_{i-1}^{-1}
\end{bmatrix}
\begin{bmatrix}
 x_i \\
 x_{i-1}
\end{bmatrix}
\]

\[
\begin{bmatrix}
 x_i \\
 x_{i-1}
\end{bmatrix}
^T
\begin{bmatrix}
 -A_{i-1}^{-1} & 0 \\
 0 & B_{i-1}^{-1}
\end{bmatrix}
\begin{bmatrix}
 -A_{i-1}^{-1} & 0 \\
 0 & B_{i-1}^{-1}
\end{bmatrix}
\begin{bmatrix}
 x_i \\
 x_{i-1}
\end{bmatrix}
\]

\[
= (x_i - A_{i-1}x_{i-1})^T B_{i-1}^{-1}(x_i - A_{i-1}x_{i-1})
\quad \text{(A14)}
\]

or

\[
I_{i-1,i} = \begin{bmatrix}
 x_i \\
 x_{i-1}
\end{bmatrix}
^T
\begin{bmatrix}
 C_{i-1} & D_{i-1} \\
 T & E_{i-1}
\end{bmatrix}
\begin{bmatrix}
 x_i \\
 x_{i-1}
\end{bmatrix}
\quad \text{(A15)}
\]

where

\[
C_{i-1} = \rho A_{i-1}B_{i-1}^{-1}A_{i-1}^{-1}
\quad \text{(A16)}
\]

\[
D_{i-1} = -\rho A_{i-1}B_{i-1}^{-1}
\quad \text{(A17)}
\]

\[
E_{i-1} = \rho B_{i-1}^{-1}
\quad \text{(A18)}
\]

Thus, the smoothing integral is transformed into the above quadratic form.
<table>
<thead>
<tr>
<th>CHIEF, DEVELOPMENT ENGINEERING BRANCH</th>
<th>NO. OF COPIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATTN: SMCAR-CCB-D</td>
<td>1</td>
</tr>
<tr>
<td>-DA</td>
<td>1</td>
</tr>
<tr>
<td>-DC</td>
<td>1</td>
</tr>
<tr>
<td>-DM</td>
<td>1</td>
</tr>
<tr>
<td>-DP</td>
<td>1</td>
</tr>
<tr>
<td>-DR</td>
<td>1</td>
</tr>
<tr>
<td>-DS (SYSTEMS)</td>
<td>1</td>
</tr>
<tr>
<td>CHIEF, ENGINEERING SUPPORT BRANCH</td>
<td>1</td>
</tr>
<tr>
<td>ATTN: SMCAR-CCB-S</td>
<td></td>
</tr>
<tr>
<td>-SE</td>
<td></td>
</tr>
<tr>
<td>CHIEF, RESEARCH BRANCH</td>
<td>2</td>
</tr>
<tr>
<td>ATTN: SMCAR-CCB-R</td>
<td></td>
</tr>
<tr>
<td>-R (ELLEN FOGARTY)</td>
<td>1</td>
</tr>
<tr>
<td>-RA</td>
<td>1</td>
</tr>
<tr>
<td>-RM</td>
<td>1</td>
</tr>
<tr>
<td>-RP</td>
<td>1</td>
</tr>
<tr>
<td>-RT</td>
<td>1</td>
</tr>
<tr>
<td>TECHNICAL LIBRARY</td>
<td>5</td>
</tr>
<tr>
<td>ATTN: SMCAR-CCB-TL</td>
<td></td>
</tr>
<tr>
<td>TECHNICAL PUBLICATIONS & EDITING UNIT</td>
<td>2</td>
</tr>
<tr>
<td>ATTN: SMCAR-CCB-TL</td>
<td></td>
</tr>
<tr>
<td>DIRECTOR, OPERATIONS DIRECTORATE</td>
<td>1</td>
</tr>
<tr>
<td>ATTN: SMCWV-OD</td>
<td></td>
</tr>
<tr>
<td>DIRECTOR, PROCUREMENT DIRECTORATE</td>
<td>1</td>
</tr>
<tr>
<td>ATTN: SMCWV-PP</td>
<td></td>
</tr>
<tr>
<td>DIRECTOR, PRODUCT ASSURANCE DIRECTORATE</td>
<td>1</td>
</tr>
<tr>
<td>ATTN: SMCWV-QA</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: PLEASE NOTIFY DIRECTOR, BENET WEAPONS LABORATORY, ATTN: SMCAR-CCB-TL, OF ANY ADDRESS CHANGES.
<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Technical Report External Distribution List</th>
</tr>
</thead>
</table>
| 1 | ASST SEC OF THE ARMY
 RESEARCH AND DEVELOPMENT
 ATTN: DEPT FOR SCI AND TECH
 THE PENTAGON
 WASHINGTON, D.C. 20310-0103 |
| 12 | ADMINISTRATOR
 DEFENSE TECHNICAL INFO CENTER
 ATTN: DTIC-FDAC
 CAMERON STATION
 ALEXANDRIA, VA 22304-6145 |
| 1 | COMMANDER
 US ARMY ARDEC
 ATTN: SMCAR-AEE
 SMCAR-AES, BLDG. 321
 SMCAR-AET-0, BLDG. 351N
 SMCAR-CC
 SMCAR-CCP-A
 SMCAR-FSA
 SMCAR-FSM-E
 SMCAR-FSS-0, BLDG. 94
 SMCAR-MSI (STINFO)
 PICATINNY ARSENAL, NJ 07806-5000 |
| 1 | DIRECTOR
 US ARMY BALLISTIC RESEARCH LABORATORY
 ATTN: SLCBR-DD-T, BLDG. 305
 ABERDEEN PROVING GROUND, MD 21005-5066 |
| 1 | DIRECTOR
 US ARMY MATERIEL SYSTEMS ANALYSIS ACTV
 ATTN: AMXSY-MP
 ABERDEEN PROVING GROUND, MD 21005-5071 |
| 1 | COMMANDER
 HQ, AMCOM
 ATTN: AMSMC-IMP-L
 ROCK ISLAND, IL 61299-6000 |
| 1 | COMMANDER
 ROCK ISLAND ARSENAL
 ATTN: SMCRI-ENM
 ROCK ISLAND, IL 61299-5000 |
| 1 | DIRECTOR
 US ARMY INDUSTRIAL BASE ENGR ACTV
 ATTN: AMXIB-P
 ROCK ISLAND, IL 61299-7260 |
| 1 | COMMANDER
 US ARMY TANK-AUTMV R&D COMMAND
 ATTN: AMSTA-DDL (TECH LIB)
 WARREN, MI 48397-5000 |
| 1 | COMMANDER
 US MILITARY ACADEMY
 ATTN: DEPARTMENT OF MECHANICS
 WEST POINT, NY 10996-1792 |
| 2 | US ARMY MISSILE COMMAND
 REDSTONE SCIENTIFIC INFO CTR
 ATTN: DOCUMENTS SECT, BLDG. 4484
 REDSTONE ARSENAL, A'. 35898-5241 |
| 2 | DIRECTOR
 US ARMY FGN SCIENCE AND TECH CTR
 ATTN: DRXST-SD
 220 7TH STREET, N.E.
 CHARLOTTESVILLE, VA 22901 |
| 2 | COMMANDER
 US ARMY LABCOM
 MATERIALS TECHNOLOGY LAB
 ATTN: SLCMT-IML (TECH LIB)
 WATERTOWN, MA 02172-0001 |

NOTE: PLEASE NOTIFY COMMANDER, ARMAMENT RESEARCH, DEVELOPMENT, AND ENGINEERING CENTER, US ARMY AMCOM, ATTN: BENET WEAPONS LABORATORY, SMCAR-CCB-TL, WATERVLIET, NY 12189-4050, OF ANY ADDRESS CHANGES.
TECHNICAL REPORT EXTERNAL DISTRIBUTION LIST (CONT'D)

<table>
<thead>
<tr>
<th>NO.</th>
<th>NO. OF COPIES</th>
</tr>
</thead>
</table>
| COMMANDER | US ARMY LABCOM, Isa
ATTN: SLCIS-IM-TL
2800 POWDER MILL ROAD
ADELPHI, MD 20783-1145 | COMMANDER | AIR FORCE ARMAMENT LABORATORY
ATTN: AFATL/MN
EGLIN AFB, FL 32543-5434 |
| COMMANDER | US ARMY RESEARCH OFFICE
ATTN: CHIEF, IPO
P.O. BOX 12211
RESEARCH TRIANGLE PARK, NC 27709-2211 | COMMANDER | AIR FORCE ARMAMENT LABORATORY
ATTN: AFATL/MNG
EGLIN AFB, FL 32542-5000 |
| DIRECTOR | US NAVAL RESEARCH LAB
ATTN: DIR, MECH DIV
CODE 26-27 (DOC LIB)
WASHINGTON, D.C. 20375 | |

NOTE: PLEASE NOTIFY COMMANDER, ARMAMENT RESEARCH, DEVELOPMENT, AND ENGINEERING CENTER, US ARMY AMCCOM, ATTN: BENET WEAPONS LABORATORY, SMCAR-CCB-TL, WATERVLIET, NY 12189-4050, OF ANY ADDRESS CHANGES.
END 9-87 DTIC
ERRATA SHEET
(Change Notice)

C1 TO: TECHNICAL REPORT ARCCB-TR-87019

THE C^2 CONTINUITY OF PIECEWISE CUBIC HERMITE POLYNOMIALS WITH UNEQUAL INTERVALS

by

C. N. SHEN

Please remove pages 1 through 4 from above publication and insert new pages enclosed. Corrections have been made to Equations 2, 9, 10, and 11 on pages 1 and 3.

US ARMY ARMAMENT RESEARCH, DEVELOPMENT, AND ENGINEERING CENTER
CLOSE COMBAT ARMAMENTS CENTER
BENET LABORATORIES
WATERVLIET, N.Y. 12189-4050
INTRODUCTION

The smoothing of gradients can be obtained by using an optimization method for approximation involving spline functions. A nonuniform grid may be employed to compute by the spline function method with cubic Hermite polynomials. Continuous second derivatives at the grid point from both sides are essential for the purpose of smoothing. This method can be applied to solve the following problems: whether the platform can climb on the estimated in-path slope or whether it will tip over the estimated cross-path slope.

RECURSIVE FILTERING AND SMOOTHING PROCEDURE

A spline function \(s(\xi) \) is a solution to the optimization problem

\[
J^* = \min_{\hat{h} \in C^2} \left\{ \sum_{i=1}^{N} [h(\beta_i)-m_i]T_{i-1}^{-1}[h(\beta_i)-m_i] + \rho \sum_{i=2}^{N} \int_{\beta_{i-1}}^{\beta_i} [h]d\xi \right\}
\]

(1)

where for clarity and simplicity in discussion, we consider the cubic spline case. A higher order polynomial spline can also be treated in a similar manner with more complicated computations.

A cubic spline, \(s \), is a piecewise polynomial of class \(C^2 \) which has many good properties, such as the minimum norm property and local base property (refs 1, 2). From the approximation theory, we know that for each set \(A = \{a_1, \ldots, a_N, a'_1, a'_N\} \), there exists a unique cubic spline \(s(\xi; A) \) such that

\[
s(\beta_i; A) = a_i, \quad i = 1, 2, \ldots, N
\]

(2)

\[
s'(\beta_i; A) = a'_i, \quad i = 1, N
\]

(3)

where \(s' \) is the first derivative of the function \(s \). The above equations can be used to find the optimal spline function for a given set of data points.

thought of as boundary conditions for the piecewise cubic spline interpolation given a set of data \((\beta_i, a_i)\), for \(i = 1, 2, \ldots, N\). Thus, solving the problem in Eq. (1) is equivalent to determining a set of constraints \(A\) for the optimization problem:

\[
J^* = \text{Min} \left\{ \sum_{i=1}^{N} [s(\xi_i;A)-m_i]^{T}R_i^{-1}[s(\xi_i;A)-m_i] + \rho \sum_{i=2}^{N} \beta_i \int_{A_{i-1}}^{A_i} [s(\xi;A)]^2 d\xi \right\}
\]

Instead of taking a direct approach to find an optimal set of constraints for the problem above, it is proposed to further transform this problem into a form which is convenient to be solved. From the theory of numerical analysis (ref 3), it is well known that a piecewise cubic Hermite polynomial \(p(\xi)\) is in the family of \(C^1\). For each set \(B = A \cup A^C\), where \(A^C\) is a complement of \(A\), i.e., \(A^C = \{a_i', i = 2, 3, \ldots, N-1\}\), then \(B = \{a_i, a_i', i=1, 2, \ldots, N\}\), there exists a unique piecewise cubic Hermite polynomial \(p(\xi;A)\) such that

\[
p(\beta_i;B) = a_i, \quad i = 1, 2, \ldots, N
\]

\[
\dot{p}(\beta_i;B) = a_i', \quad i = 2, \ldots, N
\]

where \(\dot{p}\) is the first derivative of \(p\).

It should also be noted that for each set \(A\), there are an infinite number of piecewise Hermite polynomials \(p(\xi;A)\) such that

\[
p(\beta_i;A) = a_i, \quad i = 1, 2, \ldots, N
\]

\[
\dot{p}(\beta_i;A) = a_i', \quad i = 1, N
\]

Let a set of \(p(\xi;A)\) which satisfies the constraints in the equations above be \(P\), i.e.,

\[
P = \{p(\xi;A):(5),(6) \text{ satisfied}\}
\]

Referring to the paper by de Boor (ref 4), it is noted that there exists a unique cubic spline \(s(\xi;A) \) in the set \(P \). Also from the minimum norm property of a cubic spline, we have the following relation:

\[
\sum_{i=2}^{N} \beta_i \int \left[s(\xi;A) \right]^2 d\xi \leq \sum_{i=2}^{N} \beta_i \int \left[p(\xi;A) \right]^2 d\xi
\]

That is

\[
\sum_{i=2}^{N} \beta_i \int \left[s(\xi;A) \right]^2 d\xi = \inf_{p \in P} J_p(p)
\]

where

\[
J_p = \sum_{i=2}^{N} \beta_i \int \left[p(\xi;A) \right]^2 d\xi
\]

Since a cubic spline \(s(\xi;A) \) is unique, a piecewise cubic Hermite polynomial \(p(\xi;A) \) which minimizes the smoothing integral \(J_p \) in the above equation with respect to \(A^C \) becomes a cubic spline \(s(\xi;A) \). To be more precise, we have the following theorem.

THEOREM: Let \(P \) represent a set of piecewise cubic Hermite polynomials \(p \) which satisfies the constraints below:

\[
p(\beta_i;A^C) = a_i, \quad i = 1,2,...N
\]

\[
p(\beta_i;A^C) = a'_i, \quad i = 1,N
\]

where \(p \in C^1, A, \) and \(A^C \) are the same as mentioned before. Then there exists a unique cubic spline \(s(\xi) \) such that

\[
\sum_{i=2}^{N} \beta_i \int \left[s(\xi) \right]^2 d\xi = \min_{A^C} \sum_{i=2}^{N} \beta_i \int \left[p(\xi;A^C) \right]^2 d\xi
\]

where \(s \) and \(p \) are the second derivatives of functions \(s \) and \(p \) and \(s \in C^2 \). A simple example with \(N = 3 \) is given next.

EXAMPLE FOR C² CONTINUITY

For convenience and simplicity, we only consider a special case with \(N = 3 \). The node points are given as \(\beta_1, \beta_2, \) and \(\beta_3 \). The intervals are not equal, i.e.,

\[
(\beta_2 - \beta_1) \neq (\beta_3 - \beta_2)
\]

(15)

Let a set of piecewise cubic Hermite polynomials \(p \) be

\[
P = [p(t;A_1^c), p \in C^1 \ [t_1,t_3], \ p(t_2) = a, a \in A^c]
\]

(16)

which satisfies the constraints in the equations below:

\[
p(t_i;A_1^c) = a_i, \text{ for } i = 1, 2, 3
\]

\[
p(t_i;A_1^c) = a'_i, \text{ for } i = 1, 3
\]

(17)

In this special case, a set \(A_1^c = a'_2 = a \).

We want to show here that the cubic Hermite polynomial \(p(t;A_1^c) \), which is obtained by minimizing the smoothing integral, will become a cubic spline function \(s(t) \in C^2[t_1,t_3] \)

\[
J^* = \text{Min} \left\{ \int_{t_1}^{t_2} [p(t;A_1^c)]^2 dt + \int_{t_2}^{t_3} [p(t;A_1^c)]^2 dt \right\}
\]

(18)

From Eq. (A14) of the Appendix, the smoothing integral above can be written as

\[
J(a) = (x_2-A_1 x_1)^{-1} B_1^{-1} (x_2-A_1 x_1) + (x_3-A_2 x_2)^{-1} B_2^{-1} (x_3-A_2 x_2)
\]

(19)

where \(A_i, B_i, \) and \(x_i \) are defined in the Appendix, and

\[
x_i = (a_i,a'_i)^T, \text{ with } a'_2 = a, i = 1, 2, 3
\]

(20)

\[
A_i = d_i = t_i-t_{i-1}
\]

(21)

Using Eqs. (A11) and (A12), the functional \(J(a) \) is written as
END
DATE
FILMED
MARCH
1988
DTIC