THE DETERMINATION OF MUSTARD AND THIODIGLYCOL IN MUSTARD HYDROLYSATE (U)

This document has been approved for public release and sale; its distribution is unlimited.

by

P.A. D’Agostino and L.R. Provost

PCN No. 13E50

August 1984
UNCLASSIFIED

DEFENCE RESEARCH ESTABLISHMENT SUFFIELD
RALSTON ALBERTA

SUFFIELD MEMORANDUM NO. 1113

THE DETERMINATION OF MUSTARD AND THIODIGLYCOL IN MUSTARD HYDROLYSATE (U)

by

P.A. D'Agostino and L.R. Provost

PCN No. 13E50

UNCLASSIFIED
SUFFIELD MEMORANDUM NO. 1113

THE DETERMINATION OF MUSTARD AND THIODIGLYCOL IN MUSTARD HYDROLYSATE (U)

by

P.A. D'Agostino and L.R. Provost

ABSTRACT

The mustard stored at the Defence Research Establishment Suffield was disposed of by hydrolysis during the 1970's. Samples of the liquid and sludge hydrolysate were analysed by gas chromatography with flame ionization and mass spectral detection for residual mustard and thiodiglycol, the major hydrolysis product of mustard. Trace quantities of mustard were found in two sludge hydrolysate samples. Thiodiglycol was found as a major component in both the sludge and liquid hydrolysate samples.
ACKNOWLEDGEMENTS

The authors wish to thank Dr. P.A. Lockwood's group for providing a purified mustard sample, Mr. W.N. Lawson and the Decontamination Unit for collecting the hydrolysate samples and Mr. J.P. Bitz for making the glass columns used for packed column gas chromatographic analysis. Thanks are also extended to Mr. B.G. Cameron for his advice during this study.
UNCLASSIFIED

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td></td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td></td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td></td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>MATERIALS AND METHODS</td>
<td>2</td>
</tr>
<tr>
<td>Materials</td>
<td>2</td>
</tr>
<tr>
<td>Mustard Hydrolysate Samples</td>
<td>3</td>
</tr>
<tr>
<td>Liquid Hydrolysate Sample Preparation</td>
<td>3</td>
</tr>
<tr>
<td>Sludge Hydrolysate Sample Preparation</td>
<td>3</td>
</tr>
<tr>
<td>Instrumental Analysis</td>
<td>4</td>
</tr>
<tr>
<td>RESULTS AND DISCUSSION</td>
<td>4</td>
</tr>
<tr>
<td>CONCLUSIONS</td>
<td>6</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>7</td>
</tr>
<tr>
<td>TABLES</td>
<td></td>
</tr>
<tr>
<td>FIGURES</td>
<td></td>
</tr>
<tr>
<td>APPENDIX</td>
<td></td>
</tr>
</tbody>
</table>
SUFFIELD MEMORANDUM NO. 1113

THE DETERMINATION OF MUSTARD AND THIODIGLYCOL IN
MUSTARD HYDROLYSATE (U)

by

P.A. D'Agostino and L.R. Provost

INTRODUCTION

1. During World War II over 700 tons of the chemical warfare agent mustard were shipped to the Defence Research Establishment Suffield (DRES) and stored in five lead-lined concrete vaults (1). In the early 1970's it was decided that this stockpile of mustard would be destroyed by batch hydrolysis. Batch hydrolysis using 1000 gallons of mustard, 5000 pounds of lime (Ca(OH)₂) and 2500 gallons of water was carried out according to a method developed at DRES (2, 3).
2. The principle reactions involved in the hydrolysis of mustard (H) are shown in
the equations below (4). Conversion of mustard 1 through hemisulfur mustard 2 to
thiodiglycol 3 was essentially complete provided the ratio of water to mustard was large,
the temperature was elevated to 100°C and the pH was maintained above 7 (3).

\[
\begin{align*}
\text{Cl-CH}_2-\text{CH}_2-\text{S-CH}_2-\text{CH}_2-\text{Cl} + \text{H}_2\text{O} \rightarrow & \text{HO-CH}_2-\text{CH}_2-\text{S-CH}_2-\text{CH}_2-\text{Cl} + \text{HCl} \\
\text{HO-CH}_2-\text{CH}_2-\text{S-CH}_2-\text{CH}_2-\text{Cl} + \text{H}_2\text{O} \rightarrow & \text{HO-CH}_2-\text{CH}_2-\text{S-CH}_2-\text{CH}_2-\text{OH} + \text{HCl} \\
\text{Ca(OH)}_2 + 2 \text{HCl} \rightarrow & \text{Ca(Cl)}_2 + 2 \text{H}_2\text{O}
\end{align*}
\]

3. Following batch hydrolysis the mustard hydrolysate was transferred from the
reaction vessel into one of five empty storage vaults numbered 6, 7, 8, 9 and 10. After a
cooling and settling period the hydrolysate separated into two layers. The upper or liquid
layer was very fluid and ranged from clear to pale yellow in colour. The lower or sludge
layer was paste-like and yellow-brown in colour. Samples of the liquid and sludge layers
from each of the five vaults containing the mustard hydrolysate were used for analysis.

4. The objective of this study was to develop an analytical method for the
determination of thiodiglycol and mustard in the liquid and sludge layers of the mustard
hydrolysate. The chloroform extracts of both the liquid and sludge layers of the storage
vaults were initially screened by packed column gas chromatography (GC) with flame
ionization detection (FID). Determination of residual mustard in the chloroform
extracts was performed by packed column gas chromatography-mass spectrometry
(GC-MS) in the selected-ion-monitoring (SIM) mode. Thiodiglycol was determined in
both the liquid layer and the water extract of the sludge layer by packed column GC-FID
and confirmed by packed column GC-MS.

MATERIALS AND METHODS

Materials

5. The chloroform and water were "HPLC grade" purchased from Fisher Scientific
Company (Edmonton, Alberta). Thiodiglycol was purchased from Pierce Chemical
Company (Rockford, Illinois). Purified mustard was provided by the Organic
Chemistry Laboratory at DRES.
Mustard Hydrolysate Samples

6. The mustard hydrolysate was stored in vaults 6, 7, 8, 9 and 10 at DRES. Samples of the liquid and sludge hydrolysate from each vault were supplied in polyethylene bottles by the DRES Decontamination Unit. The samples were coded east (E) or west (W) to indicate their position in the storage vaults. A liquid and sludge hydrolysate sample from each vault was analysed for the presence of mustard and thiodiglycol.

Liquid Hydrolysate Sample Preparation

7. Seventy mL of each liquid hydrolysate sample were filtered using a 13 mm Swinny stainless steel filtering unit with a 1.0 \(\mu \text{m} \) Duralon filter (Millipore Corp., Bedford, MA) and a 50 mL teflon Leur lock Hamilton syringe (Chromatographic Specialties Ltd., Brockville, Ontario). A 5 mL aliquot of the filtered liquid was used for the determination of thiodiglycol.

8. A 50 mL aliquot of the filtered liquid was extracted with chloroform (1 \(\times \) 10 mL and 2 \(\times \) 5 mL) using a glass separatory funnel with a teflon stopcock. The chloroform extract of the liquid hydrolysate was concentrated to dryness under a gentle stream of nitrogen. The residue was dissolved in 1 mL of chloroform and used for the determination of mustard.

Sludge Hydrolysate Sample Preparation

9. The water extract of each sludge hydrolysate sample was used for thiodiglycol analysis. One gram of sludge hydrolysate from each vault was shaken vigorously for 3 minutes with 3 mL of water in a 10 mL polycarbonate Oak Ridge centrifuge tube (model 3118-0010, Fisher Scientific Co., Edmonton, Alberta). Samples were centrifuged at 3500 \(\times \) g for 15 minutes and 1 mL of the supernatant was removed for the determination of thiodiglycol.

10. The chloroform extract of each sludge hydrolysate sample was used for mustard analysis. One gram of sludge hydrolysate was placed in an 8 mL vial having a teflon-lined screw cap. Three mL of chloroform were added and the vial was shaken vigorously for 3 minutes. The contents were allowed to settle for one hour. A 1.5 mL aliquot of the chloroform layer (lower) was removed and filtered through a 0.5 \(\mu \text{m} \) teflon filter prior to mustard determination.
11. Water and chloroform blanks were treated in the same manner as the liquid and sludge hydrolysate samples. The blanks were examined prior to the vault samples to assess contamination during sampling handling. Hydrolysate samples and blanks were stored in vials having teflon-lined screw caps at 2°C to minimize contamination and evaporation.

Instrumental Analysis

12. A Varian 3700 (Varian Associates, Georgetown, Ontario) gas chromatograph was used for packed column GC-FID and GC-MS analyses. The glass columns were custom made by the DRES glassblowing shop and were prepared and packed according to the method of Leibrand and Dunham (5). Packed column GC-FID operating conditions are listed in Table I.

13. Packed column GC-MS analyses were performed in both the scanning and selected-ion-monitoring (SIM) mode using a VG Micromass 70/70H double-focusing mass spectrometer (VG Analytical, Wythenshawe, UK). Operating conditions for packed column GC-MS are presented in Table II.

RESULTS AND DISCUSSION

14. The analytical scheme used for the determination of mustard and thiodiglycol in the DRES mustard hydrolysate is illustrated in Figure 1. Thiodiglycol was determined in both the liquid layer and the water extract of the sludge layer by packed column GC-FID and confirmed by GC-MS in the scanning mode. Chloroform extracts of the liquid and sludge samples were used for the determination of mustard as suggested in the NATO Sampling guidelines (6). Mustard was quantitated by packed column GC-MS in the selected-ion-monitoring (SIM) mode.

15. Tenax packing was used for the GC analysis of thiodiglycol since this material is suitable for use with aqueous samples. Two packed GC columns (OV-101 and OV-17) and one fused silica capillary column (DB-5) were evaluated for the analysis of mustard in hydrolysate samples. Unless the chloroform extracts were diluted severe overloading of the capillary column occurred. Consequently capillary column GC analysis was not practical. The OV-101 packed column stationary phase provided the best peak shape and was used for the analysis of mustard.
16. A series of thiodiglycol standards in water and mustard in chloroform were prepared to evaluate the detection limit and linearity of the packed column GC-FID method. Thiodiglycol (0.0016 to 10 mg/mL) and mustard (0.004 to 2.6 mg/mL) were detected linearly over the ranges tested with correlation coefficients of 0.994 and 0.9997 respectively. The FID response curves are illustrated in Figure 2.

17. Packed column GC-FID detection limits of 1 ng for mustard and 2 ng for thiodiglycol, based on a signal to noise ratio of 3:1, correlated well with a previous study (7). A packed column GC-MS (SIM) detection limit of 0.5 ng was determined similarly for mustard. This detection limit translates into a sample detection limit of 0.8 μg H per gram of sludge and 0.01 μg H per mL of liquid based on a 2 μL injection of the chloroform extract. Thiodiglycol was present in all samples at levels well above the packed column GC-MS detection limit.

18. Quantitation of thiodiglycol in the liquid and sludge hydrolysate was done by external calibration using FID peak heights. This was accomplished by substitution of the sample peak height values into the equation generated by the thiodiglycol response data illustrated in Figure 2. Thiodiglycol was found in the 6.2 to 13.9 mg per gram range in the water extract of sludge hydrolysate and 2.2 to 10.3 mg per mL range in the liquid hydrolysate as summarized in Table III. The GC-FID chromatograms of a sludge extract and a liquid layer are illustrated in Figure 3. Thiodiglycol and several other hydrolysate components were identified by packed column GC-MS. The electron impact mass spectrum of thiodiglycol found in vault 7 is presented in Appendix 1.

19. Preliminary study indicated that another hydrolysate component eluted with a retention time similar to that of mustard. As a result, quantitation could not be performed by packed column GC-FID. Packed column GC-MS in the selected-ion-monitoring mode, a technique that is highly selective and sensitive, was used to overcome this problem. The ions monitored were m/z 109, 111, 158 and 160 (based on the electron-impact mass spectrum for mustard illustrated in Appendix 1). Triplicate analyses of the sample and sample plus mustard standard (20 – 25 ng) were performed for each chloroform extract of the liquid and sludge hydrolysate.

20. Trace levels of mustard were detected in the sludge hydrolysate of vaults 6 and 8. Figure 4 illustrates the selected-ion-monitoring traces for the co-injection of the vault 8 sludge sample plus mustard standard and the sludge sample alone. Confirmation was
based on both correct GC retention time and m/z 109 and 111 ion ratios. Quantitation, using the method of standard addition, was based on the m/z 109 and 111 ions since interference was present for m/z 158 and 160. Mustard was determined at 2.9 and 4.2 μg/g of sludge (refer to Table III) in vaults 6 and 8 respectively. No mustard was detected in the chloroform extracts of the liquid hydrolysate samples using this method. This was expected since mustard hydrolyses rapidly in aqueous solutions.

21. Chloroform and water blanks were analysed by packed column GC-FID prior to the samples. No interferences were observed in the blanks.

CONCLUSIONS

22. The hydrolysis of the mustard stored at DRES was essentially complete since only trace levels of mustard remained. Thiodiglycol, the principle hydrolysis product of mustard, was found to be a major component in the samples studied. The identity of other components in the hydrolysate will be discussed in a future publication.

1 Mustard: 1,1'-thiobis[2-chloroethane], Registry No. [505-60-2]

2 Hemisulfur mustard: 2-(2-chloroethyl)thioethanol, Registry No. [693-30-1]

3 Thiodiglycol: 2,2'-thiodiethanol, Registry No. [111-48-8]
REFERENCES

2. Weaver, R.S., Reichert, C. and Mellsen, S.B. "Destruction and Disposal of Canadian Stocks of World War II Mustard Gas". Defence Research Establishment Suffield Special Publication No. 67, December 1975. UNCLASSIFIED.

3. Reichert, C. "Hydrolysis of Mustard in Full-Scale Reaction Vessel". Suffield Technical Note No. 352, July 1975. UNCLASSIFIED.

Table I

Packed Column GC-FID Conditions

<table>
<thead>
<tr>
<th></th>
<th>Thiodiglycol Determination</th>
<th>Mustard Determination</th>
</tr>
</thead>
<tbody>
<tr>
<td>GC COLUMN:</td>
<td>1.22 m x 1.5 mm i.d.</td>
<td>1.22 x 1.5 m i.d. 5% OV 101 on 80/100 mesh Chromosorb W (Chromatographic Specialies Ltd., Brockville, Ont)</td>
</tr>
<tr>
<td></td>
<td>Tenax GC, 60/80 mesh (Alltech Assoc., Arlington, IL)</td>
<td></td>
</tr>
<tr>
<td>TEMPERATURE</td>
<td>150° for 1 min, then 5°/min</td>
<td>50° for 2 min, then 5°/min to 250°C and held for 10 min</td>
</tr>
<tr>
<td>PROGRAM</td>
<td>10°/min to 250°C and held for 5 min</td>
<td></td>
</tr>
<tr>
<td>INJECTION</td>
<td>250°C</td>
<td>250°C</td>
</tr>
<tr>
<td>TEMPERATURE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CARRIER GAS</td>
<td>High purity helium<sup>a,c</sup> at 20 mL/min</td>
<td>High purity helium<sup>a,c</sup> at 25 mL/min</td>
</tr>
<tr>
<td>FID GASES</td>
<td>Zero air<sup>b,c</sup> at 300 mL/min, ultra high purity hydrogen<sup>b,c</sup> at 30 mL/min</td>
<td></td>
</tr>
<tr>
<td>FID TEMPERATURE</td>
<td>250°C</td>
<td></td>
</tr>
</tbody>
</table>

^a Helium is passed through Drierite, molecular sieve, dust and oxygen removal filters.

^b Air and hydrogen are passed through Drierite, molecular sieve and dust filters.

^c Gas supplier: Liquid Carbonic Canada Ltd. (Scarborough, Ontario).
TABLE II

PACKED COLUMN GC-MS CONDITIONS

<table>
<thead>
<tr>
<th>OPERATING PARAMETERS</th>
<th>THIODIGLYCOL DETERMINATION</th>
<th>MUSTARD DETERMINATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>GC COLUMN:</td>
<td>1.22 m x 1.5 mm i.d.</td>
<td>1.83 x 1.5 mm i.d. 5% OV 101 on 80/100 mesh Chromosorb W</td>
</tr>
<tr>
<td></td>
<td>Tenax GC, 60/80</td>
<td></td>
</tr>
<tr>
<td>GC-MS INTERFACE:</td>
<td>Jet Separator (230°C)</td>
<td></td>
</tr>
<tr>
<td>IONIZATION MODE:</td>
<td>Electron Impact</td>
<td></td>
</tr>
<tr>
<td>ELECTRON ENERGY:</td>
<td>70 eV</td>
<td></td>
</tr>
<tr>
<td>EMISSION:</td>
<td>200 μA</td>
<td></td>
</tr>
<tr>
<td>SOURCE TEMPERATURE:</td>
<td>190 - 200°C</td>
<td></td>
</tr>
<tr>
<td>SOURCE PRESSURE:</td>
<td>ca. 2 x 10^-4 torr</td>
<td></td>
</tr>
<tr>
<td>SCAN FUNCTION AND RATE:</td>
<td>350 to 20 amu, exponential down scan, 3 sec/decade</td>
<td>Selected-ion-monitoring of m/z 100 (PFK lock mass) 109, 111, 158 and 160 with 200 msec/ion dwell time</td>
</tr>
<tr>
<td>ACCELERATING VOLTAGE:</td>
<td>4 kV</td>
<td>Stepped from 4 kV downwards</td>
</tr>
<tr>
<td>RESOLUTION (10% VALLEY DEFINITION):</td>
<td>500</td>
<td>250 - 300</td>
</tr>
</tbody>
</table>
TABLE III
THIODIGLYCOL (TDG) AND MUSTARD (H) CONCENTRATIONS IN THE DRES MUSTARD HYDROLYSATE

<table>
<thead>
<tr>
<th>VAULT NUMBER (W: West; E: East)</th>
<th>LIQUID HYDROLYSATE<sup>a</sup></th>
<th>SLUDGE HYDROLYSATE<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mg TDG/mL liquid<sup>b</sup></td>
<td>mg TDG/g sludge<sup>b</sup></td>
</tr>
<tr>
<td>6 W</td>
<td>4.7 ± 0.1</td>
<td>11.8 ± 0.9</td>
</tr>
<tr>
<td>7 W</td>
<td>4.4 ± 0.2</td>
<td>7.7 ± 0.5</td>
</tr>
<tr>
<td>8 W</td>
<td>2.2 ± 0.1</td>
<td>6.2 ± 0.3</td>
</tr>
<tr>
<td>9 W</td>
<td>10.3 ± 0.5</td>
<td>13.9 ± 0.3</td>
</tr>
<tr>
<td>10 W</td>
<td>6.1 ± 0.4</td>
<td></td>
</tr>
<tr>
<td>10 E<sup>c</sup></td>
<td>12.0 ± 0.5</td>
<td></td>
</tr>
</tbody>
</table>

^a Mustard was not detected in the liquid hydrolysate samples. Levels are below 0.01 µg/mL liquid based on the selected-ion-monitoring detection limit of 500 pg for H (S/N = 3:1).

^b Concentrations given as mean ± standard deviation (n = 3).

^c Since no sludge sample from vault 10 W was available, one from 10 E was used for sludge analysis.

ND < 0.8 µg H/g sludge based on the selected-ion-monitoring detection limit of 500 pg for H (S/N = 3:1).
LIQUID HYDROLYSATE

70 mL ALIQUOT

FILTRATION (Millipore, 1.0 μm Duralon)

50 mL ALIQUOT

5 mL ALIQUOT

EXTRACTION (Chloroform 1 × 10 mL, 2 × 5 mL)

EXTRACTION (3 mL Water)

CENTRIFUGATION

FILTRATION (Millipore, 0.5 μm Teflon)

PACKED COLUMN GC-FID

CONCENTRATION

Tenax GC: Thiodiglycol Analysis

OV 101: Mustard Analysis

MUSTARD AND THIODIGLYCOL STANDARDS

PACKED COLUMN GC-MS

Scanning: Confirmation of Thiodiglycol

SIM: Determination of Mustard

Figure 1

ANALYTICAL SCHEME FOR THE DETERMINATION OF MUSTARD AND THIODIGLYCOL IN THE MUSTARD HYDROLYSATE
Figure 2

PACKED COLUMN GC-FID CALIBRATION CURVES FOR
a) MUSTARD AND b) THIODIGLYCOL. NOTE THE LOG SCALES
PACKED COLUMN GC-FID CHROMATOGRAMS OF a) WATER EXTRACT OF THE EQUIVALENT OF 360 µg OF VAULT 7 SLUDGE HYDROLYSATE AND b) 1.1 µL OF VAULT 8 LIQUID HYDROLYSATE. COMPOUNDS IDENTIFIED: 1,4-THIOXANE (1), AN UNKNOWN (2), 1,4-DITHIANE (3), HEMISULFUR MUSTARD (4) AND THIODIGLYCOL (5).

UNCLASSIFIED
Figure 4

DETERMINATION OF MUSTARD (H) IN VAULT 8 SLUDGE HYDROLYSATE BY PACKED COLUMN GC-MS WITH SELECTED-ION-MONITORING OF m/z 109, 111, 158 AND 160.

a) TRACES OBTAINED BY THE CO-INJECTION OF 25 ng H AND THE EQUIVALENT OF 440 μg OF SLUDGE HYDROLYSATE

b) TRACES OBTAINED BY THE EQUIVALENT OF 850 μg OF SLUDGE HYDROLYSATE (ND: NOT DETECTED).
Appendix I

ELECTRON-IMPACT MASS SPECTRUM OF a) THIODIGLYCOL IDENTIFIED IN VAULT 7 SLUDGE HYDROLYSATE AND b) MUSTARD STANDARD USING PACKED COLUMN GC-MS.
The mustard stored at the Defence Research Establishment Suffield was disposed of by hydrolysis during the 1970's. Samples of the liquid and sludge hydrolysate were analysed by gas chromatography with flame ionization and mass spectral detection for residual mustard and thiodiglycol, the major hydrolysis product of mustard. Trace quantities of mustard were found in two sludge hydrolysate samples. Thiodiglycol was found as a major component in both the sludge and liquid hydrolysate samples.
KEY WORDS

- Gas Chromatography
- Mass Spectroscopy
- Solvent Extraction
- Chemical Agent Detection
- Military Chemical Agent
- Mustard Agents
- Thiodiglycol
- Mustard Hydrolysate
- (560-60-2)
- (693-30-1)
- (111-48-8)

INSTRUCTIONS

1. **ORIGINATING ACTIVITY**: Enter the name and address of the organization creating the document.

2. **DOCUMENT SECURITY CLASSIFICATION**: Enter the overall security classification of the document including special warning terms where applicable.

3. **GROUP**: Enter the security classification group number. The three groups are defined in Appendix M of the DOD Security Regulations.

4. **ABSTRACT**: Enter the complete document title in all capital letters. Only the title should be capitalized. If a subheading, descriptive title cannot be selected without capitalizing the entire title, the title should be capitalized with the usual one capital letter after a period, immediately following the title.

5. **CATEGORY**: Enter the category of document, e.g., general, technical note, technical letter, or other. If appropriate, enter the type of document, e.g., interim, progress, summary, or general report and give the inclusive dates when appropriate.

6. **AUTHOR**: Enter the parties of the author as shown on the document. If the name is not a postal initial and name is a title, use the name of the principal author as an additional reference point.

7. **DATE**: Enter the date on which the document is issued or dated. The date shall represent the earliest date of publication. This shall be used only where a publication date is needed.

8. **ABSTRACT NUMBERS**: Enter the number of abstracts issued on the document.

9. **OTHER DOCUMENT NUMBERS**: If the document has been assigned any other document numbers, either by the originator or by the sponsor, also enter this number(s).

10. **DISTRIBUTION STATEMENT**: Enter any limitations on further dissemination of the document, other than those imposed by security classification using standard statements such as:

 - [1] "Unclassified reports may obtain copies of this document from the Defense Documentation Center."

11. **SUPPLEMENTARY NOTATION**: Use for additional explanatory notes.

12. **SPONSORING ACTIVITY**: Enter the name of the departmental project office or laboratory sponsoring the research and development. Include address.

13. **ABSTRACT**: Enter an abstract giving a brief and factual summary of the document even though it may also appear elsewhere in the body of the document itself. An abstract is highly desirable for all classified documents and classified documents. Each paragraph of the abstract shall end with an indentation of the security classification of the information in the paragraph unless the document itself is unclassified.

 - The length of the abstract should be limited to 20 single spaced standard type written lines (lengthening not to exceed 50)

14. **KEY WORDS**: Appropriate technical keywords that are not part of the abstract may be included as a key word. The key words should be selected from a national dictionary of essential words. They may be used in any combination, but will be followed by an indication of technical content.