TORSIONAL MOTION IN AROMATIC MOLECULES
CONFORMATIONAL ANALYSIS OF METHYL-
(C) COLORADO STATE UNIV FORT
COLLINS DEPT OF CHEMISTRY P J BREEN ET AL MAY 87
UNCLASSIFIED TR-38N08814-79-C-8647 F/G 20/5
Title: "Torsional Motion in Aromatic Molecules. Conformational Analysis of Methyl-, Ethyl, and n-Propylbenzenes"

Personal Authors: P.J. Breen, J.A. Warren, E.R. Bernstein and J.I. Seeman

Type of Report: Technical Report

Date of Report: 1987

Summary: See attached Abstract Page

Distribution/Availability of Abstract: UNCLASSIFIED/UNLIMITED

Abstract Security Classification: UNCLASSIFIED

Name of Responsible Individual: Elliot R. Bernstein

Telephone: 303-491-6347

Program Element No.: CHEMISTRY BRANCH

Project No.: ELEMENT NO.

Task No.: N.

Work Unit Accession No.: ACCESSION NO.
"TORSIONAL MOTION IN AROMATIC MOLECULES - XYLENES AND N-PROPYL TOLUENES"

by

P.J. Breen, J.A. Warren, E.R. Bernstein and J.I. Seeman

Prepared for Publication

in the

Journal of the American Chemical Society

Department of Chemistry
Colorado State University
Fort Collins, Colorado 80523

May 1987

Reproduction in whole or in part is permitted for any purpose of the United State Government.

This document has been approved for public release and sale; its distribution is unlimited.
Supersonic molecular jet spectroscopy is used to obtain information on the torsional motion in methyl, ethyl and \(n \)-propyl substituted benzenes. Dispersed emission and time of flight mass spectral results are evaluated for toluene, the three xylenes, 1,3-diethylbenzene and 3-\(n \)-propyltoluene. The aromatic ring methyl groups in \(m \)and \(p \)-xylene can be considered as independent free rotors in \(S_0 \) and \(S_1 \) while in \(o \)-xylene they are considerably more hindered in these two states and for \(S_1 \) cross kinetic and potential terms must be introduced. The two conformations of 1,3-diethylbenzene (syn and anti, with the ethyl groups perpendicular to the plane of the benzene ring) and the three conformations of the propyl group in 3-\(n \)-propyltoluene (anti, syn-gauche and anti-gauche) are observed.
To an ever increasing extent, information regarding torsional vibrations of organic molecules is being provided by theoretical treatments rather than by experimental observation.1 When experimental data are available, all too frequently they pertain to mole fraction-weighted averages of the individual contributing conformations rather than the individual conformations themselves.2 We now demonstrate that supersonic molecular jet spectroscopy can provide a novel means (a) to determine experimental values for torsional potential barriers in S_0 and S_1, (b) to "freeze out" molecular conformations which have very low (\approx 1-5 kcal mol$^{-1}$) free energy barriers between themselves, (c) to "count" the number of stable ground state conformations, and by doing so, establish their molecular geometries, and (d) to observe spectroscopic properties of these individual conformations.

Much current interest exists in the conformational analysis of alkyl-substituted benzene substrates, and herein we focus specific attention on the first three members of this class of compound: methyl, ethyl, and n-propyl. Both time of flight mass spectra (TOFMS) and dispersed emission (DE) spectra are determined for the systems studied.3 Figure 1 presents the TOFMS of m-xylene for the 0^0 region of the $S_0 - S_1$ transition. The various features of this spectrum are attributed to transitions between internal rotor states of the two methyl groups. A double 1-dimensional rigid rotor model can be employed to fit these data.4-6 Parameters of this quantum mechanical model can be found for both the ground (S_0) and excited (S_1) states and are reported in Table 1 for m-xylene and the other compounds discussed herein.

The TOFMS and DE spectra of o-xylene are considerably different from those of m-xylene. The methyl groups of o-xylene act as independent hindered rigid rotors in the S_0 state,7 whereas both kinetic and potential
interactions between the two neighboring groups can be identified in the S_2 state. The relevant rigid rotor model parameters for S_0 and S_1 states are presented and compared with those for other systems in Table 1.

For n-alkylbenzenes, $\tau_1 (\text{ortho}-^\text{C}_\text{ipso}^\text{C}_\text{ortho}^\text{C}_\text{ipso}^\alpha^\beta)$ is the first torsional angle which defines the orientation of the alkyl group relative to the aromatic ring (c.f. 3). Ethylbenzene (4) is the prototypical example, with a barrier to rotation about τ_1 of <5 kcal mol$^{-1}$. While some recent theoretical and experimental studies have concluded that the orthogonal conformation is preferred for 4, some controversy remains and a number of reports conflict with this assignment. The TOFMS and DE spectra of 1,3-diethylbenzene (5) reveal two origins, one each for the syn and anti orthogonal conformations, 5_a and 5_s respectively. Had planar ($\tau_1 = 0$) or angular conformations ($0 < \tau_1 < 90^\circ$) been obtained, then more than two origins for 5 would have been observed. Importantly, the TOFMS experiment is sufficiently sensitive to molecular symmetry to distinguish between 5_s and 5_a.

n-Propylbenzene (6) serves as the prototypical example to define the second torsional angle τ_2 (c.f. 3). In their pioneering report, Hopkins, Powers and Smalley had observed two origins in the TOFMS for 6 but could not distinguish between the possible (anti, gauche, or eclipsed) conformations. Over the last few years, evidence has accumulated from detailed studies of 6.
and related compounds that CH''-'π attractive interactions can stabilize conformations when appropriate molecular geometries are possible. Most studies have assumed that anti and gauche conformations are predominant, and this assumption has been found to be consistent with empirical force field (EFF) calculations; however, EFF calculations are not specifically parameterized for CH''-'π interactions. Indeed, Hopkins, Powers and Smalley suggested that the eclipsed form could be the preferred conformation for n-propylbenzene, pending unambiguous experimental data.

Figure 2 shows the TOFMS of 3-n-propyltoluene (7). Three origin transitions, appearing as doublets, are observed. These correspond to the anti conformation 8 and the two gauche conformations, syn-gauche 9g and anti-gauche 9a. Had the eclipsed conformation 10 and the anti conformation 8 been predominant to the exclusion of the gauche conformations, only two origin transitions would have appeared. The doubling of the origins is due to two non-equilibrating methyl rotor states of 8, namely the 0a and 1e states. The doublets at ca. 25 cm⁻¹ from each origin are due to propyl torsions, features also noted in the spectra of n-propylbenzene and 4-n-propyltoluene. The observation of only three origins also substantiates the conclusion derived from the data on the ethylbenzenes that Θ = 90°.

\[\text{CH}_3 \quad \text{R}_1 \quad \text{R}_2 \quad \text{CH}_3 \]

8, \(R_1 = H, R_2 = \text{CH}_3 \)

9, \(R_1 = \text{CH}_3, R_2 = H \)
These results show: a) supersonic molecular jet spectroscopy is capable of observing specific molecular conformations which have very low barriers to conformational interchange; b) aromatic ring methyl groups in the p-, and m-xylenes can be considered as independent, nearly free rotors in S_0 and S_1; c) the aromatic ring methyl groups in o-xylene are considerably more hindered in S_0 and S_1, and for S_1, cross kinetic and potential terms must be introduced; d) the barriers for rotation are greater in S_1 than S_0; e) the dynamic nature of the motion of the ring methyl groups is contrasted by a more static, locked-in character of the aromatic ethyl and n-propyl substituents; f) aromatic n-alkyl substituents have their first C-C torsion perpendicular to the plane of the aromatic ring; and g) aromatic n-propyl substituents exist in anti and gauche conformations, as observed in these TOFMS/DE experiments.
TABLE I

Summary of the Hamiltonian parameters used to fit the experimental data for the alkylbenzenes. Values are given in cm$^{-1}$.

<table>
<thead>
<tr>
<th></th>
<th>S_0</th>
<th></th>
<th>S_1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>v_3</td>
<td>v_6</td>
<td>v_3</td>
<td>v_6</td>
</tr>
<tr>
<td>toluene</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>p-xylene</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>m-xylene</td>
<td>0</td>
<td>25</td>
<td>81</td>
<td>-30</td>
</tr>
<tr>
<td>o-xylene</td>
<td>425</td>
<td>18</td>
<td>166</td>
<td>0</td>
</tr>
<tr>
<td>3-n-propyltoluene</td>
<td>0</td>
<td>23</td>
<td>75</td>
<td>0</td>
</tr>
</tbody>
</table>

a 1 kcal mol$^{-1}$ = 350 cm$^{-1}$. b Kinetic cross term. c Potential cross term.
REFERENCES

(6) Complete details will be reported in our full papers.

FIGURE CAPTIONS

FIGURE 1 Electronic absorption spectrum of the 0^0 region of m-xylene, obtained with time-of-flight mass detection (TOFMS). The origin occurs at 36956.3 cm$^{-1}$. The two features at 3.7 and 7.0 cm$^{-1}$ to lower energy of the origin are due to methyl torsions, and their positions are indicative of differences in the potential barrier to methyl rotation in S_0 and S_1.

FIGURE 2 Electronic absorption spectrum (TOFMS) of the 0^0 region of 3-n-propyltoluene. The spectrum contains three origins at 36982.8, 37040.4 and 37060.1 cm$^{-1}$, corresponding to three different propyl group conformations. Accompanying each origin peak is a second peak to lower energy which is assigned as due to a methyl torsion. The doublet structures are indicative of differences in the potential barrier height to methyl rotation in S_1 and S_0.
TECHNICAL REPORT DISTRIBUTION LIST, GEN

<table>
<thead>
<tr>
<th>No. Copies</th>
<th>Office/Person</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Office of Naval Research</td>
<td>Attn: Code 1113, 800 N. Quincy Street, Arlington, Virginia 22217-5000</td>
</tr>
<tr>
<td>1</td>
<td>Dr. Bernard Douda</td>
<td>Naval Weapons Support Center, Code 50C, Crane, Indiana 47522-5050</td>
</tr>
<tr>
<td>1</td>
<td>Naval Civil Engineering Laboratory</td>
<td>Attn: Dr. R. W. Drisko, Code L52, Port Hueneme, California 93401</td>
</tr>
<tr>
<td>1</td>
<td>Defense Technical Information Center</td>
<td>Attn: CRD-AA-IP, Building 5, Cameron Station, Alexandria, Virginia 22314</td>
</tr>
<tr>
<td>1</td>
<td>DTNSRDC</td>
<td>Attn: Dr. H. Singerman, Applied Chemistry Division, Annapolis, Maryland 21401</td>
</tr>
<tr>
<td>1</td>
<td>Dr. William Tolles</td>
<td>Superintendent, Chemistry Division, Code 6100, Naval Research Laboratory, Washington, D.C. 20375-5000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. Copies</th>
<th>Office/Person</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Dr. David Young</td>
<td>Code 334, NORDA, NSTL, Mississippi 39529</td>
</tr>
<tr>
<td>1</td>
<td>Naval Weapons Center</td>
<td>Attn: Dr. Ron Atkins, Chemistry Division, China Lake, California 93555</td>
</tr>
<tr>
<td>1</td>
<td>Scientific Advisor</td>
<td>Code RD-1, Commandant of the Marine Corps, Washington, D.C. 20380</td>
</tr>
<tr>
<td>1</td>
<td>U.S. Army Research Office</td>
<td>Attn: Mr. John Boyle, Materials Branch, Naval Ship Engineering Center, Philadelphia, Pennsylvania 19112</td>
</tr>
<tr>
<td>1</td>
<td>Naval Ocean Systems Center</td>
<td>Attn: Dr. S. Yamamoto, Marine Sciences Division, San Diego, California 91232</td>
</tr>
</tbody>
</table>
END
8-87
DTIC