ANALYSIS OF RADIATION EXPOSURE FOR PERSONNEL ON THE RESIDENCE ISLANDS OF ENEWETAK ATOLL AFTER OPERATION GREENHOUSE, 1951 - 1952

Science Applications International Corporation
P. O. Box 1303
McLean, VA 22102-1303

20 April 1987

Technical Report

CONTRACT No. DNA 001-85-C-0101

Approved for public release; distribution is unlimited.

THIS WORK WAS SPONSORED BY THE DEFENSE NUCLEAR AGENCY UNDER RDT&E RMSS CODE B350085466 U99QMXMK00112 H2590D.

Prepared for
Director
DEFENSE NUCLEAR AGENCY
Washington, DC 20305-1000
Destroy this report when it is no longer needed. Do not return to sender.

PLEASE NOTIFY THE DEFENSE NUCLEAR AGENCY ATTN: TITL, WASHINGTON, DC 20305 1000, IF YOUR ADDRESS IS INCORRECT, IF YOU WISH IT DELETED FROM THE DISTRIBUTION LIST, OR IF THE ADDRESSEE IS NO LONGER EMPLOYED BY YOUR ORGANIZATION.
The radiological environments are reconstructed for the residence islands of Enewetak Atoll following the roll-up phase of Operation GREENHOUSE in May 1951. The residence islands received fallout during Operation GREENHOUSE (April/May 1951) as a result of Shots DOG, EASY, and ITEM. From the reconstructed radiological environments and assumed personnel activity scenarios, equivalent personnel film badge doses are calculated, by month, from June 1951 to June 1952. For an individual assigned to Enewetak Atoll during this period, a mean dose of 1.5-2.0 rem would have been accrued, depending on the residence island to which he was assigned.
SUMMARY

During the operational phase of Operation GREENHOUSE (April-May 1951), the residence islands of Enewetak Atoll received varying amounts of radioactive fallout following Shots DOG, EASY, and ITEM; fallout from Shot GEORGE did not affect the residence islands. The post-GREENHOUSE radiological environments are reconstructed for each of the three residence islands: Enewetak, Parry, and Japtan. Mean doses, with uncertainties, for personnel assigned to these islands between June 1951 and June 1952 are calculated. Dose accrual during this time period is calculated to be approximately 2.0 rem, 1.8 rem, and 1.5 rem, if assigned to Enewetak, Parry, or Japtan Islands, respectively. The dose calculations assume that an individual spends approximately 14½ hours of each day outside the permanent structures used for working, messing, and sleeping. While inside, it is assumed that the individual is exposed to one-half of the free-field intensity outside the structure. Adjustment factors are provided that allow the mean dose to be adjusted to account for more (or less) time spent outside than assumed in this analysis.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUMMARY</td>
<td>iii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>v</td>
</tr>
<tr>
<td>1 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 BACKGROUND</td>
<td>1</td>
</tr>
<tr>
<td>1.2 POST-GREENHOUSE MANNING ON ENEWETAK</td>
<td>3</td>
</tr>
<tr>
<td>1.3 METHODOLOGY</td>
<td>4</td>
</tr>
<tr>
<td>2 RESIDENCE ISLAND RADIATION ENVIRONMENTS</td>
<td>6</td>
</tr>
<tr>
<td>3 DOSE CALCULATIONS</td>
<td>9</td>
</tr>
<tr>
<td>3.1 PERSONNEL ACTIVITIES</td>
<td>9</td>
</tr>
<tr>
<td>3.2 UNCERTAINTIES AND TOTAL DOSE DETERMINATION</td>
<td>10</td>
</tr>
<tr>
<td>4 LIST OF REFERENCES</td>
<td>15</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Operation GREENHOUSE shot data.</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Monthly personnel totals for Task Group 132.2.</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>Reconstructed island intensities on 31 May 1951.</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>Integrated free-field intensity (mR) on the residence islands of Enewetak Atoll.</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>Adjustment factors for documented exposure conditions.</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>Calculated film badge doses (rem) for the residence islands of Enewetak Atoll (June 1951 - June 1952).</td>
<td>12</td>
</tr>
<tr>
<td>7</td>
<td>Calculated film badge doses (rem) for the residence islands of Enewetak Atoll, April 1951 to June 1952.</td>
<td>13</td>
</tr>
</tbody>
</table>
SECTION I
INTRODUCTION

Following the roll-up phase of Operation GREENHOUSE during late May and early June of 1951, the only personnel remaining on Enewetak Atoll were a small military garrison and H&N (AEC contractor) personnel. Radiation doses were previously calculated for DoD personnel assigned to the residence islands of Enewetak during the operational phase of Operation GREENHOUSE in April and May of 1951 (Reference 1). The purpose of this report is to provide an addendum to Reference 1 in which dose estimates are extended to include the military personnel who remained on Enewetak Atoll subsequent to the roll-up phase of Operation GREENHOUSE.

1.1 BACKGROUND

Operation GREENHOUSE was a series of four atmospheric nuclear tests performed by the United States in April and May of 1951 at Enewetak Atoll in the Pacific Proving Grounds (PPG). By the direction of the Joint Chiefs of Staff, Joint Task Force Three (JTF 3) was formed to conduct these nuclear tests. The tests were code named Shots DOG, EASY, GEORGE, and ITEM; specific shot data are tabulated in Table 1 and their locations on Enewetak Atoll are depicted in Figure 1. Of the four nuclear tests, Shots DOG and ITEM resulted in significant fallout on the residence islands (Enewetak, Parry, and Japtan Islands) of Enewetak Atoll. Fallout from Shot EASY was a minor contributor to the total exposure of the task force personnel, and no fallout occurred on the residence islands as a result of Shot GEORGE.

Table 1. Operation GREENHOUSE shot data.

<table>
<thead>
<tr>
<th></th>
<th>DOG</th>
<th>EASY</th>
<th>GEORGE</th>
<th>ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATE</td>
<td>8 April 1951</td>
<td>21 April 1951</td>
<td>9 May 1951</td>
<td>25 May 1951</td>
</tr>
<tr>
<td>TIME (Local)*</td>
<td>0634</td>
<td>0627</td>
<td>0930</td>
<td>0617</td>
</tr>
<tr>
<td>HEIGHT OF BURST</td>
<td>300 ft.</td>
<td>300 ft.</td>
<td>200 ft.</td>
<td>200 ft.</td>
</tr>
<tr>
<td>TYPE</td>
<td>TOWER</td>
<td>TOWER</td>
<td>TOWER</td>
<td>TOWER</td>
</tr>
<tr>
<td>YIELD</td>
<td>**</td>
<td>47 KT</td>
<td>**</td>
<td>**</td>
</tr>
</tbody>
</table>

*Local time was 12 hours behind GMT.

Source: Reference 1

**Yield is classified.
Figure 1. Enewetak Atoll, Operation GREENHOUSE shot locations.
Doses for personnel assigned to Enewetak Atoll were previously calculated through the end of May 1951, when the roll-up phase was virtually complete and most JTF 3 personnel had departed the PPG. At the time Reference 1 was published, the roll-up phase appeared to be the logical point at which to terminate the Operation GREENHOUSE dose calculations. In addition to the fact that most personnel had departed the atoll by the end of May, statements from several sources indicated that heavy rains set in (on Enewetak Atoll) at the end of May and early June 1951, which reduced the fallout dose rate from Shot ITEM (the last shot) to background values (References 2, 3). This information was used to justify terminating all dose calculations as of 31 May 1951. A subsequent detailed analysis of the hourly weather observations obtained on Enewetak Island during the period of interest (Reference 4a) and a number of interviews with radiation safety personnel at Greenhouse (Reference 4b) revealed that the statements in References 2 and 3 were unsubstantiated, and that there was a potential for additional radiation exposure to personnel remaining on the islands after the roll-up phase. Therefore, all assertions in Reference 1 concerning the heavy rains that set in at the end of May and early June, which allegedly reduced intensity levels on the residence islands to background, should be disregarded.

1.2 POST-GREENHOUSE MANNING ON ENEWETAK

By 20 June 1951, approximately 330 military personnel remained on Enewetak Atoll in a caretaker status. Comprised of personnel from all three services, with Army personnel in the majority, the garrison retained the designation of Task Group 3.2, the Army task group during Operation GREENHOUSE (Reference 5). The Air Force contingent, comprising approximately 80 personnel, remained on Enewetak to operate the airfield, while approximately 20 Navy personnel operated the boat pool. During the period following Operation GREENHOUSE, most work accomplished by the Army contingent (the 7126th Army Unit) was done on Enewetak Island; however, every 4 days or so, military police from this unit conducted ground security sweeps of the islands on the atoll. The boat pool was used extensively to support these security patrols (Reference 5). The Air Force unit (the 4931st Test Support Squadron) provided air transportation within Enewetak Atoll with six L-13 aircraft. Most of the air traffic was generated by H&N personnel to support their construction activities (for the upcoming Operation IVY) on the northern islands of the atoll.
During the early summer of 1951, when it became clear that Operation IVY would be conducted in the fall of 1952, JTF 132 was activated to replace the JTF 3 organization that had supported Operation GREENHOUSE. On 1 August 1951, TG 3.2 was deactivated and reactivated as TG 132.2 with the Air Force and Navy contingents on Enewetak remaining under the operational control of CTG 132.2 (Reference 5). The strength of TG 132.2 remained relatively constant until the spring of 1952, when preparations for Operation IVY began in earnest. Table 2 gives the personnel strength of TG 132.2 on Enewetak during the post-GREENHOUSE, pre-IVY period.

1.3 METHODOLOGY

The reconstructed free-field radiation environments presented in Reference 1 for each of the residence islands of Enewetak Atoll are time integrated, by month and by shot, from 1 June 1951 through 30 June 1952, by which time natural radioactive decay had reduced the free-field exposures to approximately 1 mR per day (essentially background levels). Because no radiological survey data are available for the residence islands following the last survey on 28 May 1951, radioactive decay after 31 May is assumed to be proportional to $t^{-1.2}$ for approximately 6 months after each shot, and proportional to $t^{-2.2}$ thereafter, as suggested in Reference 6. These decay rates do not consider weathering, which has a tendency to accelerate the natural decay process. Monthly contributions to the integrated free-field intensity from each shot resulting in fallout (Shots DOG, EASY, and ITEM) are summed for each of the residence islands and are presented in Section 2 of this addendum report.

In Section 3, the monthly integrated intensities are adjusted to account for shielding provided by structures on the islands utilized for working, messing, and sleeping. The adjusted free-field exposures are then converted to an equivalent film badge dose using the conversion factor 0.7 rem/R as derived in Reference 7. Calculated doses are tabulated, by month, for each of the residence islands. The calculated doses represent exposures for activities performed only on the residence islands; if an individual's activities required him to enter areas of higher contamination, such as the northern islands of the atoll, a film badge would have been issued to document this additional exposure. An uncertainty analysis is also provided in Section 3, with doses summarized, by month, in Table 6.
Table 2. Monthly personnel totals for Task Group 132.2.

<table>
<thead>
<tr>
<th>Date</th>
<th>Army</th>
<th>Air Force</th>
<th>Navy</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Sep 51</td>
<td>263</td>
<td>79</td>
<td>19</td>
<td>361</td>
</tr>
<tr>
<td>1 Oct 51</td>
<td>267</td>
<td>75</td>
<td>19</td>
<td>361</td>
</tr>
<tr>
<td>1 Nov 51</td>
<td>234</td>
<td>79</td>
<td>26</td>
<td>339</td>
</tr>
<tr>
<td>1 Dec 51</td>
<td>219</td>
<td>80</td>
<td>41</td>
<td>340</td>
</tr>
<tr>
<td>1 Jan 52</td>
<td>264</td>
<td>95</td>
<td>40</td>
<td>399</td>
</tr>
<tr>
<td>1 Feb 52</td>
<td>295</td>
<td>130</td>
<td>23</td>
<td>448</td>
</tr>
<tr>
<td>1 Mar 52</td>
<td>273</td>
<td>87</td>
<td>26</td>
<td>386</td>
</tr>
<tr>
<td>1 Apr 52</td>
<td>548</td>
<td>81</td>
<td>27</td>
<td>656</td>
</tr>
<tr>
<td>1 May 52</td>
<td>536</td>
<td>128</td>
<td>28</td>
<td>692</td>
</tr>
<tr>
<td>1 Jun 52</td>
<td>716</td>
<td>149</td>
<td>28</td>
<td>893</td>
</tr>
<tr>
<td>1 Jul 52</td>
<td>812</td>
<td>168</td>
<td>27</td>
<td>1,007</td>
</tr>
<tr>
<td>1 Aug 52</td>
<td>1,076</td>
<td>223</td>
<td>24</td>
<td>1,323</td>
</tr>
<tr>
<td>1 Sep 52</td>
<td>1,119</td>
<td>216</td>
<td>27</td>
<td>1,362</td>
</tr>
<tr>
<td>1 Oct 52</td>
<td>1,114</td>
<td>225</td>
<td>25</td>
<td>1,364</td>
</tr>
<tr>
<td>1 Nov 52</td>
<td>1,114</td>
<td>336</td>
<td>25</td>
<td>1,475</td>
</tr>
</tbody>
</table>

Source: Reference 5
This section describes the post-GREENHOUSE radiation environment on the residence islands of Enewetak Atoll. In Reference 1, island radiation environments were reconstructed based on numerous survey readings obtained during the operational phase of GREENHOUSE. Radiological decay rates used in dose reconstructions for the operational phase were generally dictated by actual surveys, and were approximately proportional to $t^{-1.1}$. It was assumed that these measured rates persisted from after the last survey through 31 May 1951, when the calculations were terminated. For the post-operational analysis, however, radiological survey data are not available and possible variations in the late-time (after 31 May) decay rates must be considered.

Table 3 gives the reconstructed intensity (from Reference 1) on each of the residence islands on 31 May 1951, resulting from fallout from Shots DOG, EASY and ITEM. Also given in the table is the number of hours after each shot that corresponds to the intensity at 2400 hours, 31 May. These times and intensities are used as the starting point for reconstructing the post-operational radiological environments on the islands.

<table>
<thead>
<tr>
<th>Shot</th>
<th>Enewetak</th>
<th>Parry</th>
<th>Japtan</th>
<th>(2400, 31 May 1951)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOG</td>
<td>0.08</td>
<td>0.11</td>
<td>0.11</td>
<td>1290</td>
</tr>
<tr>
<td>EASY</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>978</td>
</tr>
<tr>
<td>ITEM</td>
<td>7.8</td>
<td>6.6</td>
<td>5.3</td>
<td>162</td>
</tr>
<tr>
<td>TOTAL</td>
<td>7.9</td>
<td>6.7</td>
<td>5.4</td>
<td></td>
</tr>
</tbody>
</table>

The post-GREENHOUSE radiological environment on each of the islands is approximated using late-time decay rates suggested in Reference 6. For the first six months after each shot, radiological decay is proportional to $t^{-1.2}$; thereafter, an
accelerated rate proportional to $t^{-2.2}$ is considered appropriate. The intensities, depicted in Figure 2, are extended out to 1 Nov 1952, when Shot MIKE of Operation IVY was detonated on Enewetak Atoll. It is evident that even when "weathering" is neglected, natural radioactive decay alone reduces the intensities to background levels (0.04 mR/hr or less) by May or June of 1952.

Each of the intensity curves in Figure 2 represents the total island intensity as a function of time, and is actually the sum of the intensity contributions from Shots DOG, EASY, and ITEM. Integrated intensities, by month, are calculated by time-integrating the incremental contribution from each shot on each island and then summing. Monthly contributions to the total integrated intensity on each of the three islands, through June 1952, are presented in Table 4.

Table 4. Integrated free-field intensity (mR) on the residence islands of Enewetak Atoll.

<table>
<thead>
<tr>
<th>Month-Year</th>
<th>Enewetak</th>
<th>Parry</th>
<th>Japtan</th>
</tr>
</thead>
<tbody>
<tr>
<td>June 1951</td>
<td>1868</td>
<td>1595</td>
<td>1308</td>
</tr>
<tr>
<td>July</td>
<td>552</td>
<td>480</td>
<td>398</td>
</tr>
<tr>
<td>August</td>
<td>314</td>
<td>273</td>
<td>229</td>
</tr>
<tr>
<td>September</td>
<td>209</td>
<td>184</td>
<td>154</td>
</tr>
<tr>
<td>October</td>
<td>163</td>
<td>144</td>
<td>121</td>
</tr>
<tr>
<td>November</td>
<td>125</td>
<td>111</td>
<td>93</td>
</tr>
<tr>
<td>December</td>
<td>106</td>
<td>93</td>
<td>78</td>
</tr>
<tr>
<td>January 1952</td>
<td>83</td>
<td>73</td>
<td>61</td>
</tr>
<tr>
<td>February</td>
<td>58</td>
<td>51</td>
<td>43</td>
</tr>
<tr>
<td>March</td>
<td>51</td>
<td>45</td>
<td>38</td>
</tr>
<tr>
<td>April</td>
<td>40</td>
<td>35</td>
<td>30</td>
</tr>
<tr>
<td>May</td>
<td>34</td>
<td>30</td>
<td>25</td>
</tr>
<tr>
<td>June 1952</td>
<td>28</td>
<td>24</td>
<td>20</td>
</tr>
</tbody>
</table>
Figure 2. Post-GREENHOUSE radiation environments on the residence islands of Enewetak Atoll.
SECTION 3
DOSE CALCULATIONS

To determine the dose to personnel, consideration must be given to the time spent outside and inside and the radiation protection afforded by a building while inside. The monthly integrated free-field intensities from Section 2 are adjusted to account for personnel activities. The adjusted exposures (R) are then multiplied by a film badge conversion factor (rem/R) to determine a film badge dose (rem). Uncertainties in the calculated doses due to varying late-time decay rates (after the last radiological survey on the islands) are also considered. Results are presented as a cumulative film badge dose on each of the residence islands through 30 June 1952, when island intensities were essentially down to background levels.

3.1 PERSONNEL ACTIVITIES

An estimate of personnel activities must be considered in estimating an individual's dose while assigned to Enewetak. While detailed personnel activities are not known, it is assumed that individuals assigned to the residence islands spent at least a portion of each day inside the permanent structures on the islands for working, messing, and sleeping. While inside buildings, some protection was provided by the structure against the free-field radiation environment. Typically, a protection factor of two (PF=2) has been measured for the permanent structures such as those erected on tropical atolls. This protection factor is largely geometrical; that is, the structure offers little or no mass attenuation, but does provide for some stand-off from contamination on the island soil.

In the dose calculations that follow, a time-averaged shielding factor is used to account for time spent inside/outside buildings and shielding provided by the structure while inside. The time-averaged shielding factor used in this analysis is 0.8, derived by assuming that personnel spent 60 percent of the day outside and 40 percent inside. While inside, personnel are afforded a protection factor of 2, i.e., a shielding factor of 0.5. Thus, the time-averaged shielding factor is computed as:

\[(0.6)(1) + (0.4)(0.5) = 0.8\]
The monthly integrated intensities in Section 2 are multiplied by 0.8 to account for times spent inside and outside of the permanent structures on Enewetak. The adjusted exposures are then converted to an equivalent film badge dose using the conversion factor 0.7 rem/R as derived in Reference 7.

In order to provide some flexibility in dose assignments for personnel whose documented activities required them to be inside or outside for greater periods of time than assumed in this analysis, Table 5 provides factors that can be used to adjust the calculated mean doses to account for actual exposure conditions, if known. The table assumes a protection factor of 2 while inside. For example, if it is known that an individual spent an average of 12 hours per day outside (rather than the assumed 60 percent or 14.4 hours), his calculated dose should be adjusted by a factor of 0.94.

<table>
<thead>
<tr>
<th>Number of Hours Outside</th>
<th>6</th>
<th>9</th>
<th>12</th>
<th>14.4</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiply Mean Dose by</td>
<td>0.78</td>
<td>0.86</td>
<td>0.94</td>
<td>1.0</td>
<td>1.09</td>
</tr>
</tbody>
</table>

3.2 UNCERTAINTIES AND TOTAL DOSE DETERMINATION

For personnel remaining on residence islands after the conclusion of Operation GREENHOUSE, the uncertainties in dose are largely of different origin than during the operation. Because post-operational radiation intensity information is unavailable, the decay rate of the island fallout is assumed to be according to \(t^{-1.2} \), the common power law relationship with time generally held to be most representative of fission product decay (up to 6 months, when \(t^{-2.2} \) better applies). For extended durations of exposure, the potential uncertainty in dose from uncertainty in the decay exponent is appreciable. Early decay data after Shot ITEM suggest exponents of about -1.0 and -1.1. While -1.0 is taken as leading to an upper limit in dose, it is likely that an early deviation from \(t^{-1.2} \) in this direction was compensated by a faster decay after May 1951. Given the additional tendency for fallout to partially leach into the ground surface, resulting in lesser measured gamma intensities, decay corresponding to \(t^{-1.4} \) is considered as leading to a lower limit on dose. A similar uncertainty of \(\pm 0.2 \) in the decay exponent after six months is also used. These uncertainties are taken to apply systematically throughout the post-operational phase.
For personnel who remained on the residence islands at least several months (the typical situation), the uncertainty in decay rate dominates the uncertainty in post-operational dose. Differences in duty would have affected the dose through the time spent indoors and the degree of radiation protection afforded by the buildings. The indoor protection factor of 2 used in the dose determination is fairly representative of residence quarters as well as work buildings (Reference 2); indoor protection was afforded more by the geometrical displacement from the ground source of fallout than by building mass.

Two treatments are available for the fraction of time spent outdoors. This fraction may be considered not as an uncertainty, but rather as a free variable. Accordingly, cumulative mean film badge doses are presented, by month, from June 1951 to June 1952, in Table 6. Upper and lower bounds are reported at the 90-percent level, i.e., 5th to 95th percentile, by considering uncertainties in late-time decay rates as described above. The nominal value of outdoor fraction (more than 14 hours) likely tends toward the high side in dose, but adjustment factors for other partitions of the daily exposure are presented in Table 5. Thus, the variations in dose resulting from non-standard duties can be accommodated. If, instead, the outdoor time fraction is considered as an uncertainty, it applies to both the operational and post-operational doses. The extremes of outside hours per day in Table 5 are taken to represent the 90-percent confidence limits.

The mean doses may be added to the operational doses of 2.93 rem on Enewetak Island, 3.10 rem on Parry Island, and 2.57 rem on Japtan Island (Reference 1). The combination of the predicted dose distributions of Reference 1 with the uncertainties herein does not lead to uncertainty in total mean dose; it is to be avoided on a collective basis. However, the specific circumstances of an individual's exposure can permit uncertainties to be combined as in Table 7. It should be noted that the simple addition of the upper bounds would result in a total dose far above the 95th percentile.
Table 6. Calculated film badge doses (rem) for the residence islands of Enewetak Atoll (June 1951 - June 1952)

<table>
<thead>
<tr>
<th></th>
<th>Enewetak Island</th>
<th>Parry Island</th>
<th>Japtan Island</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lower Bound</td>
<td>Mean</td>
<td>Upper Bound</td>
</tr>
<tr>
<td>For Continuous</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exposure from</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Jun 51 thru</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>June 1951</td>
<td>0.90</td>
<td>1.05</td>
<td>1.22</td>
</tr>
<tr>
<td>July</td>
<td>1.11</td>
<td>1.36</td>
<td>1.67</td>
</tr>
<tr>
<td>August</td>
<td>1.22</td>
<td>1.53</td>
<td>1.95</td>
</tr>
<tr>
<td>September</td>
<td>1.29</td>
<td>1.63</td>
<td>2.15</td>
</tr>
<tr>
<td>October</td>
<td>1.34</td>
<td>1.74</td>
<td>2.31</td>
</tr>
<tr>
<td>November</td>
<td>1.38</td>
<td>1.81</td>
<td>2.44</td>
</tr>
<tr>
<td>December</td>
<td>1.41</td>
<td>1.87</td>
<td>2.55</td>
</tr>
<tr>
<td>January 1952</td>
<td>1.43</td>
<td>1.92</td>
<td>2.64</td>
</tr>
<tr>
<td>February</td>
<td>1.45</td>
<td>1.95</td>
<td>2.71</td>
</tr>
<tr>
<td>March</td>
<td>1.46</td>
<td>1.98</td>
<td>2.77</td>
</tr>
<tr>
<td>April</td>
<td>1.47</td>
<td>2.00</td>
<td>2.82</td>
</tr>
<tr>
<td>May</td>
<td>1.48</td>
<td>2.02</td>
<td>2.86</td>
</tr>
<tr>
<td>June</td>
<td>1.49</td>
<td>2.03</td>
<td>2.89</td>
</tr>
</tbody>
</table>
Table 7. Calculated film badge doses (rem) for the residence islands of Enewetak Atoll, April 1951 to June 1952.

a. For fraction of outdoor time = 0.6:

<table>
<thead>
<tr>
<th>For Continuous Exposure from April 1951 through:</th>
<th>Enewetak Island</th>
<th>Parry Island</th>
<th>Japtan Island</th>
</tr>
</thead>
<tbody>
<tr>
<td>June 1951</td>
<td>3.98 ± 0.61</td>
<td>3.99 ± 0.58</td>
<td>3.30 ± 0.49</td>
</tr>
<tr>
<td>July</td>
<td>4.29 ± 0.64</td>
<td>4.26 ± 0.61</td>
<td>3.53 ± 0.51</td>
</tr>
<tr>
<td>August</td>
<td>4.46 ± 0.67</td>
<td>4.42 ± 0.63</td>
<td>3.65 ± 0.53</td>
</tr>
<tr>
<td>September</td>
<td>4.58 ± 0.69</td>
<td>4.52 ± 0.65</td>
<td>3.74 ± 0.55</td>
</tr>
<tr>
<td>October</td>
<td>4.67 ± 0.71</td>
<td>4.60 ± 0.67</td>
<td>3.81 ± 0.56</td>
</tr>
<tr>
<td>November</td>
<td>4.74 ± 0.73</td>
<td>4.66 ± 0.68</td>
<td>3.86 ± 0.57</td>
</tr>
<tr>
<td>December</td>
<td>4.80 ± 0.75</td>
<td>4.71 ± 0.70</td>
<td>3.90 ± 0.58</td>
</tr>
<tr>
<td>January 1952</td>
<td>4.83 ± 0.77</td>
<td>4.75 ± 0.70</td>
<td>3.94 ± 0.59</td>
</tr>
<tr>
<td>February</td>
<td>4.88 ± 0.77</td>
<td>4.78 ± 0.71</td>
<td>3.96 ± 0.60</td>
</tr>
<tr>
<td>March</td>
<td>4.90 ± 0.79</td>
<td>4.81 ± 0.73</td>
<td>3.98 ± 0.61</td>
</tr>
<tr>
<td>April</td>
<td>4.96 ± 0.79</td>
<td>4.83 ± 0.73</td>
<td>4.00 ± 0.61</td>
</tr>
<tr>
<td>May</td>
<td>4.95 ± 0.80</td>
<td>4.83 ± 0.74</td>
<td>4.01 ± 0.61</td>
</tr>
<tr>
<td>June</td>
<td>4.96 ± 0.80</td>
<td>4.86 ± 0.74</td>
<td>4.02 ± 0.62</td>
</tr>
</tbody>
</table>

Example: Derivation for Enewetak Island through June 1952, upper bound, is as follows. Upper uncertainty = 0.59 during operation (Reference 1); = 0.86 post-operation (Table 6). Upper uncertainty in total dose $= \sqrt{(0.59)^2 + (0.86)^2} = 1.04$.

13
Table 7. Calculated film badge doses (rem) for the residence islands of Enewetak Atoll, April 1951 to June 1952 (concluded).

b. With fraction of outdoor time as an uncertainty:

<table>
<thead>
<tr>
<th>For Continuous Exposure from April 1951 through:</th>
<th>Enewetak Island</th>
<th>Parry Island</th>
<th>Japtan Island</th>
</tr>
</thead>
<tbody>
<tr>
<td>June 1951</td>
<td>3.98 ± 0.67</td>
<td>3.99 ± 0.67</td>
<td>3.30 ± 0.56</td>
</tr>
<tr>
<td></td>
<td>3.98 - 0.82</td>
<td>3.99 - 0.88</td>
<td>3.30 - 0.73</td>
</tr>
<tr>
<td>July</td>
<td>4.29 ± 0.72</td>
<td>4.26 ± 0.71</td>
<td>3.53 ± 0.59</td>
</tr>
<tr>
<td></td>
<td>4.29 - 0.90</td>
<td>4.26 - 0.91</td>
<td>3.53 - 0.76</td>
</tr>
<tr>
<td>August</td>
<td>4.46 ± 0.78</td>
<td>4.42 ± 0.76</td>
<td>3.65 ± 0.63</td>
</tr>
<tr>
<td></td>
<td>4.46 - 0.93</td>
<td>4.42 - 0.93</td>
<td>3.65 - 0.77</td>
</tr>
<tr>
<td>September</td>
<td>4.58 ± 0.83</td>
<td>4.52 ± 0.79</td>
<td>3.74 ± 0.66</td>
</tr>
<tr>
<td></td>
<td>4.58 - 0.95</td>
<td>4.52 - 0.95</td>
<td>3.74 - 0.79</td>
</tr>
<tr>
<td>October</td>
<td>4.67 ± 0.88</td>
<td>4.60 ± 0.84</td>
<td>3.81 ± 0.69</td>
</tr>
<tr>
<td></td>
<td>4.67 - 0.97</td>
<td>4.60 - 0.97</td>
<td>3.81 - 0.80</td>
</tr>
<tr>
<td>November</td>
<td>4.74 ± 0.92</td>
<td>4.66 ± 0.87</td>
<td>3.86 ± 0.72</td>
</tr>
<tr>
<td></td>
<td>4.74 - 0.99</td>
<td>4.66 - 0.98</td>
<td>3.86 - 0.81</td>
</tr>
<tr>
<td>December</td>
<td>4.80 ± 0.96</td>
<td>4.71 ± 0.90</td>
<td>3.90 ± 0.75</td>
</tr>
<tr>
<td></td>
<td>4.80 - 1.01</td>
<td>4.71 - 0.99</td>
<td>3.90 - 0.82</td>
</tr>
</tbody>
</table>

January 1952	4.85 ± 0.99	4.75 ± 0.93	3.94 ± 0.77
	4.85 - 1.02	4.75 - 1.00	3.94 - 0.83
February	4.88 ± 1.02	4.78 ± 0.95	3.96 ± 0.79
	4.88 - 1.03	4.78 - 1.01	3.96 - 0.84
March	4.91 ± 1.04	4.81 ± 0.97	3.98 ± 0.81
	4.91 - 1.04	4.81 - 1.02	3.98 - 0.84
April	4.93 ± 1.06	4.83 ± 0.98	4.00 ± 0.82
	4.93 - 1.05	4.83 - 1.02	4.00 - 0.85
May	4.95 ± 1.08	4.85 ± 1.00	4.01 ± 0.83
	4.95 - 1.05	4.85 - 1.03	4.01 - 0.85
June	4.96 ± 1.10	4.86 ± 1.01	4.02 ± 0.85
	4.96 - 1.06	4.86 - 1.03	4.02 - 0.86

Example: Derivation for Enewetak Island through June 1952, upper bound, is as follows. Determine upper bound error factors for each source of error. For outdoor fraction, it is 1.09 (Table 5); otherwise during operation, it is (2.93 + 0.59)/2.93 = 1.20 (Reference 1); for post-operational decay, it is 2.89/2.03 = 1.42 (Table 6). Combined error factor during operation is \(\text{antilog}\sqrt{(\log 1.09)^2 + (\log 1.20)^2} = 1.225\), leading to uncertainty in dose of \((2.93)(1.225)-2.93 = 0.66\); for post-operation, it is \(\text{antilog}\sqrt{(\log 1.09)^2 + (\log 1.42)^2} = 1.435\), leading to \((2.03)(1.435)-2.03 = 0.88\). Upper uncertainty in total dose is \(\sqrt{(0.66)^2 + (0.88)^2} = 1.10\).
SECTION 4
LIST OF REFERENCES

4a. Surface Weather Observations, Pacific/Enewetak, 1 April-30 June 1951, provided by the National Climatic Data Center, Asheville, NC. **

4b. Phone Conversations and Correspondence from Paul Boren (Defense Nuclear Agency) to: MGEN James Cooney, USA Ret; COL Meredith Mowery, USA Ret; Dr. Payne Harris; and Mr. Jack Aeby; January-March 1985. ***

* Available at the National Technical Information Service
 5285 Port Royal Road
 Springfield, VA 22161
 (703) 787-4650

** Available at Coordination and Information Center
 3088 S. Highland Street
 P.O. Box 14400
 Las Vegas, NV 89114
 (702) 295-0731

*** Requests subject to Privacy Act restrictions.
DISTRIBUTION LIST

DEPARTMENT OF DEFENSE

ARMED FORCES RADIOBIOLOGY RSCH INST
ATTN: DEPUTY DIRECTOR
ATTN: DIRECTOR
ATTN: SCIENTIFIC DIRECTOR
ATTN: TECHNICAL LIBRARY

ASSISTANT SECRETARY OF DEFENSE PUBLIC AFFAIRS
ATTN: ASD(PA)

ASSISTANT SECRETARY OF DEFENSE
ATTN: ASD(HA)

DEFENSE INTELLIGENCE AGENCY
ATTN: RTS-2B

DEFENSE NUCLEAR AGENCY
ATTN: GC
ATTN: PAO
10 CYS ATTN: STRP
54 CYS ATTN: TITL

DEFENSE TECHNICAL INFORMATION CENTER
12 CYS ATTN: DD

DEP UNDER SEC OF DEF FOR RSCH & ENGRG
ATTN: DUSDRE (RSCH & ADV TECH)

FIELD COMMAND DEFENSE NUCLEAR AGENCY
ATTN: FCL
2 CYS ATTN: FCTT W SUMMA
ATTN: FCTXE
ATTN: FCTXE

FIELD COMMAND DNA DET 2
LAWRENCE LIVERMORE NATIONAL LAB
ATTN: FC-1

DEPARTMENT OF THE ARMY

DEPARTMENT OF THE ARMY
5 CYS ATTN: DAAG-ESG-N, NTPR

HARRY DIAMOND LABORATORIES
ATTN: SCLIS-IM-TL (81100)(TECH LIB)

U S ARMY BALLISTIC RESEARCH LAB
ATTN: DRDAR-BLV-R J MALONEY

U S ARMY CTR OF MILITARY HISTORY
ATTN: LIBRARY

U S ARMY MEDICAL RSCH & DEV CMD
ATTN: SGRD-SD

U S ARMY NUCLEAR & CHEMICAL AGENCY
ATTN: MONA-ZB(C DAVIDSON)

WALTER REED ARMY MEDICAL CENTER
ATTN: LIBRARY

DEPARTMENT OF THE NAVY

MARINE CORPS HISTORY & MUSEUMS
ATTN: HISTORICAL DIVISION

NATIONAL NAVAL MEDICAL CENTER
ATTN: DEPT OF RADIOLOGY
ATTN: MEDICAL LIBRARY

NAVAL HISTORICAL CENTER
ATTN: DD ALLARD

NAVAL MEDICAL COMMAND
ATTN: MEDCOM-21
ATTN: NM&S-00
ATTN: NM&S-09

NAVAL OCEAN SYSTEMS CENTER
ATTN: TECH LIB, CODE 9642

NAVAL SEA SYSTEMS COMMAND
ATTN: SEA-08 M MILES

NAVAL WEAPONS EVALUATION FACILITY
ATTN: CLASSIFIED LIBRARY

OFC OF THE DEPUTY CHIEF OF NAVAL OPS
5 CYS ATTN: NOP 0455

DEPARTMENT OF THE AIR FORCE

AEROSPACE MEDICAL DIVISION, AFSC
ATTN: LIBRARY SCL-4

AIR FORCE HISTORICAL RSCH CTR
ATTN: LIBRARY

AIR FORCE INSTITUTE OF TECHNOLOGY/EN
ATTN: LIBRARY/AFIT/LDEE

AIR FORCE NUCLEAR TEST REVIEW
4 CYS ATTN: SGPT/COL GIBBONS

AIR FORCE WEAPONS LABORATORY, NTAAB
ATTN: NT
ATTN: SUL

AIR UNIVERSITY LIBRARY
ATTN: AUL-LSE

U S AIR FORCE OCCUPATIONAL & ENV HEALTH LAB
4 CYS ATTN: AFNTPR
ATTN: R2

DEPARTMENT OF ENERGY

DEPARTMENT OF ENERGY
ATTN: OMA, DP-22
DNA TR-85-390 (DL CONTINUED)

VETERANS ADMINISTRATION-RO
ATTN: DIRECTOR

VETERANS ADMINISTRATION-RO
ATTN: LIBRARY

VETERANS ADMINISTRATION-RO
ATTN: TECH LIBRARY

VETERANS ADMINISTRATION-RO
ATTN: DIRECTOR

VETERANS ADMINISTRATION-RP
ATTN: DIRECTOR

WHITE HOUSE (THE)
ATTN: OFC OF POLICY DEV(DP)

DEPARTMENT OF DEFENSE CONTRACTORS

ADVANCED RESEARCH & APPLICATIONS CORP
ATTN: R ARMISTEAD

BDM CORP
ATTN: J BRADDOCK

JAYCOR
ATTN: A NELSON, INFO SYS DIV

KAMAN TEMPO
ATTN: DASIAC

LOUISIANA UNIV SCH OF MED, SHREVEPORT
ATTN: LIBRARY

NATIONAL ACADEMY OF SCIENCES
ATTN: C ROBINETTE
ATTN: S JABLON

NEBRASKA, UNIVERSITY OF
ATTN: LIBRARY

NORTHROP CORP
ATTN: Z SHANFIELD

OHIO STATE UNIVERSITY
ATTN: LIBRARY

PACIFIC-SIERRA RESEARCH CORP
ATTN: H BRODE, CHAIRMAN SAGE

R & D ASSOCIATES
ATTN: C K B LEE

R & D ASSOCIATES
ATTN: A DEVERILL

RADIATION RESEARCH ASSOCIATES, INC
ATTN: N SCHAEFFER

RAND CORP
ATTN: P DAVIS
ATTN: TECH LIBRARY

RAND CORP
ATTN: B BENNETT

Dist-4
COLUMBIA UNIVERSITY
ATTN: A BLOOM
ATTN: LIBRARY

COLUMBIA UNIVERSITY
ATTN: DIV OF BIOSTATISTICS

COORDINATION & INFORMATION CTR
ATTN: C/O REECD

CORNELL UNIVERSITY
ATTN: W FEDERER

DALLAS PUBLIC LIBRARY
ATTN: LIBRARIAN

DAYTON & MONTGOMERY CITY PUB LIB
ATTN: LIBRARIAN

DECATER PUBLIC LIBRARY
ATTN: LIBRARIAN

DELTA STATE UNIVERSITY
ATTN: LIBRARIAN

DETROIT PUBLIC LIBRARY
ATTN: LIBRARIAN

DICKINSON STATE COLLEGE
ATTN: LIBRARIAN

DREW, UNIVERSITY OF
ATTN: LIBRARY

DULUTH PUBLIC LIBRARY
ATTN: DOCUMENTS SECTION

EASTERN BRANCH
ATTN: LIBRARIAN

EL PASO PUBLIC LIBRARY
ATTN: DOCUMENTS & GENEOLGY DEPT

ENOC PRATT FREE LIBRARY
ATTN: DOCUMENTS OFFICE

EVANSVILLE & VANDERBURGH COUNTY PUB LIB
ATTN: LIBRARIAN

FLORIDA STATE UNIVERSITY
ATTN: DOCUMENTS DEPARTMENT

FOND DU LAC PUBLIC LIB
ATTN: LIBRARIAN

FORT HAYS STATE UNIVERSITY
ATTN: LIBRARIAN

FORT WORTH PUBLIC LIBRARY
ATTN: LIBRARIAN

FRESNO COUNTY FREE LIBRARY
ATTN: LIBRARIAN

GADSEN PUBLIC LIBRARY
ATTN: LIBRARIAN

GEORGIA, MEDICAL COLLEGE OF
ATTN: L STODDARD

GRAND RAPIDS PUBLIC LIBRARY
ATTN: DIRECTOR OF LIBRARIES

GREENVILLE COUNTY LIBRARY
ATTN: LIBRARIAN

GUAM RFK MEMORIAL UNIVERSITY LIB
ATTN: FED DEPOSITORY COLLECTION

HARVARD SCHOOL OF PUBLIC HEALTH
ATTN: J BAILOR
ATTN: LIBRARY
ATTN: R REED

HARVARD SCHOOL OF PUBLIC HEALTH
ATTN: B MACMAHON

HARVARD UNIVERSITY
ATTN: W COCHRAN

HAWAII, UNIVERSITY OF
ATTN: Y MATSUMOTO

HOPKINSVILLE COMM COLL
ATTN: LIBRARIAN

IDAHO STATE UNIVERSITY LIBRARY
ATTN: DOCUMENTS DEPARTMENT

IDAHO, UNIVERSITY OF
ATTN: DIR OF LIBRARIES (REGIONAL)

MICHIGAN STATE UNIVERSITY
ATTN: F PUTNAM

JOHNS HOPKINS UNIVERSITY
ATTN: A KIMBALL
ATTN: R SELTSER

KANSAS CITY PUBLIC LIBRARY
ATTN: DOCUMENTS DIV

Dist-6
DNA-TR-85-390 (DL CONTINUED)

KANSAS STATE LIBRARY
ATTN: LIBRARIAN

KANSAS STATE UNIV LIBRARY
ATTN: DOCUMENTS DEPT

KANSAS UNIV OF AGRI & APPLIED SCIENCE
ATTN: H FRYER

KENTUCKY DEPT OF LIBRARY & ARCHIVES
ATTN: DOCUMENTS SECTION

KENTUCKY, UNIVERSITY OF
ATTN: DIR OF LIBRARIES (REGIONAL)

KINGSTON HOSPITAL
ATTN: K JOHNSON

LOS ANGELES PUBLIC LIBRARY
ATTN: SERIALS DIV U S DOCUMENTS

LOUISIANA STATE UNIVERSITY
ATTN: DIR OF LIBRARIES (REGIONAL)

MAINE UNIVERSITY, OF
ATTN: LIBRARIAN

MANKATO STATE COLLEGE
ATTN: GOVT PUBLICATIONS

MANTOR LIBRARY
ATTN: DIRECTOR OF LIBRARIES

MARATHON COUNTY PUBLIC LIBRARY
ATTN: LIBRARIAN

MARYLAND UNIVERSITY OF
ATTN: MCKELDIN LIBR DOCS DIV

MAUI PUBLIC LIBRARY
ATTN: LIBRARIAN

MEMORIAL HOSP FOR CANCER & ALLIED DISEASES
ATTN: P LIEBERMAN

MEMORIAL SLOAN-KETTER. IG CANCER CENTER
ATTN: J LAUGHLIN
ATTN: P MARKS

MEMPHIS SHELBY COUNTY PUB LIB & INFO CTR
ATTN: LIBRARIAN

MERCER UNIVERSITY
ATTN: LIBRARIAN

MERCK, SHARP & DOHME INTL
ATTN: A BEARN

MESA COUNTY PUBLIC LIBRARY
ATTN: LIBRARIAN

MIAMI PUBLIC LIBRARY
ATTN: DOCUMENTS DIVISION

MICHIGAN MEDICAL SCHOOL, UNIV OF
ATTN: J NEEL

MICHIGAN STATE LIBRARY
ATTN: LIBRARIAN

MICHIGAN, UNIVERSITY OF
ATTN: R CORNELL

MICHIGAN, UNIVERSITY OF
ATTN: F MOORE

MINNESOTA, UNIVERSITY OF
ATTN: J BEARMAN
ATTN: L SCHUMAN
ATTN: LIBRARY

MINOT STATE COLLEGE
ATTN: LIBRARIAN

MISSOURI, UNIVERSITY LIBRARY
ATTN: GOVERNMENT DOCUMENTS

MONTANA STATE LIBRARY
ATTN: LIBRARIAN

NASSAU LIBRARY SYSTEM
ATTN: LIBRARIAN

NATL COUNCIL ON RADIATION
ATTN: W SINCLAIR

NATRONA COUNTY PUBLIC LIBRARY
ATTN: LIBRARIAN

NEW HAMPSHIRE UNIVERSITY LIB
ATTN: LIBRARIAN

NEW MEXICO, UNIV OF
ATTN: C KEY
ATTN: R ANDERSON

NEW YORK PUBLIC LIBRARY
ATTN: LIBRARIAN

NEW YORK STATE LIBRARY
ATTN: DOC CONTROL CULTURAL ED CTR

NEW YORK STATE UNIV OF
ATTN: LIBRARY DOCUMENTS SEC

NEW YORK UNIV MEDICAL CENTER
ATTN: N NELSON

NEW YORK UNIVERSITY
ATTN: A UPTON
ATTN: B POSTERNACK
ATTN: LIBRARY

Dist-7
<table>
<thead>
<tr>
<th>Library Name</th>
<th>Address</th>
<th>Contact Person</th>
</tr>
</thead>
<tbody>
<tr>
<td>Newark Free Library</td>
<td>Attn: Librarian</td>
<td></td>
</tr>
<tr>
<td>North Carolina Univ at Wilmington</td>
<td>Attn: Librarian</td>
<td></td>
</tr>
<tr>
<td>North Carolina, University Of</td>
<td>Attn: Librarian</td>
<td></td>
</tr>
<tr>
<td>Northern Arizona University Lib</td>
<td>Attn: Govt Documents Dept</td>
<td></td>
</tr>
<tr>
<td>Northern Iowa University</td>
<td>Attn: Librarian</td>
<td></td>
</tr>
<tr>
<td>Northern Michigan Univ</td>
<td>Attn: Documents</td>
<td></td>
</tr>
<tr>
<td>Northern Montana College Library</td>
<td>Attn: Librarian</td>
<td></td>
</tr>
<tr>
<td>Northwestern Michigan College</td>
<td>Attn: Librarian</td>
<td></td>
</tr>
<tr>
<td>Northwestern University</td>
<td>Attn: H Cember</td>
<td></td>
</tr>
<tr>
<td>Oak Ridge Associated Universities</td>
<td>Attn: D Lushbaugh</td>
<td></td>
</tr>
<tr>
<td>Ohio State Library</td>
<td>Attn: Librarian</td>
<td></td>
</tr>
<tr>
<td>Oklahoma Dept of Libs</td>
<td>Attn: U S Govt Documents</td>
<td></td>
</tr>
<tr>
<td>Oklahoma, University Of</td>
<td>Attn: P Anderson</td>
<td></td>
</tr>
<tr>
<td>Oregon State Library</td>
<td>Attn: Librarian</td>
<td></td>
</tr>
<tr>
<td>Oregon, University Of</td>
<td>Attn: Documents Section</td>
<td></td>
</tr>
<tr>
<td>Oregon, University Of</td>
<td>Attn: B Pirofsky</td>
<td></td>
</tr>
<tr>
<td>Pacific Northwest Laboratory</td>
<td>Attn: S Marks</td>
<td></td>
</tr>
<tr>
<td>Pennsylvania State Library</td>
<td>Attn: Govt Pub Section</td>
<td></td>
</tr>
<tr>
<td>Pennsylvania Univ Hospital</td>
<td>Attn: S Baum</td>
<td></td>
</tr>
<tr>
<td>Peoria Public Library</td>
<td>Attn: Business, Science & Tech Dept</td>
<td></td>
</tr>
<tr>
<td>Philadelphia Free Lib of</td>
<td>Attn: Govt Publications Dept</td>
<td></td>
</tr>
<tr>
<td>Pittsburgh, Univ Of</td>
<td>Attn: E Radford</td>
<td></td>
</tr>
<tr>
<td>Pittsburgh, University Of</td>
<td>Attn: Library</td>
<td></td>
</tr>
<tr>
<td>Pittsburgh, University Of</td>
<td>Attn: N Wald</td>
<td></td>
</tr>
<tr>
<td>Public Lib Cincinnati & Hamilton County</td>
<td>Attn: Librarian</td>
<td></td>
</tr>
<tr>
<td>Rapid City Public Library</td>
<td>Attn: Librarian</td>
<td></td>
</tr>
<tr>
<td>Reading Public Library</td>
<td>Attn: Librarian</td>
<td></td>
</tr>
<tr>
<td>Rhode Island Library, University Of</td>
<td>Attn: Govt Publications Office</td>
<td></td>
</tr>
<tr>
<td>Rochester Univ Medical Ctr</td>
<td>Attn: C Oodooff</td>
<td></td>
</tr>
<tr>
<td>Rochester Univ Of Lib</td>
<td>Attn: Documents Section</td>
<td></td>
</tr>
<tr>
<td>Rochester, University Of</td>
<td>Attn: L Hempelmann</td>
<td></td>
</tr>
<tr>
<td>Saint Francis Hospital</td>
<td>Attn: R Blaisdell</td>
<td></td>
</tr>
<tr>
<td>San Antonio Public Library</td>
<td>Attn: Bus Science & Tech Dept</td>
<td></td>
</tr>
<tr>
<td>Scottsbluff Public Library</td>
<td>Attn: Librarian</td>
<td></td>
</tr>
<tr>
<td>Scranton Public Library</td>
<td>Attn: Librarian</td>
<td></td>
</tr>
<tr>
<td>Silas Bronson Public Library</td>
<td>Attn: Librarian</td>
<td></td>
</tr>
<tr>
<td>Simon Schwob Mem Lib</td>
<td>Attn: Librarian</td>
<td></td>
</tr>
<tr>
<td>Sioux City Public Library</td>
<td>Attn: Librarian</td>
<td></td>
</tr>
<tr>
<td>South Carolina, Medical Univ Of</td>
<td>Attn: P Liu</td>
<td></td>
</tr>
</tbody>
</table>
SOUTHEASTERN MASSACHUSETTS UNIV LIB
ATTN: DOCUMENTS SEC

SOUTHERN ALABAMA, UNIVERSITY OF
ATTN: LIBRARIAN

SOUTHERN CALIFORNIA, UNIV OF
ATTN: J BIRREN

SOUTHERN ILLINOIS UNIVERSITY
ATTN: DOCUMENTS CTR

SOUTHERN MISSISSIPPI UNIV OF
ATTN: LIBRARY

SOUTHERN OREGON COLLEGE
ATTN: LIBRARY

SOUTHERN UTAH STATE COLLEGE LIBRARY
ATTN: DOCUMENTS DEPARTMENT

SOUTHWEST MISSOURI STATE COLLEGE
ATTN: LIBRARY

SPOKANE PUBLIC LIBRARY
ATTN: REFERENCE DEPT

STANFORD UNIV MEDICAL CENTER
ATTN: J BROWN

STANFORD UNIVERSITY
ATTN: L MOSES

STANFORD UNIVERSITY HOSPITAL
ATTN: D DORFMAN

STATE LIBR OF MASS
ATTN: LIBRARIAN

TACOMA PUBLIC LIBRARY
ATTN: LIBRARIAN

TEXAS A & M UNIVERSITY
ATTN: R STONE

TEXAS AT AUSTIN, UNIV OF
ATTN: H SUTTON

TEXAS STATE LIBRARY
ATTN: US DOCUMENTS SECTION

TEXAS TECH UNIVERSITY LIBRARY
ATTN: GOVERNMENT DOCUMENTS DEPT

TEXAS, UNIVERSITY OF
ATTN: C S COOK

TEXAS, UNIVERSITY OF
ATTN: R STALLONES

TEXAS, UNIVERSITY OF
ATTN: W SUTOW

TEXAS, UNIVERSITY OF
ATTN: G TAYLOR

TOLEDO PUBLIC LIBRARY
ATTN: SOCIAL SCIENCE DEPT

TRENTON FREE PUBLIC LIBRARY
ATTN: LIBRARIAN

TULSA UNIVERSITY, OF
ATTN: LIBRARIAN

UTAH STATE UNIVERSITY
ATTN: LIBRARIAN

UTAH, UNIVERSITY OF
ATTN: LIBRARY

UTAH, UNIVERSITY OF
ATTN: DOC DIVISION

VANDERBILT UNIVERSITY
ATTN: R QUINN

VERMONT, UNIVERSITY OF
ATTN: DIRECTOR OF LIBRARIES

VIRGINIA STATE LIBRARY
ATTN: SERIALS SECTION

VIRGINIA, UNIVERSITY OF
ATTN: PUBLIC DOCUMENTS

WASHINGTON STATE LIBRARY
ATTN: DOCUMENTS SECTION

WASHINGTON, UNIVERSITY OF
ATTN: D THOMPSON

WASHINGTON, UNIVERSITY OF
ATTN: A MOTULSKY

WEST VIRGINIA COLL OF GRAD STUDIES LIB
ATTN: XXXXX

WEST VIRGINIA, UNIVERSITY OF
ATTN: DIR OF LIBRARIES (REGIONAL)

WESTERN WYOMING COMMUNITY COLLEGE LIB
ATTN: XXXXX

WISCONSIN, UNIVERSITY OF
ATTN: ACQUISITIONS DEPARTMENT

WISCONSIN, UNIVERSITY OF
ATTN: J CROW

WORCESTER PUBLIC LIBRARY
ATTN: LIBRARIAN
END
7-87
D Tic