APPLICATIONS OF SUBPICOSECOND SPECTROSCOPY (U) ROCHESTER
UNIV N Y LAB FOR LASER ENERGETICS G MOUROU 19 MAY 87
AFOSR-TR-87-0747 AFOSR-84-0318
UNCLASSIFIED F/G 7/4 NL
The electro-optic sampling technique has been used to measure the response of a permeable base transistor (PBT) fabricated at Lincoln Laboratory. The rise time was measured to be 5 ps, the fastest room temperature rise time reported to that time. The collaboration with Arizona State U continued. Two different laser systems were used to measure the rise time of the photo-current through a GaAs photoconductive switch. The measurement technique has been demonstrated and a comprehensive study is now underway.
The goal of this project was to apply the electro-optic sampling (EOS) technique to the study of subpicosecond electron/hole transport in III-V semiconductors by looking at the time resolved photocurrent in semiconductors. The technique, developed at the Laboratory for Laser Energetics (LLE) has measured electrical transients as short as several hundred femtoseconds with submillivolt sensitivity. Electro-optic sampling is being used to measure the transient response of gallium arsenide permeable base transistors (PBTs) and to study the behavior of gallium arsenide photoconductive switches under a range of experimental conditions. This technique has also been demonstrated in the low temperature regime using a new fully cryogenic sampler.

(A) Device measurements

PBTs are among a class of recently-developed gallium arsenide-based transistors which have switching speeds approaching 10 ps and beyond (others include high electron mobility transistors and heterojunction bipolar transistors). These switching speeds are determined intrinsically by the transit time of electrons through the gate channel and extrinsically by parasitic circuit elements. Measurement of the transient response, coupled with frequency-domain measurements and detailed modeling of the device, will yield information about the picosecond electron transport in these devices. Conventional characterization techniques, such as the sampling oscilloscope, cannot resolve picosecond speeds. Ring oscillator measurements, in which a large number of these devices are strung together in a ring and the accumulated switching delay is measured, yield only data averaged over all of the devices. The EOS technique is well suited for measuring the picosecond response of discrete devices. Previously it has been used to measure the response of MESFET's (25 ps) and TEGFET's (17 ps).

The PBT, developed at MIT's Lincoln Laboratory, is a vertical device with a geometry similar to a vacuum tube triode. Here, however, the metallic grating has a
submicrometer periodicity and is completely imbedded in gallium arsenide. As a result of the small dimensions and high electron mobility in gallium arsenide, high-speed operation is expected. S-parameter measurements have indicated a maximum frequency of oscillation of more than 200 GHz. The measured step response, using the EOS technique, is shown in Fig. 1. The rise time is approximately 5 ps. This measurement represents, to the best of our knowledge, the fastest rise time for any room-temperature three-terminal device.

Most devices of this type are expected to exhibit enhanced speed and gain at low temperatures; therefore it is important to extend the EOS technique into the cryogenic regime. A cryogenic GaAs/LiTaO₃ sampler with Pb-alloy superconducting coplanar transmission lines has been developed and tested. When immersed in superfluid helium (T < 2.18 K) conduction losses were eliminated and the response improved to 360 fs. The sampler has been used to measure the response of a Josephson junction to a stepped voltage pulse and to study picosecond pulse propagation in superconducting transmission lines.

(B) Subpicosecond transport in gallium arsenide

Electrons in gallium arsenide under high-field conditions are predicted to exhibit a transient velocity that may be as high as twenty times their long-term equilibrium velocity. This effect, known as velocity overshoot, has been of great interest to device physicists because the speed of most devices is inherently limited by the transient time of electrons in the device. There has been no direct experimental evidence of the effect to date because it occurs on such a short (~0.2 ps) time scale at room temperature (at low temperature the effect is enhanced and the maximum velocity occurs after several picoseconds).

In a gallium arsenide photoconductive switch electrons and holes photogenerated with a laser pulse drift due to an applied electric field, and induce a current in the external circuit. When a short (< 0.1 ps) laser pulse is used and the EOS technique is applied, the photocurrent is observed to have a very fast (~0.4 ps) rise time and a long (~100 ps) decay. The decay is simply the recombination lifetime of the photogenerated carriers; the rise time is a function of the laser pulse width, the geometric size of the optical probe pulse and sampler electrodes, and the transient velocities of the carriers. Changes in the rise time as a function of excitation wavelength, applied bias, and temperature can be correlated with changes in the drift velocity of the carriers.
We have studied the rise time of the photocurrent using two different laser systems. In the first system, a colliding-pulse mode-locked (CPM) laser delivers ~60 fs pulses at \(\lambda = 620 \text{ nm} \) at a rate of 100 MHz to generate and probe the photocurrent. At this wavelength electrons are generated well up into the conduction band and the velocity overshoot effect is expected to be small. Figure 2 shows the photocurrent rise at two different applied biases; a small shift of ~100 fs is observed, demonstrating that very small changes may be resolved using this technique. Although small line changes can be measured the electron transport cannot be inferred at this point. More work has to be done to obtain good ohmic contact on a GaAs material which is semi-insulating.

Velocity overshoot is expected to occur under high-field conditions when the electrons have been generated very close to the band-edge (\(\lambda \sim 850 \text{ nm} \)). In order to study the photocurrent rise time at longer excitation wavelengths, a white light continuum laser source has been developed. A dye laser similar to the CPM generates < 100 fs pulses that are amplified by the frequency-doubled output of a Nd:YAG regenerative amplifier. After amplification there is sufficient energy in the laser pulses to generate a white light continuum when focussed into a water cell. Different wavelengths may then be selected using interference filters to excite the photoconductive switch. The switch response under overshoot conditions (\(\lambda \sim 850 \text{ nm}, E_{\text{bias}} \geq 10 \text{ kV/cm} \)) is currently being compared with the response under conditions when no overshoot is expected (\(\lambda = 620, 750 \text{ nm}, E \leq 5 \text{ kV/cm} \)). Figure 3 shows the time resolved photoconductivity induced in GaAs with 850 nm light obtained with the kilohertz amplified system. A more systematic study of the rise time as a function of the field and excitation wavelength and temperature can now be undertaken.
PUBLICATIONS

PARTICIPATING PROFESSIONALS

The experiments required tunable short pulses around 850 nm so photocarriers could be generated in GaAs without excessive kinetic energy as well as technique to look at electrical signals with a few hundred femtosecond resolution.

A large number of people, graduate students essentially, have been involved either in the source development or electro-optic sampling improvement. The people involved in this research have been:

Professors: G. Mourou and T. Castner (University of Rochester); R. Grondin (University of Arizona)

Graduate Students: D. R. Dykaar, T. Norris, K. Meyer, and M. Pessot (University of Rochester)
INTERACTION AND COUPLING ACTIVITIES

The work done at Rochester could only be done with the excellent assistance of the group of Professor R. Grondin at the University of Arizona, Tempe for the Monte Carlo simulation.

The Rochester group is constantly interacting with other laboratories working on the inception and development of ultrafast components and circuits. It is trying to promote the techniques based on ultrafast optics in high speed electronics. For instance it interacted extensively with groups such as MIT Lincoln Lab for the characterization of the permeable base transistors and resonant tunneling diode. Also with Gremens at Princeton, Thomson CSF in France, and Texas Instruments for the characterization of TEGFET and resonant tunneling diodes.

The group activity is reflected by the large number of invited presentations it has given during 1986.

- WOCSEMMAD - San Francisco, CA
- University of California at Berkeley
- DARPA EHF Review-San Diego, CA
- University of Illinois at Urbana
- Hypress Incorporated-Elmsford, NY
- Texas Instruments
- CLEO-San Francisco, CA
- Ultrafast Phenomena-Snowmass, CA
- High Speed Electronics-Stockholm
- Los Alamos National Laboratory-Los Alamos, NM
- Optical Society of America Ultrashort Pulse Symposium-Seattle, WA
- Electron Device Activities in Western New York Conference-Rochester, NY
- Solid State Division Seminar, Oak Ridge National Lab-Oak Ridge, TN
- Materials Research Society, Symposium on Interfaces, Superlattices and Thin Films-Boston, MA
- University of Michigan

February 10
February 19
February 20
March 13
March 14
March 20
June 9
June 16
August 7
September 15
October 19
October 22
October 30
December 2
December 15
Fig. 1 Measured step response of the Permeable Base Transistor ($\tau_p \sim 5$ ps)
Fig. 2 Comparison of the GaAs switch response, excited by $\lambda = 620$ nm light, under high and low field conditions.
Transient Response of GaAs Switch
Excited with $\lambda = 850$ nm

Amplitude (arbitrary units)

Time (ps)

rise time = 600 fs
END
7-87
DTIC