A LARGE-SIGNAL ANALYSIS PROGRAM
FOR HELIX TRAVELING-WAVE TUBES

University of Utah

Theresa A. Brunasso

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Griffiss Air Force Base, NY 13441-5700
This report has been reviewed by the RADC Public Affairs Office (PA) and is releasable to the National Technical Information Service (NTIS). At NTIS it will be releasable to the general public, including foreign nations.

RADC-TR-87-25 has been reviewed and is approved for publication.

APPROVED:

ANDREW E. CHROSTOWSKI, 1Lt, USAF
Project Engineer

APPROVED:

FRANK J. REHM
Technical Director
Directorate of Surveillance

FOR THE COMMANDER:

JOHN A. RITZ
Directorate of Plans & Programs

If your address has changed or if you wish to be removed from the RADC mailing list, or if the addressee is no longer employed by your organization, please notify RADC (OCTP) Griffiss AFB NY 13441-5700. This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific document requires that it be returned.
Title: A LARGE-SIGNAL ANALYSIS PROGRAM FOR HELIX TRAVELING-WAVE TUBES

Personal Author(s): Theresa A. Brunasso

Type of Report: Final

Time Covered: From Sep 82 to Oct 86

Date of Report: February 1987

Page Count: 96

Source of Funding Numbers:

<table>
<thead>
<tr>
<th>Program Element No.</th>
<th>Project No.</th>
<th>Task No.</th>
<th>Work Unit Accession No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>61102F</td>
<td>2305</td>
<td>J9</td>
<td>16</td>
</tr>
</tbody>
</table>

Abstract:

A one-dimensional large-signal analysis computer code for Helix traveling-wave tubes was developed. The program is based on the theory developed by J.E. Rowe and M.K. Scherba. The program was written in FORTRAN 77 and implemented on an HP-1000 computer at Teledyne MEC in Palo Alto CA. The program is well documented and can accommodate attenuators, severs, velocity changes, linear velocity tapers, and multiple input signals.

Two Teledyne MEC tubes were simulated with the program and the results were in very good agreement with experimental data.
Block 16. Supplementary Notation (Cont'd)
requirements of the degree of Electrical Engineer.
ACKNOWLEDGMENTS

This work was pursued under the joint sponsorship of the United States Air Force and Teledyne MEC in conjunction with the University of Utah under the Air Force Thermionic Engineering and Research (AFTER) Program. The author wishes to thank Professors Richard W. Grow and J. Mark Baird at the University of Utah for their suggestions and guidance. Thanks are also due to several people in the Advanced Development Group at Teledyne MEC. Phil Lally, Larry Wood, and Eric Nettesheim provided helpful discussions about large-signal theory. Keith Winnovich and Lou Lau supplied the experimental data used to evaluate the program. The work described in this report is heavily dependent upon the work of Rick Baer while he was at Teledyne MEC. Finally, a special thanks goes to Dr. Brian Boe for his assistance and encouragement throughout the course of the project.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF ILLUSTRATIONS AND TABLES</td>
<td>iv</td>
</tr>
<tr>
<td>I. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>II. LARGE-SIGNAL THEORY</td>
<td>2</td>
</tr>
<tr>
<td>A. Phase Relation Equation</td>
<td>5</td>
</tr>
<tr>
<td>B. Circuit Wave Equations</td>
<td>7</td>
</tr>
<tr>
<td>C. Electron Force Equation</td>
<td>10</td>
</tr>
<tr>
<td>D. Initial Conditions</td>
<td>12</td>
</tr>
<tr>
<td>III. ATTENUATORS AND SEVERS</td>
<td>14</td>
</tr>
<tr>
<td>IV. COMPUTER IMPLEMENTATION OF ROWE'S EQUATIONS</td>
<td>21</td>
</tr>
<tr>
<td>A. Program Control</td>
<td>22</td>
</tr>
<tr>
<td>B. Rowe's Large-Signal Equations</td>
<td>23</td>
</tr>
<tr>
<td>C. Integrals in Rowe's Differential Equations</td>
<td>27</td>
</tr>
<tr>
<td>D. Numerical Analysis</td>
<td>28</td>
</tr>
<tr>
<td>E. Program Output</td>
<td>29</td>
</tr>
<tr>
<td>F. Circuit Changes</td>
<td>30</td>
</tr>
<tr>
<td>G. Diagnostics</td>
<td>31</td>
</tr>
<tr>
<td>H. Rowe's Space-Charge Expression</td>
<td>32</td>
</tr>
<tr>
<td>V. RESULTS AND CONCLUSION</td>
<td>36</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>40</td>
</tr>
<tr>
<td>APPENDIX A. TWTID SOURCE CODE LISTING</td>
<td>41</td>
</tr>
<tr>
<td>APPENDIX B. TWTID USER'S MANUAL</td>
<td>70</td>
</tr>
</tbody>
</table>
List of Illustrations and Tables

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Schematic model of a helix with an electron beam</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>Gaussian shaped attenuators</td>
<td>15</td>
</tr>
<tr>
<td>3.</td>
<td>Uniform attenuators</td>
<td>15</td>
</tr>
<tr>
<td>4.</td>
<td>Oscillation of circuit-wave phase angle in an attenuator</td>
<td>16</td>
</tr>
<tr>
<td>5.</td>
<td>Power plot of a Gaussian shaped sever</td>
<td>19</td>
</tr>
<tr>
<td>6.</td>
<td>Phase plot of a Gaussian shaped sever</td>
<td>19</td>
</tr>
<tr>
<td>7.</td>
<td>Power plot of an abrupt sever</td>
<td>20</td>
</tr>
<tr>
<td>8.</td>
<td>Rowe's space-charge function</td>
<td>33</td>
</tr>
<tr>
<td>9.</td>
<td>Polynomial approximation to Rowe's space-charge function</td>
<td>34</td>
</tr>
<tr>
<td>10.</td>
<td>Power plot using the polynomial approximation</td>
<td>35</td>
</tr>
<tr>
<td>11.</td>
<td>Saturated power for an I/J band tube</td>
<td>37</td>
</tr>
<tr>
<td>12.</td>
<td>Saturated power for an I/J band tube with harmonic</td>
<td>37</td>
</tr>
<tr>
<td>13.</td>
<td>Saturated power for an E/H band tube</td>
<td>39</td>
</tr>
<tr>
<td>14.</td>
<td>Effect of fill factor on saturation</td>
<td>39</td>
</tr>
<tr>
<td>A.1.</td>
<td>Input data file organization</td>
<td>71</td>
</tr>
<tr>
<td>A.2.</td>
<td>Attenuator shapes</td>
<td>75</td>
</tr>
<tr>
<td>A.3.</td>
<td>Sample input file</td>
<td>76</td>
</tr>
<tr>
<td>A.4.</td>
<td>TWTIN run for sample input file</td>
<td>76</td>
</tr>
<tr>
<td>A.5.</td>
<td>Terminal display for a TWT1D run</td>
<td>78</td>
</tr>
<tr>
<td>A.6.</td>
<td>TWT1D output file</td>
<td>79</td>
</tr>
<tr>
<td>A.7.</td>
<td>TWT1D printout options</td>
<td>82</td>
</tr>
<tr>
<td>A.8.</td>
<td>Input file for restarting a run</td>
<td>84</td>
</tr>
<tr>
<td>Table</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>1. TWT1D program blocks organized by function</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>2. Computer representation of Rowe variables</td>
<td>26</td>
<td></td>
</tr>
</tbody>
</table>
I. INTRODUCTION

Large-signal analysis programs are widely used by the microwave tube community to predict the performance of helix traveling-wave tubes. These nonlinear programs allow an engineer to optimize a tube design without building several prototype tubes. Unfortunately, currently available programs are complex and poorly documented. The purpose of this project is to provide a structured, well documented large-signal analysis program to the scientific and industrial community.

The program, TWT1D, is based on the one-dimension nonlinear theory developed by M. K. Scherba and J. E. Rowe. The program was written in FORTRAN77 and implemented on an HP-1000 computer at Teledyne MEC in Palo Alto, California. Complete documentation for the program, including a source code listing and a User's Manual, is given in this report.
II. LARGE-SIGNAL THEORY

The large-signal theory of traveling-wave amplifiers differs from small-signal theory in several ways. Perhaps the most significant difference is the way each theory models the electron beam. In small-signal theory, the beam is modeled as drifting charged fluid. Its charge density and electron velocity are single valued functions of distance, and electrons cannot overtake one another. This treatment of the electron beam is called an Eulerian formulation. By comparison, the Lagrangian analysis used in large-signal theory breaks the beam up into representative charge groups. This approach allows charge density and electron velocity to be multivalued functions, and electrons to overtake one another. Another difference between the theories is the way they treat the force and continuity equations. The equations are linearized in small-signal theory, so the theory is limited to circuits with small c and small input signals. Linearizing the equations allows them to be solved analytically. The solution is a single number which gives the gain/unit length for the tube. By contrast, the large-signal theories have no analytic solution and must be solved on a computer. The resulting solution is a profile of power versus axial position.

The large-signal theory offers many advantages over small-signal theory. Since the equations are nonlinear, harmonics can be generated and followed down the tube. This allows the effects of intermodulation to be studied. Unlike small-signal theory, large-signal theory can be used to predict the saturation power and efficiency of a tube. In addition, using a Lagrangian analysis means that electron trajectories...
can be followed down the tube so beam bunching can be observed. Finally, the theory can accommodate attenuators, severs, and velocity changes.

The first attempt at developing a large-signal theory for helix traveling-wave tubes was made by A. T. Nordsieck in 1953. He was the first to use Lagrangian analysis to model the interaction between the circuit and the electron beam for a single input signal. However, his theory was subject to several limitations. To begin with, he assumed that space-charge forces could be neglected. Secondly, he limited his theory to lossless circuits with small C. A year later, H. C. Poulter extended the theory to include space-charge forces and to account for circuit loss and finite C. Two years after that, J. E. Rowe amended the theory to allow for circuits with a large C. Finally, in 1971, M. K. Scherba and J. E. Rowe expanded the theory to include multiple input signals. It is this theory that is the basis for the program TWTID.

In Rowe's model, the helix is represented by a lumped element transmission line, and the electron beam is represented by disks of charge. These charge groups move along the circuit inducing charges in the circuit. The RF field in the circuit interacts with the electron disks and causes them to bunch. This model was first used by Brillouin, and is schematically represented in Fig. 1.
Fig. 1. Schematic model of a helix with an electron beam.

where

\[d_0 = \text{length of section} \]
\[R_0 = R d_0 = \text{resistance/section} \]
\[L_0 = L d_0 = \text{inductance/section} \]
\[C_0 = C d_0 = \text{capacitance/section} \]
\[I_n = \text{current in } L_0 \text{ of section } n \]
\[V_n = \text{potential on capacitor } n \]
\[Q_n = C_0 V_n = \text{charge on capacitor } n \]
\[q'_n = \rho_n d_0 = \text{charge in the beam in section } n \]

The circuit equation for this transmission line is

\[
\frac{\partial^2 V}{\partial t^2} + \frac{R}{L} \frac{\partial V}{\partial t} - \frac{2}{v_0} \frac{\partial^2 V}{\partial z^2} = v_0^2 Z_0 \left(\frac{\partial^2 \rho}{\partial t^2} + \frac{R}{L} \frac{\partial \rho}{\partial t} \right)
\]

where the following definitions have been used:
$v_0 \Delta \sqrt{1/LC} = \text{the characteristic phase velocity of the circuit}$

$Z_0 \Delta \sqrt{L/C} = \text{the characteristic impedance of the circuit}$

To express this equation in Pierce6 notation, the following relation is used:

$$R/L = 2\omega Cd$$ \hspace{1cm} (2)$$

where C is Pierce's gain parameter and d is his loss parameter. The equation then becomes

$$\frac{\partial^2 V}{\partial t^2} - \frac{v_0^2}{2} \frac{\partial^2 V}{\partial z^2} + 2\omega Cd \frac{\partial V}{\partial t} = v_0 Z_0 \left(\frac{\partial^2 \rho}{\partial t^2} + 2\omega Cd \frac{\partial \rho}{\partial t} \right)$$ \hspace{1cm} (3)$$

For multiple signals, there will be a circuit equation for each signal:

$$\frac{\partial^2 V_n}{\partial t^2} - \frac{v_0^2}{2} \frac{\partial^2 V_n}{\partial z^2} + 2\omega C_n d_n \frac{\partial V_n}{\partial t} = v_0 Z_0 \left(\frac{\partial^2 \rho_n}{\partial t^2} + 2\omega C_n d_n \frac{\partial \rho_n}{\partial t} \right)$$ \hspace{1cm} (4)$$

A. Phase Relation Equation

In his Lagrangian analysis, Nordsieck introduced two independent variables. They are the normalized distance, y, and the entry phase of the fundamental component of the input signal, ϕ_{01}. They are defined as

$$y \Delta \frac{C \omega_1}{u_0} \frac{z}{z}$$ \hspace{1cm} (5)$$

$$\phi_{01} \Delta \frac{\omega_1 z}{u_0} = -\omega_1 t_0$$ \hspace{1cm} (6)$$
where \(\omega_1 \) is the fundamental frequency in the radians, and \(C_1 \) is the gain parameter for the fundamental frequency. \(u_0 \) is the dc stream velocity in m/s, and \(z \) is the axial position on the tube measured in meters.

Using these new variables, the circuit equation becomes

\[
\frac{\partial^2 v_n(y,t)}{\partial t^2} - C_1^2 \frac{1}{\omega_1} \left(\frac{v_0}{u_0} \right)^2 \frac{\partial^2 v_n(y,t)}{\partial y^2} + 2 \omega_n C_n \frac{\partial v_n(y,t)}{\partial t} = \frac{v_0}{u_0} \left(\frac{\partial^2 \rho_n(y,t)}{\partial t^2} + 2 \omega_n C_n \frac{\partial \rho_n(y,t)}{\partial t} \right)
\]

(7)

Nordsieck also introduced the following dependent variables:

\[
\phi_n(y, \theta_{01}) = \omega_n \left(\frac{z}{u_0} - t \right) - \theta_n(y) = \frac{\omega_n}{\omega_1 C_1} y - \omega_n t - \theta_n(y)
\]

(8)

\[
u_z = \frac{dz}{dt}_{t, z_0} = \frac{u_0}{C_1 \omega_1} \frac{dy}{dt} = u_0 \left[1 + 2C_1 u(y, \theta_{01}) \right]
\]

(9)

where \(\phi_n \) is the instantaneous charge group phase in radians, and \(\theta_n \) is the phase lag in radians of the circuit wave relative to a traveling wave with phase velocity \(u_0 \). This phase lag is due to beam loading as the wave gets energy from the beam. \(u_z \) is the electron velocity normalized to the initial average electron velocity, \(u_0 \). Taking the derivative with respect to time of Eq. 8 and substituting Eq. 9 yields

\[
\frac{\partial \phi_n(y)}{\partial y} + \frac{\partial \phi_n(y, \theta_{01})}{\partial y} = \frac{\omega_n}{\omega_1 C_1} \left[1 - \frac{1}{1 + 2C_1 u(y, \theta_{01})} \right]
\]

(10)

This is the first of Rowe's large-signal equations. It is the velocity-phase equation relating \(u_z \), \(\theta_n \), and \(\phi_n \).
B. Circuit Wave Equations

The next two large-signal equations arise from the circuit equation. To evaluate the circuit equation, define the RF voltage,

\[V_n(y, \phi_n) = \sum_n V(y) V(\phi_n) \]

(11)

where

\[V(y) = \frac{Z_{01} I_0}{C_1} A_n(y) \text{ and } V(\phi_n) = e^{-j\phi_n} \]

(12)

\(Z_{01} \) is the interaction impedance for the fundamental frequency, and \(A_n(y) \) is the normalized circuit voltage amplitude for the \(n \)th frequency. Substituting the derivatives of Eq. 11 into Eq. 4 yields an equation in terms of \(\sin \phi_n \) and \(\cos \phi_n \). Since these terms are mutually orthogonal, they can be separated and the original circuit equation can be expressed as two equations,

\[
\frac{d^2 A_n(y)}{dy^2} - A_n(y) \left[\left(\frac{\omega_n}{\omega_1} - \frac{d\phi_n}{dy} \right)^2 \left(\frac{1 + C_n b_n}{C_1} \right)^2 \right] = -\frac{R_n \cos (\rho)}{\omega_1 C_1 Z_{01} I_0} \left(\frac{u_0}{v_{0n}} \right)^2
\]

(13)

\[
A_n(y) \left[\frac{d^2 \phi_n}{dy^2} - 2 C_n \frac{d}{dy} \left(\frac{\omega_n}{\omega_1} \right)^2 \left(\frac{1 + C_n b_n}{C_1} \right)^2 \right] - 2 \frac{dA_n(y)}{dy} \left(\frac{\omega_n}{\omega_1} \right) \left(\frac{d\phi_n}{dy} \right) = -\frac{R_n \sin (\rho)}{\omega_1^2 C_1 Z_{01} I_0} \left(\frac{u_0}{v_{0n}} \right)^2
\]

(14)
where $R_n \sin (p)$ and $R_n \cos (p)$ are the sine and cosine parts of the space-charge expression, and b_n is Pierce's velocity parameter. Now the problem remains of expressing the space-charge expression in terms of $\sin \phi_n$ and $\cos \phi_n$. Since the beam-charge density is rich in harmonics, it is convenient to expand it into a Fourier series:

$$
\rho_n(y, \phi_n) = \sum_{m=1}^{\infty} \left[\frac{\sin m\phi_n}{\pi} \int_0^{2\pi} \rho \sin m\phi_n d\phi_n \right] + \int_{m=1}^{\infty} \left[\frac{\cos m\phi_n}{\pi} \int_0^{2\pi} \rho \cos m\phi_n d\phi_n \right]
$$

(15)

The ρ inside the integral may be determined from continuity arguments:

$$
\rho = \frac{I_0}{u_0} \left| \frac{\partial \phi_{01}}{\partial n} \right| \left| \frac{1}{1 + 2C_1 u(y, \phi_{01})} \right|
$$

(16)

Using this expression inside the Fourier integral yields

$$
\rho_n(y, \phi_{0n}) = \frac{I_0}{u_0} \sum_m \left[\sin m\phi_n \int_0^{2\pi} \frac{\sin m(y, \phi_{01}) d\phi'}{1 + 2C_1 u(y, \phi_{01})} \right]
$$

$$
+ \cos m\phi_n \int_0^{2\pi} \frac{\cos m(y, \phi_{01}) d\phi'}{1 + 2C_1 u(y, \phi_{01})}
$$

(17)

The summation over m represents the sum of all harmonic frequencies for each of the n fundamental frequencies. Assuming that the circuit beam interactions at the harmonic frequencies are negligible and keeping only the $m = 1$ terms,
\[\rho_n (y, \phi_0) = \frac{1}{u_0} \left[\sin \phi_n \int_0^{2\pi} \sin \theta_n (y, \phi'_0) d\phi'_0 \right]
+ \cos \phi_n \int_0^{2\pi} \frac{\cos \theta_n (y, \phi'_0) d\phi'_0}{1 + 2c_1 u(y, \phi'_0)} \]

(18)

These values may now be substituted into the circuit equation to get Rowe's next two large-signal equations:

\[\frac{d^2 A_n (y)}{dy^2} = A_n (y) \left[\left(\frac{\omega_n}{\omega_1 c_1} - \frac{d\theta_n}{dy} \right)^2 - \left(\frac{\omega_n}{\omega_1} \right)^2 \left(\frac{1 + c_1 b_n}{c_1} \right)^2 \right]
- \frac{2\pi}{Z_{01} (\omega_1)} \left(\frac{1 + c_1 b_n}{c_1} \right)^2 \left[2c_n d_n \int_0^{2\pi} \frac{\sin \theta_n (y, \phi'_0) d\phi'_0}{1 + 2c_1 u(y, \phi'_0)} \right]
+ \int_0^{2\pi} \frac{\cos \theta_n (y, \phi'_0) d\phi'_0}{1 + 2c_1 u(y, \phi'_0)} \right] \]

(19)

\[\frac{d^2 \theta_n}{dy^2} \left[\frac{2\pi}{2c_n d_n (\omega_1)} \left(\frac{1 + c_1 b_n}{c_1} \right)^2 \right] - 2 \frac{dA_n (y)}{dy} \left(\frac{\omega_n}{\omega_1 c_1} - \frac{d\theta_n}{dy} \right)
- \frac{2\pi}{Z_{01} (\omega_1)} \left(\frac{1 + c_1 b_n}{c_1} \right)^2 \left[2\pi \sin \theta_n (y, \phi'_0) d\phi'_0 \right]
+ \int_0^{2\pi} \frac{2\pi \cos \theta_n (y, \phi'_0) d\phi'_0}{1 + 2c_1 u(y, \phi'_0)} \right] \]

(20)

Equation 19 is the circuit wave amplitude equation, and Eq. 20 is the circuit wave phase equation.
C. Electron Force Equation

Rowe's final large-signal equation is derived from the Lorentz force equation,

$$\frac{d^2 z}{dt^2} = \left| \frac{\partial V}{\partial z} \right| \left(\frac{\partial V}{\partial z} + \frac{\partial V_{sc}}{\partial z} \right)$$ \hspace{1cm} (21)

where V_{sc} and V_c are the space-charge and circuit terms, respectively. Using Eq. 9 and the chain rule for derivatives and substituting into Eq. 21 yields

$$\frac{\partial u(y, \theta_{01})}{\partial y} \left[1 + 2C \frac{u(y, \theta_{01})}{u_0} \right] = \frac{|n|}{2C \omega_1 u_0} \left\{ \frac{Z_0 I_0}{C_1} \frac{1}{n} \left[\frac{dA_n(y)}{dy} \cos \theta_n \right. \right.$$

$$- A_n(y) \sin \theta_n \left(\frac{\omega_n}{\omega_1 C_1} - \frac{d\theta_n}{dy} \right) \left. \right\} - \frac{1}{\omega_1} E_{sc}$$ \hspace{1cm} (22)

where E_{sc} is the space-charge field. The constant in front of the circuit wave term can be simplified using the definition of Pierce's gain parameter,

$$\frac{\partial u(y, \theta_{01})}{\partial y} \left[1 + 2C \frac{u(y, \theta_{01})}{u_0} \right] = C \frac{\gamma}{n} \left[\frac{dA_n(y)}{dy} \cos \theta_n - A_n(y) \sin \theta_n \left(\frac{\omega_n}{\omega_1 C_1} - \frac{d\theta_n}{dy} \right) \right]$$

$$- \frac{|n|}{2C \omega_1 u_0} E_{sc}$$ \hspace{1cm} (23)

Rowe derived a space-charge expression,

$$E_{sc} = - \frac{2 \omega_1 u_0}{\left| 1 + \frac{C}{n} \right|} \left(\frac{\omega}{\omega_1} \right)^2 \frac{1}{\gamma} \int_0^{2\pi} F(\theta - \theta_{01}) d\theta_{01}$$ \hspace{1cm} (24)

- 10 -
where $F(\theta - \phi_{01})$ is a space-charge weighting function derived by Poulter. Rove developed a closed form expression for this function:

$$F(\theta - \phi_{01}) = \frac{1}{2\pi} \left[\frac{\pi - (\theta - \phi_{01})}{2} - 2 \tan^{-1} \frac{\sin (\theta - \phi_{01})}{\sqrt{e^2 b^2 f(a'/b')}} \cos (\theta - \phi_{01}) + \tan^{-1} \left(\frac{\sin (\theta - \phi_{01})}{\sqrt{e^2 b^2 f(a'/b')}} \cos (\theta - \phi_{01}) \right) \right]$$

for $0 < (\theta - \phi_{01}) < 2\pi$ (25)

where a' and b' are the helix and beam radii, respectively, and

$$f(a'/b') = \frac{\partial \ln (1 - R_n)}{\partial b'} \text{ at constant } a'/b'$$

(26)

where R_n is the electron plasma frequency reduction factor,

$$R_n^2 \left[1 - \frac{8b'}{I_0(8a')} \right] \left[I_1(8b') K_0(8a') + I_0(8a') K_1(8b') \right]$$

(27)

where I_n and K_n are modified Bessel functions. Substituting the space-charge expression into Eq. 22 yields the fourth and final large-signal equation.

$$\frac{\partial u(y, \phi_{01})}{\partial y} [1 + 2C_1 u(y, \phi_{01})] = C_1 \sum_n \left[\frac{\partial A_n(y)}{\partial y} \cos \phi_n - A_n(v) \sin \phi_n \left(\frac{\omega_n}{\omega_1 c_1} - \frac{\partial \phi_n}{\partial y} \right) \right]$$

$$+ \left(\frac{1}{1 + C_n \nu_n} \right) \left(\frac{\omega_n}{\omega_1 c_1} \right)^2 \int_{0}^{2\pi} F(\theta - \phi_{01}) d\phi_{01}$$

(28)
D. Initial Conditions

The solution of Rowe's large-signal equations may be treated as an initial-value problem if it is assumed that the helix is terminated in its characteristic impedance so that there are no reflections at the output. The initial conditions for the beam and circuit wave are derived in this section. In deriving these conditions, it was assumed that the electron beam is unmodulated at the input.

At the input to the tube ($y = 0$), there is no RF interaction, so the second derivatives are zero. Also, since the beam is unmodulated at the input, the space-charge terms are zero. Thus, the circuit wave phase equation becomes

$$\frac{d\theta_n^0}{dy} = -\frac{C_n b_n}{1 + \frac{\omega}{C_n}}$$ (29)

Substituting this into the circuit wave amplitude equation at the input yields

$$\frac{dA_n(y)}{dy} = -A_n(y)C_n d_n \left(\frac{\omega}{1 + \frac{\omega}{C_n}}\right) \cdot 1 + C_n b_n$$ (30)

The unmodulated beam at the input is represented by uniformly distributing the electron charge groups over one cycle of the fundamental frequency. For n charge groups, the initial phases are given by

$$\phi_{0,i} = \frac{2\pi i}{n}, \quad i = 0, 1, 2, \ldots, n$$ (31)
The velocity of the beam at the input is equal to the dc stream velocity, so that

\[1 + 2C_l u(0, \theta_0, j) = 1 \]

(32)
III. ATTENUATORS AND SEVERS

Virtually all helix traveling-wave tubes use attenuators and/or severs to prevent oscillations. Therefore, any program used for the design of these tubes must be able to model circuit loss.

The simplest way to model loss in a traveling-wave tube is to increase Pierce's loss parameter, d. This is the method recommended by Rowe.7 Figure 2 shows the result of various Gaussian shaped attenuators on output power, and Fig. 3 shows the result for a region of uniform loss. As we would expect, the attenuators increase the saturation length without decreasing the saturation power. (This would not be the case if the attenuator was too close to the output.)

Unfortunately, there is a problem with this method of modeling loss in a circuit. It will lead to instabilities for large values of loss. This is due to the fact that both the propagation constant, B, and the impedance, Z, vary with the resistance in the circuit. The change in B causes the circuit wave to lose synchronism with the beam, and the change in Z causes reflections in the attenuator due to the impedance mismatch. The result of these problems is that the circuit wave phase angle oscillates in a region of heavy attenuation. This is illustrated in Fig. 4. The higher the loss and/or the longer the region of attenuation, the greater the oscillations. In order to work around this problem in the model, attenuators are replaced by severs when their loss exceeds a certain level.
Fig. 2. Gaussian shaped attenuators.

Fig. 3. Uniform attenuators.
Fig. 4. Oscillation of circuit-wave phase in an attenuator.
In fact, the effect of a strong attenuator is much the same as that of a sever. In a sever, the circuit wave is eliminated and the beam drifts down the tube affected only by the space-charge forces. Similarly, a strong attenuator will diminish the circuit wave so much that the electron beam is unaffected by it. Thus, it is reasonable to model a region of strong attenuation with a sever.

The equations inside the sever are simply Rowe's large-signal equations with the circuit wave terms removed,

\[
\frac{3u(y, \phi_{01})}{\delta y} \left[1 + 2C_1 u(y, \phi_{01}) \right] = \left(\frac{\omega_p}{\omega_l C_1} \right)^2 \left(\frac{1}{1 + \frac{C_1 b}{\omega_n}} \right) \int_0^{2\pi} \frac{F(\phi - \phi_{01}) d\phi_{01}}{1 + 2C_1 u(y, \phi_{01})}
\]

\[
\frac{3\phi_n(y, \phi_{01})}{\delta y} = 2 \left(\frac{\omega_n}{\omega_l} \right) \left(\frac{u(y, \phi_{01})}{1 + 2C_1 u(y, \phi_{01})} \right)
\]

(33)

(34)

The first equation is the electron force equation, and the second is the electron phase equation. Once inside a sever, the circuit wave phase, the circuit wave amplitude, and their derivatives are zero. The remaining two drift tube equations are integrated through the sever.

At the end of the sever, the circuit wave must be restarted. Rowe7 suggests that the following initial conditions be used: \(A_n(y) = 0 \), \(\theta_n(y) = 0 \), and \(d\theta_n(y)/dy = -\frac{\omega b c}{\omega_n C_1} \). However, the last condition requires the beam to be unmodulated (Eq. 28). In fact, the beam is highly modulated in the sever, and it is this modulation that restarts the circuit wave. I suggest the following conditions for the end of a
sever. Since there is no RF interaction in the sever, the second derivatives are zero. So the circuit wave phase equation becomes

\[
\frac{d\theta_n(y)}{dy} = \frac{\omega_n}{\omega_1 C_1} - \left(\frac{\omega_n}{\omega_1 C_1}\right)^2 - \frac{1}{A_n(y)} \left(\frac{Z_{0n}}{C_1}\right) \left(\frac{\omega_n}{\omega_1}\right) \left(\frac{1 + C_n b_n}{C_1}\right) \left[\int_0^{\varphi_0} \frac{2\pi \cos \phi (y, \dot{\varphi}') \, d\phi'}{1 + 2C_1 u(y, \dot{\varphi}'_0)} + 2C_n d_n \int_0^{\varphi_0} \frac{2\pi \sin \phi (y, \dot{\varphi}') \, d\phi'}{1 + 2C_1 u(y, \dot{\varphi}'_0)} \right]
\]

(35)

and the circuit wave amplitude equation becomes

\[
\frac{dA_n(y)}{dy} = \left(\frac{\omega_n}{\omega_1}\right)^2 \left(\frac{1 + C_n b_n}{C_1}\right) \left(\frac{d\theta_n}{dy} - \frac{\omega_n}{\omega_1 C_1}\right)^{-1} \left[A_n(y)C_n d_n \left(\frac{1 + C_n b_n}{C_1}\right) + \left(\frac{Z_{0n}}{C_1}\right) \left(\frac{\omega_n}{\omega_1}\right) \left(\frac{1}{2\pi}\right) \left[\int_0^{\varphi_0} \frac{2\pi \sin \phi (y, \dot{\varphi}') \, d\phi'}{1 + 2C_1 u(y, \dot{\varphi}'_0)} - 2C_n d_n \int_0^{\varphi_0} \frac{2\pi \cos \phi (y, \dot{\varphi}') \, d\phi'}{1 + 2C_1 u(y, \dot{\varphi}'_0)} \right] \right]
\]

(36)

Note that Eq. 35 has the circuit wave amplitude, \(A_n(y) \), in the denominator. This prevents us from assigning a value of zero to this variable at the end of a sever. Instead of zero, the maximum of 1 percent of the input value or 1 percent of the present value of \(A_n \) is used. This value is large enough to prevent numerical overflow, yet small enough to realistically model a sever. The power and circuit wave phase are plotted using both Rowe's and the new initial conditions at the end of a sever in Figs. 5 and 6. As the figures show, the new initial conditions greatly reduce the oscillations in the circuit phase plot and eliminate them completely in the power plot.
Fig. 5. Power plot of a Gaussian shaped sever.

Fig. 6. Phase plot of a Gaussian shaped sever.
Figure 7 shows the result of an abrupt sever. Note that after the sever, the power rapidly grows to a level approximately 6 dB below what it would have been without the sever. This result is in agreement with Pierce5 and experimental results.

Fig. 7. Power plot of an abrupt sever.
IV. COMPUTER IMPLEMENTATION OF ROWE'S EQUATIONS

This section describes how the large-signal equations derived in the previous sections are set up and solved in TWTlD. In addition, it shows how the program is organized, and how attenuators, severs, velocity steps, and tapers are handled. TWTlD is composed of a main program block and 23 subprograms. The program blocks can be grouped according to the functions they serve, as illustrated in Table 1.

Table 1. TWTlD program blocks organized by function.

<table>
<thead>
<tr>
<th>Function</th>
<th>Program Block</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROGRAM CONTROL</td>
<td>TWTlD</td>
</tr>
<tr>
<td></td>
<td>ZSORT</td>
</tr>
<tr>
<td></td>
<td>EVENT</td>
</tr>
<tr>
<td></td>
<td>INTSUB</td>
</tr>
<tr>
<td>ROWE'S LARGE SIGNAL EQUATIONS</td>
<td>DIFFEQ</td>
</tr>
<tr>
<td></td>
<td>DIFF</td>
</tr>
<tr>
<td></td>
<td>DRFTEQ</td>
</tr>
<tr>
<td></td>
<td>DRIFT</td>
</tr>
<tr>
<td>INTEGRALS IN ROWE'S EQUATIONS</td>
<td>FINT</td>
</tr>
<tr>
<td></td>
<td>INT1</td>
</tr>
<tr>
<td></td>
<td>INT2</td>
</tr>
<tr>
<td>NUMERICAL ANALYSIS</td>
<td>DESOLV</td>
</tr>
<tr>
<td></td>
<td>STEP</td>
</tr>
<tr>
<td></td>
<td>INTRP</td>
</tr>
<tr>
<td></td>
<td>MACHIN</td>
</tr>
<tr>
<td></td>
<td>BESSEL</td>
</tr>
<tr>
<td>OUTPUT</td>
<td>OUTPUT</td>
</tr>
<tr>
<td></td>
<td>OUTRS</td>
</tr>
<tr>
<td>CIRCUIT CHANGES</td>
<td>ATTEn</td>
</tr>
<tr>
<td></td>
<td>CHANGE</td>
</tr>
<tr>
<td>DIAGNOSTICS</td>
<td>ENERGY</td>
</tr>
<tr>
<td></td>
<td>BADIN</td>
</tr>
<tr>
<td>ROWE'S SPACE-CHARGE EXPRESSION</td>
<td>SPACE</td>
</tr>
<tr>
<td></td>
<td>SIMINT</td>
</tr>
</tbody>
</table>
A. Program Control

TWTID is set up to integrate Rowe's large-signal equations down a tube, with stops for attenuators, velocity changes, and restart data printouts. At each of these stops, the appropriate subroutine is called to implement the change in parameters or the printout. The flow of the program is controlled by the main program block and subroutines ZSORT, EVENT, and INTSUB.

The main program block is divided into 9 sections. The first section sets up the arrays, variables, and constants used in the main program and various subprograms. The second section controls the terminal display and keyboard input when the program is run. The third section reads the data from the input data file. In addition, the attenuators and velocity tapers are set up in this section. The next section converts the input data into Pierce parameters and normalized Rowe variables. Section 5 reads the restart data or, if no restart data are available, initializes the beam and circuit wave. In Section 6, the output data file is opened, and the Pierce parameters computed in Section 4 are printed out. In order to facilitate the program flow, Section 7 puts all events that require stopping the integration into a single list, sorted according to their position along the circuit. These events are restart data printouts, attenuators, and velocity steps and tapers. The eighth section controls the actual flow of the program. It moves down the axial position list, integrating Rowe's large-signal equations. At each event, the integration is stopped, the type of event is determined, and the appropriate subroutine called. The last
section computes and prints out the saturation power, gain, efficiency, and length. The output files are then closed, and program execution stops.

Subroutine ZSORT does the actual sorting of the axial position list. It creates two lists: one of stop positions, ZSTOP(i), and one of event type codes corresponding to the stop positions, SWLIST(i). Each event type is assigned a specific prime number code. When more than one event occurs at a position, the event type codes are multiplied. Thus, the numbers can be factored to determine which events occur at each stop position.

Subroutine EVENT checks the event code at each stop position to determine which events occur. The event codes used are: 2 Print restart data; 3 Start attenuator; 5 Stop attenuator; 7 velocity change.

The control code in the main program block stops the integration of the large-signal equations for attenuators, velocity changes, and restart data printouts. However, the integration must also be stopped for the output printouts. Subroutine INTSUB accomplishes this by breaking up tube sections between successive stop events into print intervals. At each print interval, subroutines are called to integrate Rowe's equations and print the output data. In addition, INTSUB ensures that the equations are integrated to the end of the section.

8. Rowe's Large-Signal Equations

Rowe's circuit wave amplitude and circuit wave phase equations are second order differential equations. However, the differential equation
The solver used in TWTID solves only first order differential equations. Moreover, the equations must be of the form,

\[\begin{array}{c}
 y'_1(t) = f_1(t, y_1(t), v_2(t), \ldots, v_n(t)) \\
 y'_2(t) = f_2(t, y_1(t), v_2(t), \ldots, v_n(t)) \\
 \vdots \\
 y'_n(t) = f_n(t, y_1(t), v_2(t), \ldots, v_n(t)) \\
\end{array} \]

So, the equations must be manipulated to fill these requirements. Let

\[\frac{dA_n(y)}{dy} = G_n(y) \quad \text{and} \quad \frac{d\theta_n(y)}{dy} = F_n(y) \]

then

\[\frac{d^2A_n(y)}{dy^2} = \frac{d^2G_n(y)}{dy^2} \quad \text{and} \quad \frac{d^2\theta_n(y)}{dy^2} = \frac{d^2F_n(y)}{dy^2} \]

Substituting these new variables into Rowe's equations and rearranging yields

\[\frac{d\theta_n(y, \phi_{01})}{dy} = 2\left(\frac{\omega_n}{\omega_L}\right) \frac{u(y, \phi_{01})}{1 + 2C_1 u(y, \phi_{01})} - F_n(y) \]

\[\frac{dA_n(y)}{dy} = G_n(y) \]

- 24 -
\[
\frac{dG}{dv} = A_n(v) \left(\frac{\omega_n}{\Omega} - F_n(v) \right) + A_n(v) \left(\frac{\omega_n}{\Omega} - F_n(v) \right) \left(\frac{n + \sin \theta}{n + \sin \theta} \right)
\]

(42)

\[
\frac{dF}{dv} = 2C_n d_n \left(\frac{n + \sin \theta}{n + \sin \theta} \right) - A_n(v) \left(\frac{\omega_n}{\Omega} - F_n(v) \right) \left(\frac{n + \sin \theta}{n + \sin \theta} \right)
\]

(43)

These are the differential equations that are set up and evaluated at subroutine \text{DIFSEP}, \text{DIFF}, \text{DRFTEQ}, and \text{DRIFT}. The subroutines also set the initial conditions for the large-signal equations.

Subroutine \text{DIFSEP} contains Rowe's differential equations. The computer names used for the various variables are given in Table 2.
<table>
<thead>
<tr>
<th>Variable</th>
<th>Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A_n(y)$</td>
<td>$A(N)$</td>
</tr>
<tr>
<td>$\frac{dA_n(y)}{dy}$</td>
<td>$DA(N)$</td>
</tr>
<tr>
<td>$G_n(y)$</td>
<td>$G(N)$</td>
</tr>
<tr>
<td>$\frac{dG_n(y)}{dy}$</td>
<td>$DG(N)$</td>
</tr>
<tr>
<td>$\phi_n(y)$</td>
<td>$\Theta T(A(N)$</td>
</tr>
<tr>
<td>$\frac{d\phi_n(y)}{dy}$</td>
<td>$D\Theta T(A(N)$</td>
</tr>
<tr>
<td>$F_n(y)$</td>
<td>$F(N)$</td>
</tr>
<tr>
<td>$\frac{dF_n(y)}{dy}$</td>
<td>$DF(N)$</td>
</tr>
<tr>
<td>$\Phi I(y, v, \phi_0)$</td>
<td>$\Phi I(N)$</td>
</tr>
<tr>
<td>$\frac{d\Phi I(y, v, \phi_0)}{dy}$</td>
<td>$D\Phi I(N)$</td>
</tr>
<tr>
<td>$u(y, v, \phi_0)$</td>
<td>$U(I)$</td>
</tr>
<tr>
<td>$\frac{du(y, v, \phi_0)}{dy}$</td>
<td>$DU(I)$</td>
</tr>
<tr>
<td>$2^n \sin \theta \cdot v \cdot \phi_0 \cdot d\phi_0 \cdot d\theta_0 \cdot d\theta$</td>
<td>$ISIN(N)$</td>
</tr>
<tr>
<td>$2^n \cos \theta \cdot v \cdot \phi_0 \cdot d\phi_0 \cdot d\theta_0 \cdot d\theta$</td>
<td>$ICOS(N)$</td>
</tr>
<tr>
<td>$2^n \Phi_0 \cdot \phi_0 \cdot d\phi_0 \cdot d\theta_0 \cdot d\theta$</td>
<td>$IFUNCT(I)$</td>
</tr>
</tbody>
</table>

- 26 -
This subroutine is used by the differential equations solver to evaluate the derivatives. After the equations are evaluated, they are stored in a single array called EQU. The solutions to the equations are stored in the array, VALUES.

Subroutine DIFF sets the initial conditions for the differential equations and calls the differential equation solver. The parameters passed to the solver are the subroutine used to evaluate the derivatives, DIFF, the number of equations to be integrated, NNU, the array of solutions, VALUES, the independent variable, Y; the position where the solution is desired, XINT, the relative and absolute local error tolerances RELERR and ABSErr, the flag to initialize solver, IFLAG, and the flag to set the machine dependent variable, SET.

Subroutine DRIFT contains the differential equations for a drift time. It is used by the differential equation solver to evaluate the derivatives when integrating through a sever. As in subroutine DIFF, the equations are stored in a single array called EQU, and the solutions to the equations are stored in the array, VALUES.

Subroutine DRIFT performs the same duties for DRIFT that DIFF performs for DIFF.

C. Integrals in Rowe's Differential Equations

The circuit wave amplitude, the circuit wave phase, and the electron force equations each contain integrals that must be solved at every step of the differential equation solution. These integrals are solved in subroutines FINIT, INT1, AND INT2.
Subroutine RINT solves the two integrals that arise from the Fourier series expansion of the beam charge density. Since the electron disks are evenly spaced over 10 radians initially, the integration over phase can be replaced with an integration over all the electron disks. Moreover, the discrete number of electron disks used in the computer model allows the integrals to be replaced by summations. These summations are conducted once at each step of the differential equation solution.

Subroutine INTI solves the integral from the space-charge field expression. As in the beam charge density integrals, this integral is replaced by a summation over the electron disks. The space-charge summation must be conducted for each electron disk at each step.

Subroutine INT2 solves the polynomial approximation to the space-charge integral. This subroutine runs in about half the time that INTI takes to run. Since the space-charge integral is evaluated so often, using the polynomial approximation can make a significant difference in run time.

D. Numerical Analysis

Numerical analysis routines are used to solve Rowe's large-signal equations and to calculate Bessel functions for Pierce's gain parameter. The numerical analysis routines are DESOLV, STEP, INTRP, MACHIN, and BESSEL.

The differential equation solver used in TWT1D was taken from a text by L. F. Shampine and M. K. Gordon. The solver is a variable step, variable order Adams code. It consists of routines DESOLV, STEP,
INTRP, and MACHIN. Subroutine DESOLV is a driver that calls the other subroutines in the solver. MACHIN computes the machine unit roundoff error, U, which is the smallest positive number such that 1.0 + U > 1.0. Subroutine STEP integrates the differential equations one step, and subroutine INTRP approximates the solution at the end point by evaluating the polynomial there. The code is completely explained and documented in the text by Shampine and Gordon, and those interested in the code should consult that text.

Subroutine BESSEL calculates modified Bessel functions of the first and second kind.

E. Program Output

As Rowe's equations are integrated down the traveling-wave tube, various parameters describing the tube's performance are printed to output data and plot files and displayed on the terminal. In addition, variables describing the beam and circuit wave must be printed for a restart printout. The subroutines that handle this are OUTPUT and OUTRS.

Subroutine OUTPUT controls the output of data at each print interval. It prints the axial position, power, and phase angle to the plot file, and displays the position and power on the terminal. The NPR variable is used to determine which variables are printed to the output data file. In addition, OUTPUT uses the power and its derivative with respect to position to calculate the saturated power.

Subroutine OUTRS controls the restart printouts. A restart output is used when an engineer wants to examine the effect of different output
helices without having to run the input helix in each case. The circuit wave variables printed out are normalized position, Y, circuit wave amplitude, $A(n)$, its derivative, $DA(n)$, circuit wave phase, $THETA(n)$, and its derivative, $DTHETA(n)$. The beam variables printed out are electron phase positions, $PHI(i,n)$, and electron velocities, $U(i)$. In addition, if the polynomial approximation to the space-charge function is used, its coefficients, $CB(m)$ are printed out. These data contain the information needed to restart a run at that position.

F. Circuit Changes

Whenever a change in circuit velocity or loss occurs, the parameters describing the circuit must be recomputed. Subroutine ATTEN handles changes in loss due to attenuators or severs, and subroutine CHANGE handles changes in velocity due to velocity steps or tapers.

Attenuators are broken into 20 sections in the main program. In each section, subroutine ATTEN adjusts Pierce's loss parameter, calls a subroutine to integrate the large-signal equations, and checks the event code list to see if any velocity changes or restart printouts occur in the section. If the loss in a section exceeds 170 dB, the section is treated as a sever, and the drift tube equations are integrated. At the end of the sever, the subroutine sets initial conditions and integrates the large-signal equations. After all the sections are integrated, the loss parameter is reset to its original value.

Subroutine CHANGE first checks to see if the velocity change includes a change in helix radius. If so, the fill factor is rescaled, and the voltage, beam velocity, and plasma frequency are recalculated.
The phase velocity of the new helix section is used to recalculate the propagation constants, the axial impedance is used to recalculate the Pierce's gain and velocity parameters, and the circuit loss is used to recalculate Pierce's loss parameter. Using the new values, the normalized helix voltage and its derivative are rescaled, and the plasma frequency reduction factor and the space-charge parameter are recalculated. Finally, the axial position, the length of the tube, and the print interval are renormalized.

G. Diagnostics

Subroutines ENERGY and BADIN are provided for diagnostic purposes. These subroutines can help indicate whether or not the model used is reasonable, or if the input file has incorrect data.

Subroutine ENERGY checks to see if energy is conserved in the computer model. It calculates the power lost by the beam, EBEAM, and the power contained in the circuit and its fields, EWAVE. In addition, it computes an energy balance, EBLNC = (|EBEAM| - |EWAVE|)/(|EBEAM| + |EWAVE|). If the model is a reasonable simulation, EBLNC will be near zero. However, this routine does not account for the circuit wave power lost in attenuators so, in these regions, EBLNC will not be near zero.

Subroutine BADIN is called when the input to subroutine DESOLV is incorrect. When called, BADIN prints an error message to the screen and halts program execution. This subroutine will be called only if the input data file has incorrect data.
H. Rowe's Space-Charge Expression

Rowe's space-charge weighting function is very complex and expensive to evaluate. In fact, the majority of the computer time used during a run is spent evaluating and integrating this function. In order to reduce the amount of time spent computing the space-charge forces, the space-charge weighting function can be represented by a series expansion. The subroutines that generate the series expansion are SPACE and SIMINT.

The expansion of a function, \(f(x) \), in a series of Chebyshev polynomials is given by

\[
f(x) = \frac{a_0}{2} + \sum_{i=1}^{\infty} a_i T_i(x)
\]

(46)

where \(T_i(x) \) are the Chebyshev polynomials and

\[
a_i = \frac{2}{\pi} \int_{-1}^{+1} \frac{f(x)T_i(x)}{\sqrt{1 - x^2}} \, dx
\]

(47)

Over the interval \((0, 2\pi)\), the function becomes

\[
F(\phi - \phi_0) = \frac{a_0}{2} \sum_{i=1}^{\infty} a_i T_i(x)
\]

(48)

where

\[
a_i = \frac{2}{\pi} \int_{-1}^{+1} \frac{F(\pi(x + 1))T_i(x)}{\sqrt{1 - x^2}} \, dx
\]
and

\[x = \frac{\phi - \phi'}{01} - 1 \]

As Fig. 8 shows, Rowe's space-charge function is odd. Therefore, only the odd order terms are used for the series expansion. For a fifth order expansion, the series is

\[F(\phi - \phi') = a_1 T_1 \left(\frac{\phi - \phi'}{01} - 1 \right) + a_3 T_3 \left(\frac{\phi - \phi'}{01} - 1 \right) + a_5 T_5 \left(\frac{\phi - \phi'}{01} - 1 \right) \]

(49)

Fig. 8. Rowe's space-charge function.
where

\[a_1 = \frac{2}{\pi} \int_{-1}^{1} \frac{F(\pi(x + 1))x}{\sqrt{1 - x^2}} \, dx \]

\[a_3 = \frac{2}{\pi} \int_{-1}^{1} \frac{F(\pi(x + 1)) \left(4x^3 - 3x\right)}{\sqrt{1 - x^2}} \, dx \]

\[a_5 = \frac{2}{\pi} \int_{-1}^{1} \frac{F(\pi(x + 1)) \left(16x^5 - 20x^5 + 5x\right)}{\sqrt{1 - x^2}} \, dx \]

This expression is plotted along with Rowe’s space-charge function for the case of \(f(a'/b') = 1.25 \) in Fig. 9. As the figure shows, the agreement between the two functions is very good. Figure 10 compares results
Fig. 10. Power plot using the polynomial approximation.

of a TWT1D run using the full space-charge expression to a run on the same tube using the polynomial approximation. The results of the two runs are almost identical, but the run using the approximation took only half the time of the run using Rowe's full space-charge expression.

Subroutine SPACE calculates the coefficients for the polynomial approximation using the function SIMINT. SIMINT solves the integral for the coefficients using Simpson's integration.
V. RESULTS AND CONCLUSION

In this section, the validity of TWTID is investigated. Two Teledyne MEC tubes were simulated by the program, and the results are compared to the measured output of the tubes.

The first tube modeled is an I/J band pulse tube. It has 6 attenuators, 4 pitch changes, and a diameter step. The tube was simulated, using 16 electron disks and Rowe's full space-charge expression. Several runs of the program were made to determine the saturated power across the band. The results of the program and the measured output power are plotted in Fig. 11. As the figure shows, the agreement across the band is very good. However, at the low end of the band, the predicted power is 1 to 2 dB higher than the measured output. In order to correct this, the program was rerun for the first three data points with the harmonic included. Since the tube is a broadband device, harmonics can have a significant effect on the output power at the low end of the band. The results of the runs with the harmonic included are shown in Fig. 12. As this figure shows, the harmonic does lower the saturated power and brings the 2 curves into closer agreement at the lower frequencies.
Fig. 11. Saturated power for an I/J band tube.

Fig. 12. Saturated power for an I/J band tube with harmonic.
The second tube modeled is an E/H band CW tube. It has 3 attenuators and 2 pitch changes. The tube was simulated, using 16 electron disks and the polynomial approximation to the space-charge expression. The results of the runs and the measured output are plotted in Fig. 13. Again, the agreement between the two curves is very good.

The simulations of the two tubes indicate that TWTID can be a useful tool for the design engineer. However, care must be taken whenever a nonlinear program is used. Many of the parameters that are used by such a program, such as the fill factor and the axial impedance, are not precisely known to the engineer. Yet these parameters have a large effect on the output of the program. Figure 14 shows the results that changing the fill factor can have on the output of the program. Note that changing the fill factor from 0.4 to 0.6 moves the saturation position as much as 2 inches.

Perhaps the biggest problem with any large-signal program based on Rowe's approach is the way it models attenuators. As was discussed in Section III, attenuators cause oscillations in the circuit wave phase angle. This problem was circumvented in TWTID by replacing attenuators with severs, but that is not a complete solution. This problem should be solved before more elaborate models of Rowe's approach are attempted.
Fig. 13. Saturated power for an E/H band tube.

Fig. 14. Effect of fill factor on saturation.
REFERENCES

APPENDIX A

TWTID SOURCE CODE LISTING

FTN77, S
SCDS ON
FILES(3, 3)
SEMA // TEMP/
SEMA // TEMP/
 PROGRAM TWTID(3, 91)
 C LARGE SIGNAL ANALYSIS PROGRAM FOR HELIX TWT’S
 C BASED ON THEORY BY J.E. ROWE & M.K. SHERBA
 C BY THERESA BRUNASSO
 C TELEDYNE MEC
 C 3165 PORTER DRIVE
 C PALO ALTO, CA 94304
 C LAST REVISED <860515.0717>
 C IMPLICIT DOUBLE PRECISION (A-H, O-Z)
 CHARACTER*64 IFILE, OFILE, PFILE
 INTEGER ATYPE(6), RSTART, SETU, SCS, SWITCH, SWLIST, TODAY(15),
 &TRIMLEN, TYPE
 DOUBLE PRECISION AISTEP(3), AITEMP(6, 3), CRTEMP(6), FI(3), ICOS,
 &IFUNCT, ISIN, IOGB, IGBP, K1, K2, K3, K4GB, K4GP, LA, LAMAX (6), LT, MAG,
 &NORMZ, RFSTEP(3), RTEMP(6, 3), SHAPE(20, 4), TAPER(6), VPSTEP(3),
 &VPTEMP(6, 3), ZA(19, 6), ZATNE(6), ZATNS(6), ZC(60), ZI(6), ZLIST(60),
 &ZRST(10)
 COMMON A(3), ANG(3), AXIMP(3), AXIMPN(60, 3), A0(3), B(3), BETA(3),
 &BETA(3), BP, C(3), CB(5), CKTRAD(60), DA(3), DPC, DPDB, DTHERM(3),
 &DF(3), EBEAM, EBLNC, EM, EPSI, ESAT, ETA, EWAVE, EXPL, FI(3), FILM, G(3),
 &GAMA(3), GSAT, ICOS(3), IFUNCT(64), INTSKP, ISIN(3), IO, K1, K2, K3,
 &LA(20, 6), MAG(3), NCHNG, ND, NSECT, NORMZ, NPR, NUMF, OLDPDB, OLDZ,
 &PDB, PDBI, PHI(64, 3), PHVLEN(60, 3), PI, PINI(3), PRNT, PSAT, PW,
 &RFLSS(3), RFLSSN(60, 3), SCS, SETU, SKPINT, SMALLA, SMALLC, SWLIST(140),
 &THETA(3), TPI, U(64), UTERM(64), UZERO, VP(3), VREL, V0, W(3), WP, WPC,
 &ZFINAL, YHALT, YPRINT, Z, ZF, ZSAT, ZSTOP(140)
 COMMON /TEMP/ FTEMP(64, 64)
 DATA SHAPE/ .023, .033, .05, .067, .092, .12, .15, .193, .257, .333, .46,
 &1., 1., 1., 1., 1., 1., 1., 1., 1., 1./
 CALL FPARM(IFILE, OFILE, PFILE)
 LU=1
 PI=4. *ATAN(1.)
 EM=1. /7588047011
 EPSI=8. 854187H2D-12
 'EM=e/m (Coul/kg)'
 'PERMITIVITY OF FREE SPACE (F/m)'
 'K1=1/(2*PI*EPSI*SQRT(2*e/m)')
 'K2=(m*c**2)/(2*e)'
 SMALLC=2. 99792458D08*39. 37
 'SPEED OF LIGHT (in/s)'
 NCHNG=0
 SETU=0
 FIRST=0
 ND=0
 DO 1=1, 64
 FTEMP(1, 1)=0
 END DO

- 41 -
OPENING DISPLAY

CALL FTIME(TODAY)
WRITE(LU,10)(TODAY(I),I=1,15)
10 FORMAT(/'15X,'TWTID ',15A2/)
IF (FILE(1:1),EQ.,CHAR(0)) THEN
WRITE(LU,20)
20 FORMAT(/' INPUT DATA FILE NAME? ',')
READ(LU,30)FILE
30 FORMAT(A)
END IF
IF (OFILE(1:1),EQ.,CHAR(0)) THEN
WRITE(LU,40)
40 FORMAT(/' OUTPUT FILE NAME? ',')
READ(LU,30)OFILE
END IF
IF (PFILE(1:1),EQ.,CHAR(0)) THEN
WRITE(LU,50)
50 FORMAT(/' POWER PLOT FILE NAME? ',')
READ(LU,30)PFILE
END IF
WRITE(LU,60)(FILE(I):TRIMLEN(FILE(I)),PFILE(I):TRIMLEN(PFILE(I))
60 FORMAT(/' ALL OUTPUT DATA WILL BE ROUTED TO FILE ',A,' & ALL PLOT DATA WILL BE ROUTED TO FILE ',A)

READ DATA FROM INPUT FILE

OPEN(99,FILE:IFILE):
READ(99,*:10,RAD,FILE,TPI,ZF)
READ(99,*:NUMF,NUMC,NUMA,NUMR)
DO I=1,NUMF
READ(99,*:FL(I),PIN(I),PHVEL(I),AXIMP(I),RFLSS(I),THETA(I))
END DO
IF (NUMC .GT. 0) THEN
DO I=1,NUMC
READ(99,*:ZI(I),CRTMP(I),TAPER(I))
END DO
READ(99,*:(VPTMP(I,J),I=1,NUMC),J=1,NUMF)
READ(99,*:(ATEMP(I,J),I=1,NUMC),J=1,NUMF)
READ(99,*:(RFTEM(I,J),I=1,NUMC),J=1,NUMF)
END IF
IF (NUMA .GT. 0) THEN
DO I=1,NUMA
READ(99,*:ZATNS(I),ZATNE(I),LAMAX(I),ATYPE(I))
END DO
DO I=1,NUMA
SET UP ATTENUATOR SECTIONS
 ASTEP=(ZATNE(I)-ZATNS(I))*0.05
 ZA(I)=ZATNS(I)+ASTEP
 LA(I)=LAMAX(I)*SHAPE(I,ATYPE(I))
 DO K=2,19
 LA(K,I)=LAMAX(I)*SHAPE(K,ATYPE(I))
 ZA(K,I)=ZA(K-1,I)+ASTEP
 END DO
 LA(20,I)=LAMAX(I)*SHAPE(20,ATYPE(I))
END DO
END IF
NUMT=0
K=0
IF (NUMC .GT. 0) THEN
SET UP TAPERS
DO I=1,NUMC
IM=1-1
IF (TAPER(I).EQ.0) THEN 'PITCH CHANGE'
 K=K+1
 NC=NUMT*10^K
 ZC=NC+ZI(I)
 CKTRAD(NC)=CRTTEMP(I)
 DO J=1,NUMF
 VPVEL(NC,J)=VPTEMP(I,J)
 AXIMP(NC,J)=AITEMP(I,J)
 RFLESS(NC,J)=RFTEMP(I,J)
 END DO
ELSE 'VELOCITY TAPER'
 NUMT=NUMT+1
 TSTEP=TAPER(I)+1
 NT=1+10*(NUMT-1)*K
 ZC(NT)=ZI(I)
 IF (I.EQ.1) THEN 'FIRST PITCH CHANGE'
 DO J=1,NUMF
 VPSEP(J)=(VPTEMP(I,J)-VPTEMP(IM1,J))*TSTEP
 AISTEP(J)=(AITEMP(I,J)-AITEMP(IM1,J))*TSTEP
 RFSTEP(J)=(RFTEMP(I,J)-RFTEMP(IM1,J))*TSTEP
 VPVEL(NT,J)=VPVEL(IM1,J)+VPSTEP(J)
 AXIMP(NT,J)=AXIMP(IM1,J)+AISTEP(J)
 RFLESS(NT,J)=RFLESS(IM1,J)+RFSTEP(J)
 END DO
 ELSE
 DO J=1,NUMF
 VPSEP(J)=(VPTEMP(I,J)-VPTEMP(IM1,J))*TSTEP
 AISTEP(J)=(AITEMP(I,J)-AITEMP(IM1,J))*TSTEP
 RFSTEP(J)=(RFTEMP(I,J)-RFTEMP(IM1,J))*TSTEP
 VPVEL(NT,J)=VPVEL(IM1,J)+VPSTEP(J)
 AXIMP(NT,J)=AXIMP(IM1,J)+AISTEP(J)
 RFLESS(NT,J)=RFLESS(IM1,J)+RFSTEP(J)
 END DO
 ELSE
 CKTRAD(NT)=CRTTEMP(I)
 DO NSTEP=2,10
 DO J=1,NUMF
 NT=10*(NUMT-1)+NSTEP*K
 NTM1=NT-1
 ZC(NT)=ZI(I)+(NSTEP-1)*TSTEP
 CKTRAD(NT)=CRTTEMP(I)
 VPVEL(NT,J)=VPVEL(NTM1,J)+VPSTEP(J)
 AXIMP(NT,J)=AXIMP(NTM1,J)+AISTEP(J)
 RFLESS(NT,J)=RFLESS(NTM1,J)+RFSTEP(J)
 END DO
 END DO
 END IF
END IF
END IF
END DO
END IF
IF (NUMR.GT.0) READ(99,*)(ZRST(I),I=1,NUMR)
READ(99,*)SCS,NELECT,DPC,NPR,INTSKP,HSTART,FDUMMY
IF (RSTART.EQ.0) CLOSE(99)

C =---
C COMPUTE ROWE VARIABLES AND PIERCE PARAMETERS
C --
V2=V0*(1.-10*V0**(-1.5)*K1*(1.-.5*log(FILL))
VREL=K2*(1.-1.)/(1.+K3*V2)**2) 'RELATIVISTIC VOLTAGE'

- 43 -
UTZERO = SQRT(2.*EM*VREL)*39.37 ! BEAM VELOCITY (in/s)!
SMALLA = RAD ! HELIX RADIUS (in)!
BP = FILL*SMALLA
DENOM = PI*EPSI*UTZERO*BP*BP
WP = SQRT(EM*10*61024./DENOM) ! PLASMA FREQ (rads/s)!
DO N=1,NUMF
 VP(N) = PHVEL(N)*SMALLC ! PHASE VELOCITY (in/s)!
 W(N) = 2.*PI*PI*(N)*1.D09 ! FREQUENCY (rads/s)!
 BETA(N) = W(N)/VP(N) ! PROPAGATION CONST.!
 BETA0(N) = W(N)/SMALLC
 GAMMA(N) = SQRT(BETA(N)**2 - BETA0(N)**2) ! RADIAL PROP. CONST.!
 CALL BESSEL(IOGB, IIGB, KOB, KIGB, GAMMA(N)*BP)
 ZAVG = AXIMP(N)*(IOGB**2 - I1GB**2) ! AVERAGED IMPEDANCE!
 C(N) = (IO*ZAVG*.25/VP(N)***(1./3.) ! GAIN PARAMETER!
 B(N) = (UTZERO - VP(N))/C(N)*VP(N) ! VELOCITY PARAMETER!
 LT = RFLSS(N)/LOG10(EXP(1.))
 D(N) = LT*.05/(W(N)/UTZERO*C(N)) ! LOSS PARAMETER!
 A(N) = SQRT((10.*(PINI(N)*.1-3.))/(2.*C(I)**IO*VREL))
 AO(N) = A(N)
 THETA(N) = THETA(N)*PI/180. ! INJECTION ANGLE (rads)!
END DO
AB = SMALLA*BETA(1)
RB = BP*BETA(1)
W1C1 = W(1)*C(1)
WPWC = WP/W1C1
IF (SCS .GT. 0) THEN ! COMPUTE SPACE CHARGE REDUCTION FACTOR!
 CALL SPACE(AB, BB, SCS, R, EXPI, CB, PI)
ELSE ! SPACE CHARGE EQUALS ZERO!
 WPWC = 0.
ENDIF IF
WQ = R*WP ! REDUCED PLASMA FREQUENCY!
NORMZ = W1C1/UTZERO
QC = .25/C(1)**((WQ/(W(1)+WQ))**2 ! SPACE CHARGE PARAMETER!
YFINAL = ZF*NORMZ
PRINT = DPC*NORMZ
PSAT = PINI(I)
C==
C INITIALIZE CIRCUIT WAVE, OR USE RESTART DATA
C==
IF (RESTART .EQ. 1) THEN ! READ RESTART DATA!
 READ(99,*)Y
 DO I=1,NUMF
 READ(99,*)A(I), G(I), THETA(I), F(I)
 END DO
 DO I=1,NELECT
 READ(99,*)(PHI(I,J), J=1,NUMF)
 END DO
 READ(99,*)(U(I), I=1,NELECT)
 IF (SCS .EQ. 2) READ(99,*)(CB(I), I=1,5)
 CLOSE(99)
ELSE ! INITIALIZE BEAM & CIRCUIT WAVE!
 Y = 0
 DO I=1,NELECT
 U(I) = 0
 END DO
 IF (FDUMMY .EQ. 0) THEN
 DO N=1,NUMF
 RN = FLOW(T准备的)
RI=FLOAT(I)
PHI(I,N)=2.*HN*PI*(RI-1.)/FLOAT(NELECT)+(HN*THETA(1)
&
-THETA(N))
END DO
END DO
ELSE
DO N=1,NUMF
M=F(N)/FDUMMY
DO I=1,NELECT
PHI(I,N)=2*M*PI*(I-1.)/FLOAT(NELECT)-THETA(N)
END DO
END DO
ENDIF
DO N=1,NUMF
'INITIAL COND. FOR CIRCUIT WAVE'
G(N)=-D(N)*A(N)*(1.+C(N)*B(N))*W(N)*C(N)/W1C1
F(N)=-B(N)*W(N)*C(N)/W1C1
END DO
ENDIF
PW=2.*C(1)*10*VREL*A(1)*A(1)*(1.-C(1)*F(1))/(1+C(1)*B(1))
OLDPDB=10*LOG10(PW)+30
OLDZ=Y/NORMZ
SKPINT=0
C===
C PRINT OUT VALUES CALCULATED FROM INPUT
C
OPEN(98,FILE='OFILE')
OPEN(97,FILE='PFILE')
IF (NPR.EQ. 4) OPEN(96,FILE='ELECTRON.PLT')
WRITE(97,3)OLDZ,(PINI(N),N=1,NUMF), (THETA(M),M=1,NUMF)
3 FORMAT(1X,F7.4,6(2X,F8.4))
CALL FTIME(TODAY)
WRITE(98,10)(TODAY(I),I=1,15)
WRITE(98,5)IFILE(1:TRIMLEN(IFILE))
5 FORMAT(20X,'RESULTS FOR INPUT FILE ',A//)
WRITE(98,15)
15 FORMAT('N FREQ.(gHz) INPUT PWR.(dBm) REL. PHASE(rad)')
DO N=1,NUMF
WRITE(98,25)N,FI(N),PINI(N),THETA(N)
25 FORMAT(1X,I1,3X,F8.4,7X,F8.4,10X,F8.4)
END DO
WRITE(98,35)10,V0,VREL,UZERO/SMALLC,TP1,WP,R
35 FORMAT(//5X,'CATHODE CURRENT(Amps)= ',F7.4/16X,'HELIX VOLTAGE(Volt &m)= ',F9.2/12X,'EFFECTIVE VOLTAGE(Volts)= ',F9.2/12X,'NORMALIZED B &EAM VELOCITY= ',F7.4/20X,'HELIX PITCH(tpi)= ',F6.3/12X,'PLASMA FRE &QUENCY(rads/s)= ',E11.4/3X,'PLASMA FREQUENCY REDUCTION FACTOH= ',F &7.4)
WRITE(98,45)QC,SMALLA,FILL,DPC,NELECT,NUMA,NUMC
45 FORMAT(14X,'SPACE CHARGE PARAMETER= ',F7.4/15X,'MEAN HELIX RADIUS(&in)= ',F8.5/20X,'BEAM FILL FACTOR= ',F7.4/10X,'CIRCUIT PRINT INTER &&VAL(in)= ',F7.4/12X,'NUMBER OF ELECTRON DISKS= ',I2/15X,'NUMBER OF & ATTENUATORS= ',I2/19X,'NUMBER OF CHANGES= ',I2/
WRITE(98,55)
55 FORMAT('N NORM. PHASE VEL.(Vp/c) AXIAL IMP.(ohms) GAIN PARAMET &ER')
DO N=1,NUMF
WRITE(98,65)N,VP(N)/SMALLC,AXIMP(N),C(N)
65 FORMAT(1X,I1,6X,F8.4,13X,F8.4,13X,F5.4)
END DO
C===
- 45 -
SORT ALL EVENTS INTO AXIAL POSITION LIST

DO I=1,140
 ZSTOP(I)=0
 SWLIST(I)=1
END DO

NSTOP=0
IF (NUMR .GT. 0) THEN !SORT RESTART DATA POSITIONS!
 DO I=1,NUMR
 ZLIST(I)=ZRST(I)
 END DO
 NLIST=NUMR
 TYPE=2
 CALL ZSORT(TYPE,ZLIST,NLIST,ZSTOP,NSTOP,SWLIST)
END IF

IF (NUMA .GT. 0) THEN !SORT ATTENUATOR START POSITIONS!
 DO I=1,NUMA
 ZLIST(I)=ZATNS(I)
 END DO
 NLIST=NUMA
 TYPE=3
 CALL ZSORT(TYPE,ZLIST,NLIST,ZSTOP,NSTOP,SWLIST)
 DO I=1,NUMA !SORT ATTENUATOR STOP POSITIONS!
 ZLIST(I)=ZATNE(I)
 END DO
 TYPE=5
 CALL ZSORT(TYPE,ZLIST,NLIST,ZSTOP,NSTOP,SWLIST)
 DO I=1,NUMA !SORT ATTENUATOR SECTIONS!
 DO J=1,19
 ZLIST(J)=ZA(J,I)
 END DO
 NLIST=19
 TYPE=1
 CALL ZSORT(TYPE,ZLIST,NLIST,ZSTOP,NSTOP,SWLIST)
 END DO
END IF

IF (NUMC .GT. 0) THEN !SORT CIRCUIT CHANGES!
 NLIST=NUMC+9*NUMT
 DO I=1,NLIST
 ZLIST(I)=zc(I)
 END DO
 TYPE=7
 CALL ZSORT(TYPE,ZLIST,NLIST,ZSTOP,NSTOP,SWLIST)
END IF

IF (RSTART .EQ. 1) THEN !FIND RESTART POSITION!
 DO N=1,NSTOP
 SWITCH=SWLIST(N)
 CALL EVENT(SWITCH,ICHNG,IRSTRT,IASTRT,IASTOP)
 IF (IRSTRT .EQ. 1) ND=N
 END DO
END IF

END

C PROGRAM CONTROL CODE
C
C PROGRAM CONTROL CODE
C
DO WHILE (ND .LE. NSTOP)
 ND=ND+1
 YHALT=ZSTOP(ND)*NORMZ
 CALL INTSUB(Y,FIRST)
 SWITCH=SWLIST(ND)

 - 46 -
CALL EVENT(SWITCH,ICHNG,IRSTRT,IASTRT,IASTOP)
IF (IRSTRT .EQ. 1) CALL OUTRS(Y)
IF (ICHNG .EQ. 1) CALL CHANGE(Y)
IF (IASTRT .EQ. 1) CALL ATTEN(Y,FIRST,IASTOP)
END DO
YHALT=ZF*NORMZ
CALL INTSUB(Y,FIRST)
SSGAIN=PDB1-PINI(1)

C ENDING SUMMARY
C-----------------------------
IF (PDB1.GT.PSAT) THEN !TUBE HAS NOT SATURATED!
PSAT=PDB1
GSAT=PDB1-PINI(1)
ESAT=ETA*100.
ZSAT=Z
END IF
WRITE (98,70) PSAT,GSAT,ESAT,ZSAT,SSGAIN
70 FORMAT(/26X,'ENDING PRINT OUT'/19X,'SATURATED POWER (dBm)=' ,F7.3/
&17X,'GAIN AT SATURATION (dB)= ',F7.3/15X,'SATURATION EFFICIENCY (%
&)= ',F7.3/15X,'LENGTH AT SATURATION (in)= ',F7.3/18X,'SMALL SIGNAL
& GAIN (dB)= ',F7.3)
CALL FTIME(TODAY)
WRITE (98,10)(TODAY(I), I=1,15)
CLOSE(98)
CLOSE(97)
STOP
END

C SUBROUTINE SPACE(AB,BB,SCS,R,EXP1,CB,PI)
C COMPUTES THE SPACE CHARGE REDUCTION FACTOR (R), THE
C DERIVATIVE OF THE LOG(1-R), AND THE COEFFICIENTS (CB) FOR
C THE POLYNOMIAL APPROXIMATION TO THE SPACE CHARGE FUNCTION
C---
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
INTEGER SCS
DOUBLE PRECISION IOAB,I1AB,KOAB,K1AB,IOBB,I1BB,KOBB,K1BB,CA(5),
& CB(5)
EMA SCS,EXP1,CB,PI
CALL BESSEL(IOAB,I1AB,KOAB,K1AB,AB)
CALL BESSEL(IOBB,I1BB,KOBB,K1BB,BB)
RO=SQRT(ABS(1-BB*(KOAB*I1BB+IOAB*K1BB)/IOAB))
F1=LOG(1-RO)
DELTA=.001
BB=BB+DELTA
CALL BESSEL(IOBB,I1BB,KOBB,K1BB,BB)
R=SQRT(ABS(1-BB*(KOAB*I1BB+IOAB*K1BB)/IOAB))
F2=LOG(1-R)
BB=BB+DELTA
CALL BESSEL(IOBB,I1BB,KOBB,K1BB,BB)
R=SQRT(ABS(1-BB*(KOAB*I1BB+IOAB*K1BB)/IOAB))
F3=LOG(1-R)
F=((-F2*4*F1-3*FO)/(2*DELTA) !CENTRAL DIFFERENCE FORMULA;
R=RO
BB=BB-2*DELTA
EXP1=EXP(BB*F)
IF (SCS .EQ. 2) THEN !POLYNOMIAL APPROXIMATION:
DO 1=1.5
CA(I)=0

- 47 -
CB(I)=0
END DO
DO I=1,3
N=2*I-1
CA(I)=2./PI*SIMINT(N, EXP1)
CA(I)=CA(I)-SQRT(.002)/PI
END DO
CB(1)=CA(1)-3.*CA(2)+5.*CA(3)-7.*CA(4)+9.*CA(5)
CB(2)=4.*CA(2)-20.*CA(3)+56.*CA(4)-120.*CA(5)
CB(3)=16.*CA(3)-112.*CA(4)+432.*CA(5)
CB(4)=64.*CA(4)-576.*CA(5)
CB(5)=256.*CA(5)
END IF
RETURN
END

FUNCTION SIMINT(N, EXP1)
USES SIMPSON INTEGRATION TO COMPUTE THE COEFFICIENTS FOR THE
POLYNOMIAL APPROXIMATION TO THE SPACE CHARGE FUNCTION

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DOUBLE PRECISION LOWLIM
EMA EXP1
SPCH(Y, EXP1) = .5/PI*(.5*(PI-Y)-2.*ATAN(SIN(Y)/(EXP1-COS(Y)))
& + ATAN(SIN(Y)/(EXP1**2-COS(Y)))) ! ROWE'S SPACE CHARGE FUNCTION!
CHEV(N, X)=COS(N*ACOS(X)) ! CHEBYSHEV POLYNOMIALS!
F(X)=SPCH(PI*(X+1.), EXP1)*CHEV(N, X)/SQRT(1.-X*X) ! INTEGRAND!
PI=4.*ATAN(1.)
DELTA=1.D-04
LOWLIM=-1.+DELTA
UPLIM=1.-DELTA
SUM2=0
SUM4=0
X=LOWLIM+DELTA
DO WHILE (X.LT. UPLIM)
 SUM4=SUM4+F(X)
 SUM2=SUM2+F(X+DELTA)
 X=X+2.*DELTA
END DO
SIMINT=DELTA/3.*(4.*SUM4+2.*SUM2+F(LOWLIM)+F(UPLIM)
& + 4.*F(UPLIM-DELTA))
RETURN
END

SUBROUTINE BESSEL(A, B, C, D, X)
RETURNS MODIFIED BESSEL FUNCTIONS OF 1ST AND 2ND KIND
A=10, B=11, C=KO, D=K1, X=ARGUMENT

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
IF (X.LT. 1.0D-10) X=1.0D-10
A=1.
B=1.
C=0.
G1=1.
G2=1.
G3=0.
G4=0.
G5=.5772157+LOG(X*.50)
G6=X*X*.25
10 G4=G4+1.
G3=G3+1./G4
G1=G1*G6/(G4+G4)
G2=G2*G6/(G4*(G4+1.))
A=A+G1
B=B+G2
C=C+G1*G3
IF (G1*G3 .GT. 1.0D-06) GO TO 10
C=C-A*G5
B=.5*B*X
IF (X .GE. 2.) THEN
X1=2./X
CK=X1*5.3208D-04 - 2.5154D-03
CK=X1*CK+5.87872D-03
CK=X1*CK-7.83258D-02
CK=X1*CK+1.25331414
C=CK/(SQRT(X)*EXP(X))
END IF
D=(1./X-B*C) A
RETURN
END

SUBROUTINE INTSUB(Y,FIRST)
C INSURES THAT THE APPROPRIATE PRINTOUTS ARE CONDUCTED,
C AND THAT THE INTEGRATION GOES TO THE END OF THE INTERVAL
C
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
INTEGER SCS,SWITCH,SWLIST,SETU
DOUBLE PRECISION ICOS,IFUNCT,ISIN,IO,K1,K2,K3,LA,MAG,NORMZ
COMMON A(3),ANG(3),AXIMP(3),AXIMPN(60,3),A0(3),B(3),BETA(3),
& BETA0(3),BP,C(3),CB(5),CKTRAD(60),D(3),DA(3),DPC,DPDB,DTHETA(3),
& DF(3),EBEAM,EBLNC,EM,EP,ESAT,ETA,EWAVE,EXP1,F(3),FILL,G(3),
& GAMA(3),GSAT,ICOS(3),IFUNCT(64),INTSKP,ISIN(3),IO,K1,K2,K3,
& LA(20,6),MAG(3),NATTN,NCHNG,ND,NELECT,NORMZ,NPR,OLDPDB,OLDZ,
& PDB,PDB1,PHI(64,3),PHVEL(3),PHVELN(60,3),PI,PINI(3),PRNT,PSAT,PW,
& RFLSS(3),RFLSSN(60,3),SCS,SETU,SKPINT,SMALLA,SMALLC,SWLIST(140),
& TPI,U(64),UFRM(64),UZERO,VP(3),VREL,V0,W(3),WP,WPWC,
& YFINAL,YHALT,YPRINT,Z,ZF,ZSAT,ZSTOP(140)
IF (YHALT .GT. YFINAL) YHALT=YFINAL
DO YPRINT=Y+PRNT,YHALT,PRNT
CALL DIFF(Y)
Z=Y/NORMZ
CALL OUTPUT(FIRST)
END DO
IF (Y .LT. YHALT) THEN
YPRINT=YHALT
CALL DIFF(Y)
Z=Y/NORMZ
CALL OUTPUT(FIRST)
END IF
RETURN
END

SUBROUTINE ZSORT(TYPE,ZLIST,NLIST,ZSTOP,NSTOP,SWLIST)
C Sorts the positions at which circuit changes, attenuators,
C etc. occur, and forms them into a single list.
C
ZLIST=LIST OF STOP POSITIONS, NLIST=LENGTH OF ZLIST,
ZSTOP=SORTED LIST OF STOP POSITIONS, NSTOP=LENGTH OF ZSTOP
SWLIST=LIST OF EVENT TYPES CORRESPONDING TO ZSTOP
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
INTEGER SWLIST,TYPE
DIMENSION ZLIST(NLIST),ZSTOP(140),SWLIST(140)
EMA ZSTOP,SWLIST
DO I=1,NLIST
 DO WHILE (ZLIST(I) .GT. ZSTOP(N))
 N=N+1
 IF (N .GT. NSTOP) GO TO 200
 END DO
 IF (ZLIST(I) .NE. ZSTOP(N)) THEN
 DO J=NSTOP,N,-1
 ZSTOP(J+1)=ZSTOP(J)
 SWLIST(J+1)=SWLIST(J)
 END DO
 SWLIST(N)=1
 END IF
 200 IF (NSTOP .EQ. 0) N=I
 ZSTOP(N)=ZLIST(I)
 NSTOP=NSTOP+1
 SWLIST(N)=SWLIST(N)*TYPE
END DO
RETURN
END
SUBROUTINE EVENT(SWITCH,ICHNG,IRSTRT,IASTRT,IASTOP)
C CHECKS SWLIST TO DETERMINE WHICH EVENTS OCCUR.
C EVENT TYPE CODE: 2--PRINT RESTART DATA; 3--ATTENUATOR START;
C 5--ATTENUATOR STOP; 7--CIRCUIT CHANGE
C
INTEGER SWITCH
ICHNG=0
IRSTRT=0
IASTRT=0
IASTOP=0
TEST=MOD(SWITCH,2)
IF (TEST .EQ. 0) IRSTRT=1
TEST=MOD(SWITCH,3)
IF (TEST .EQ. 0) IASTRT=1
TEST=MOD(SWITCH,5)
IF (TEST .EQ. 0) IASTOP=1
TEST=MOD(SWITCH,7)
IF (TEST .EQ. 0) ICHNG=1
RETURN
END
SUBROUTINE CHANGE(Y)
C RECOMPUTES CIRCUIT PARAMETERS WHEN A CHANGE IS REACHED
C
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
INTEGER SCS,SWITCH,SWLIST,SETU
DOUBLE PRECISION ICOS,IFUNCT,ISIN,IO,K1,K2,K3,IOGB,I1GB,K0GR,K1GR,
&LA,LT,MAG,NORMZ
COMMON A(3),ANG(3),AXIMP(3),AXIMPN(60,3),AO(3),B(3),BETA(3),
&BETA(3), BP, C(3), CB(5), CKTRAD(60), D(3), DA(3), DPC, DPDR, DTHETA(3), &DF(3), EBEAM, EBLNC, EM, EPS1, FSAT, ETA, EWAVE, EXP1, F(3), FILL, G(3), &GAMA(3), GSAT, ICOS(3), IFUNCT(64), INTSKP, ISN(3), IO, K1, K2, K3, &LA(20, 6), MAG(3), NATTN, NCHNG, ND, NELECT, NORMZ, NPR, NUMF, OLDPPB, CD'0, &PDB, PDBI, PHI(64, 3), PHVEL(3), PHVLEN, 60, 3, PI, PINI(3), PRTNT, PSAT, PW, &RFLSS(3), RFLSSN(60, 3), SCS, SETU, SKPI, SMALLA, SMALLC, SMLIST(140), &THETA(3), TPI, U(64), UTERM(64, UZERO, VP(3), VREL, VO, W(3), WP, WPWC, &VFINAL, YHALT, YPRINT, Z, ZF, ZSAT, ZSTOP(140)
NCHNG=NCHNG+1
ANEW=CKTRAD(NCHNG)
IF (ANEW .NE. SMALLA) THEN
 'NEW HELIX RADIUS'
 FILL=FILL*SMALLA/ANEW
 V2=V0*(1.-IO*V0**(-1.5))*K1*(.5-LOG(FILL))
 VREL=K2*(1.-1.)/(1.+K3*V2)**2
 UZERO=SQRT(VREL)*2.33502D+07
 DENOM=PI*EPSI*UZERO*BP*BP
 WP=SQRT(EPSI*IO*61024./DENOM)
END IF
DO J=1, NUMF
IF (PHVELN(NCHNG, 1) .LT. 1) THEN
 'PHASE VELOCITY'
 VPNEW=PHVEL/NCHNG, J)*SMALLA
 BETANU=V(J)*BETA(J)/VPNEW
 GAMANU=SQRT(BETANU**2-BETA(J)**2)
 'TPI'
 TPI=PHVELN(NCHNG, 1)
ELSE
 GAMANU=GAMA(J)*ANEW*PHVEL/NCHNG, 1)/(SMALLA*TPI)
 BETANU=SQRT(GAMANU**2-BETA(J)**2)
 VPNEW=W(J)/BETANU
 TPI=PHVELN(NCHNG, 1)
END IF
Z1=AXIMP(J)
IF (AXIMPJ(NCHNG, J) .EQ. 99) THEN
 'OLD CKT IMPEDANCE'
 AXIMP(J)=AXIMP(NCHNG, J)
 'TPI SCALING'
 AXIMP(J)=AXIMP(J)*BETA(J)/RETANU**3*(GAMANU*GAMA(J))**4*EXP(-.6664*GAMANU*ANEW'/EXP-.6f364*GAMA(J)*SMALLA)**3
ELSE
 AXIMP(J)=AXIMP(NCHNG, J)
END IF
Z1=AXIMP(J)
SMALLA=ANEW
GAMA(J)=GAMANU
RETANU=BETANU
VP(J)=VPNEW
CALL BESSEL(IOGR, K1GB, K2GB, 6AMA(J)*BP)
ZAVG=AXIMP(J)*IOGB**2+1.1GB**2
C(J)=IO*ZAVG*25./VREL**2
BJ=UZERO/VP(J)**1. C(J)
VREL=K2*(L-1./(1.+K3*V2)**2) 'RELATIVISTIC VOLTAGE'
UIZERO:SQRT(VREL)*2.33502D+07 'BEAM VELOCITY (in/s)'
DENOM PI*EPSI*UZERO*BP*BP
WP=SQRT(EPSI*IO*61024./DENOM)
'PLASMA FREQ. (rad/s)'
END IF
DO J=1, NUMF
IF (SS .LT. 0) THEN
 C ALL SPACE
 ELSEF
END DO
BB=BP*RETA(1)
AB=SMALLA*BETA 1)
W1C1=W1*C(1)
WPWC=WP/W1C1
IF (SCS .GE. 0) THEN
 CALL SPACE/AB, BB, SCS, R, EXP1, CB, J1
ELSE
 - 51 -
SUBROUTINE ATTEN(Y,FIRST,IASTOP)
 ACCOMODATES FOR LOSS DUE TO AN ATTENUATOR, AND CALLS THE
 DRIFT TUBE EQUATIONS FOR A SEVER

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
INTEGER SCS,SWITCH,SWLIST,SETU
DOUBLE PRECISION ICOS,IFUNCT,ISIN,I0,K1,K2,K3,LA,LMAX,LOG10E,
LOSS,MAG,NORMZ
COMMON A(3),ANG(3),AXIMP(3),AXIMP'N(60,3),AO(3),B(3),BETA(3),
&BETA0(3),BP,C(3),CB(5),CKTRAD(60),D(3),DA(3),DPD,BPDB,DTHETA(3),
&DF(3),EBEAM,EBLNC,EM,EPSI,ESAT,ETA,EWAVE,EXP1,F(3),FILL,G(3),
&GAMA(3),GSAT,ICOS(3),IFUNCT(64),INTSKF,ISIN(3),IO,K1,K2,K3,
&LA(20,6),MAG(3),NATTN,NCHNG,ND,NELECT,NORMZ,NPR,NUMF,OLDPDB,OLDZ,
&PDB,PDB1,PHI(64,3),PHVEL(3),PHVELN(60,3),PI,PINI(3),PRNT,PSAT,PW,
&RFLSS(3),RFLSSI(60,3),SCS,SETU,SKPINT,SMALLA,SMALLC,SWLIST(140),
&THETA(3),TP1,UF64),UTERM(64),UZERO,VP(3),VREL,V0,W(3),WP,WPWC,
&YFINAL,YHALT,YPRINT,Z,ZF,ZSAT,ZSTOP(140)
LMAX=170.
LOG10E=LOG10(EXP(1.))
NATTN=NATTN+1
DO NSEC=1,20
 !20 ATTENUATOR SECTIONS!
 ND=ND+1
 YHALT=YZSTOP(ND)*NORMZ
 DO J=1,NUMF
 RECOMPUTE LOSS PARAMETER!
 LOSS=RFLSS(J)+SQRT(W(J)/W(1))*LA(NSEC,NATTN)
 D(J)=LOSS*.05/W(1)/UZERO*C(J)*LOG10E !LOSS PARAMETER!
 END DO
 IF (LA(NSEC,NATTN) .GT. LMAX) THEN 'TREAT AS A SEVER!
 DO I=1,NUMF
 A(I)=MAX(AO(I)*.01D0,A(I)*.01D0)
 THETA(I)=0
 G(I)=0
 F(I)=0
 END DO
 CALL DRIFT(Y)
 Z=Y/NORMZ
 CALL OUTPUT(FIRST).
 IF (LA(NSEC+1,NATTN) .LE. LMAX) THEN 'INITIAL CONDITIONS'
 DO I=1,NUMF
 CALL FINT(PHI,U,C(1),J,TSIN,TGOS,NELECT,UTERM,PI)
 ISIN(I)-TSIN
 ICOS(I)-TCONS
 END DO
 W1=W(1)*C(1)
 DO N=1,NUMF
 WW1=W(N)*W(1)
 WW2=WW1*WW1
 END DO
 IFU(I)=W(1)
 IFUEND=1.
BTERM \cdot C(N) \cdot B(N) / C(1)
DTERM \cdot C(N) \cdot D(N)
ZNORM \cdot AXIMP(N) / AXIMP(1)
THETA = N \cdot 0.0
F(N) = WN1 / C(1) - WN1 \cdot \text{SORT}(ABS(BTERM \cdot BTERM \cdot ZNORM)
& \cdot \text{BTERM} \cdot (A(N) \cdot PI) \cdot (\text{ICOS(N)} + DTERM \cdot \text{ISIN(N)}))
FTERM = F(N) \cdot W(N) / WIC1
G(N) = WN2 \cdot BTERM / FTERM \cdot (A(N) \cdot C(N) \cdot D(N) \cdot BTERM + 0.5 / PI
& \cdot ZNORM \cdot (\text{ISIN(N)} - DTERM \cdot \text{ICOS(N)}))
END DO
ELSE
'\text{TREAT AS AN ATTEN'}
END IF
CALL INTSUB(Y, FIRST)
END IF
SWITCH = SWLIST(N)
CALL EVENT(SWITCH, ICHNG, IRSTRT, IASTRT, IASTOP)
IF (IRSTRT .EQ. 1) THEN
CALL OUTRS(Y)
ND = ND + 1
END IF
IF (ICHNG .EQ. 1) THEN
CALL CHANGE(Y)
ND = ND - 1
END IF
IF (IASTOP .EQ. 1) GO TO 10 'END OF ATTENUATOR'
END
DO 10 J = 1, NUMF
'D(J) = RFLSS(J) \cdot 0.05 / (W(J) / UZERO \cdot C(J) \cdot \text{LOG10E})
END DO
RETURN
END
*
SUBROUTINE OUTPUT(FIRST)
C CONTROLS PRINTOUT AT EACH AXIAL POSITION
C
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
INTEGER SCS, SWITCH, SWLIST, SETU
DOUBLE PRECISION ICOS, IFUNCT, ISIN, IO, K1, K2, K3, LA, MAG, NORMZ, PDBI(3)
COMMON A(3), ANG(3), AXIMP(3), AXIMPN(60, 3), AO(3), B(3), BETAN(3),
& BETAO(3), BP, C(3), CB(5), CKTRAD(60), D(3), DA(3), DPC, DPDB, DTHETA(3),
& DIF(3), EBEAM, EBLNC, EM, EPSI, ESAT, ETA, EWAVE, EXP1, F(3), FILL, G(3),
& GAMMA(3), GSAT, ICOS(3), IFUNCT(64), INTSKP, ISIN(3), IO, K1, K2, K3,
& LA(20, 6), MAG(3), NATTN, NCHNG, ND, NELECT, NORMZ, NPR, NUMF, OLDPDB, OLDZ,
& PDB, PDB1, PHI(64, 3), PHVEL(3), PHVELN(60, 3), PI, PINI(3), PRNT, PSAT, PW,
& RFLSS(3), RFLSSN(60, 3), SCS, SETU, SKPINT, SMALLA, SMALLC, SWLIST(140),
& THETA(3), TPI, U(64), UTERM(64), UZERO, VP(3), VREL, VO, W(3), WP, WPWC,
& YFINAL, YHALT, YPRINT, Z, ZF, ZSAT, ZSTOP(140)
LU = 1
PW = 2 \cdot C(1) \cdot 10 \cdot \text{VREL} \cdot A(1) \cdot A(1) \cdot (1. \cdot C(1) \cdot F(1)) / (1 \cdot C(1) \cdot B(1))
PDB = 10 \cdot \text{LOG10} \cdot (\text{ABS(PW)}) + 30
DPDB = PDB - OLDPDB / (Z - OLDZ)
OLDPDB = PDB
OLDZ = Z
ETA = PW / (IO \cdot VO)
PDB1 = PDB
PDB1 = PDB
IF ((DPDB .LE. 0.0) .AND. (PDB1 .GT. PSAT)) THEN 'NEW SAT. POWER'
PSAT = PDB1
- 53 -
GSAT=PDB1-PINI(1)
ESAT=ETA*100.
ZSAT=Z
END

IF (FIRST .NE. 1) THEN
WRITE(98,5)
END IF

WRITE(98,10)
*((NPR .EQ. 2) .OR. (NPR .EQ. 4))
& CALL ENERGY(A,AO,C,U,NUMF,NELECT,EWAVE,EBEAM,EBLNC)

IF (FIRST .NE. 1) THEN
WRITE(98,10)
END IF

WRITE(98,20)

6 FORMAT(/5X'EBEAM',8X,'EWAVE',8X,'EBLNC')

IF (FIRST .NE. 1) THEN
WRITE(98,30) PDB,B(J),THETA(J)
END IF

IF ((NPR .EQ. 2) .OR. (NPR .EQ. 4)) THEN
WRITE(98,35) EBEAM, EWAVE, EBLNC
END IF

RETURN

SUBROUTINE OUTRS(Y)
C
PRINTS OUT RESTART DATA
C
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
INTEGER SCS,SWITCH,SWLIST,SFTU
DOUBLE PRECISION ICOS,IFUNCT,ISIN,10,10GB,IIGB,KOGB,KIGB,K1,K2,K3,
&LA,LT,MAG,NORMZ
COMMON A(3),ANG(3),AXIMP(3),AXIMPN(60,3),AO(3),B(3),BETA(3),
&BETA0(3),BP,C(3),CB(5),CKTRAD(60),D(3),DA(3),DPC,DPDB,DTETA(3),
&DF(3),EBEAM,EBLNC,EM,EPST,ESAT,ETA,EWAVE,EXPL,F(3),FILL,G(3),
&GAMA(3),GSAT,ICOS(3),IFUNCT(64),INTSKP,ISIN(3),IO,K1,K2,K3,
&LA(20,6),MAG(3),NATTN,NCHNG,ND,NELECT,NORMZ,NPR,NUMF,OLDPDB,OLDZ,
&PDB, PDB1, PHI(64,3), PHVEL(3), PHVELN(60,3), PI, PINI(3), PRNT, PSAT, PW,
&RFSS(3), RFLSSN(60,3), SCS, SETU, SKPINT, SMALLA, SMALLC, SWLIST(140),
&THETA(3), TPI, U(64), UTERM(64), UZERO, VP(3), VREL, VO, W(3), WP, WPWC,
&YFINAL, YHALT, YPRINT, Z, ZF, ZSAT, ZSTOP(140)
WRITE(98,10)Y
10 FORMAT('// RESTART INFORMATION FOR Ya',F7.3/)
WRITE(98,20)
20 FORMAT(6X,'A',11X,'DA',8X,'THETA',7X,DTHETA)
DO I=1,NUMF
 WRITE(98,30)A(I),DA(I),THETA(I),DTHETA(I)
30 FORMAT(4(1X,E10.4,1X))
END DO
WRITE(98,40)
40 FORMAT('// ELECTRON PHASE POSITIONS')
DO I=1,NELECT
 WRITE(98,30)(PHI(I,J),J=1,NUMF)
END DO
WRITE(98,50)
50 FORMAT('// ELECTRON VELOCITIES')
WRITE(98,30)(U(I),I=1,NELECT)
IF (SCS .EQ. 2) THEN
60 FORMAT('// COEFF. FOR POLYNOMIAL EXPANSION OF SPACE CHARGE'/1X,
& 5(E10.4,2X))
END IF
RETURN
END
SUBROUTINE ENERGY(A,AO,C,U,NUMF,NELECT,EWAVE,EBEAM,EBLNC)
C CHECKS FOR CONSERVATION OF ENERGY
C ---
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION A(NUMF),AO(NUMF),C(NUMF),U(NELECT)
EMA A,A0,C,U,NUMF,NELECT,EWAVE,EBEAM,EBLNC
EWAVE=0
EBEAM=0
DO I=1,NUMF
 EWAVE=A(I)*A(I)-AO(I)*AO(I)+EWAVE
END DO
EWAVE=2.*C(1)*EWAVE
DO I=1,NELECT
 CTERM=1.+2.*C(1)*U(I)
 EBEAM=CTERM*CTERM+EBEAM
END DO
EBEAM=EBEAM/NELECT-1.
EBLNC=ABS(EBEAM)-ABS(EWAVE)
EBLNC=EBLNC/(ABS(EBEAM)+ABS(EWAVE))
RETURN
END
SUBROUTINE FI NT(PHI,U,C1,J,TSIN,TCOS,NELECT,UTERM,PI)
C CALCULATES THE BEAM CHARGE DENSITY
C ---
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION PHI(64,3),U(NELECT),UTERM(NELECT)
EMA PHI,U,C1,NELECT,UTERM,PI
TWOPI=2.*PI
TSIN=0
TCOS=0
DO I=1,NELECT
 UTERM(I)=1.+2.*C1*U(I)
 TSIN=TSIN+SIN(PHI(I,J))/UTERM(I)
 TCOS=TCOS+COS(PHI(I,J))/UTERM(I)
END DO
RN=FLOAT(NELECT)
TSIN=TSIN*TWOP1/RN
TCOS=TCOS*TWOP1/RN
RETURN
END

C===
SEMAs/TEMP/
SUBROUTINE INT1(PHI,UTERM,EXP1,NELECT,IFUNCT,PI)
C SOLVES EXACT SPACE CHARGE INTEGRAL FOR FORCE EQUATION
C---
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DOUBLE PRECISION IFUNCT(NELECT),IFUNSM,PHI(64,3),UTERM(NELECT)
COMMON /TEMP/ FTEMP(64,64)
TWOPI=2.*PI
NM1=NELECT-1
DO I=1,NM1
 IF(I)I=I+1
 DO J=I+1,NELECT
 ZZ=PHI(I,1)-PHI(J,1)
 IF((ZZ .GE. TWOPI) .OR. (ZZ .LT. 0))
 ZZ=ZZ-TWOPI*(INTCZZ/TWOPI)-(1.-SICN(
 ZZP)*.5)
 IF (ZZ .GE. TWOPI) .OR. (ZZ .LT. 0) GO TO 500
 SINZZ=SIN(ZZ)
 COSZZ=COS(ZZ)
 TERM1=SINZZ/(EXP1-COSZZ)
 TERM2=SINZZ/(EXP1*EXP1-COSZZ)
 FTEMP(I,J)=((PI-ZZ)*.5-2.*ATAN(TERM1)+ATAN(TERM2))/TWOPI
 FTEMP(J,I)=-FTEMP(I,J)/UTERM(I)
 FTEMP(I,J)=FTEMP(I,J)/UTERM(J)
 END DO
 END DO
 IFUNCT(I)=IFUNCT(I)/FLOAT(NM1)
END DO
500 RETURN
END

C===
SEMAs/TEMP/
SUBROUTINE INT2(PHI,UTERM,CB,NELECT,IFUNCT,PI)
C SOLVES THE POLYNOMIAL APPROXIMATION TO THE SPACE CHARGE INTEGRAL
C FOR THE ELECTRON FORCE EQUATION
C---
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DOUBLE PRECISION CB(5),IFUNSM,PHI(64,3),UTERM(NELECT)
COMMON /TEMP/ FTEMP(64,64)
TWOPI=2.*PI
NM1=NELECT-1
DO I=1,NM1
 IPL=I+1
 DO J=IPL,NELECT
 ZZ=PHI(I,J)-PHI(J,J)
 IF ((ZZ .GE. TWOPI) .OR. (ZZ .LT. 0)) &
 ZZ=ZZ-TWOPI*(INT(ZZ/TWOPI)-1.-SIGN(I,ZZ))*.5)
 IF ((ZZ .GE. TWOPI) .OR. (ZZ .LT. 0)) GO TO 500
 ZZ=ZZ/PI-1.
 FTEMP(I,J)=CB(3)*ZZ*ZZ*ZZ*ZZ*ZZ+CB(2)*ZzZZsZZ+CB(1)*ZZ
 FTEMP(J,I)=-FTEMP(I,J)/UTERM(I)
 FTEMP(1,J)=FTEMP(I,J)/UTERM(J)
 ENDDO
END DO
END

DO I=1,NELECT
 IFUNSM=0
 DO J=1,NELECT
 IFUNSM=IFUNSM+FTEMP(I,J)
 ENDDO
 IFUNCT(I)=IFUNSM*TWOPI/FLOAT(NM1)
ENDDO

500 RETURN
END

C===
$EMA
/
SUBROUTINE DRFTEQ(Y,VALUES,EQNS)
C PHASE AND FORCE EQUATIONS FOR THE DRIFT TUBE. B(N) REPLACES
C DTHETA IN THE PHASE EQUATION TO INSURE THE CORRECT INITIAL
C PHASE FOR THE CIRCUIT WAVE IN THE NEXT SECTION
C DPHI(I,N)--PHASE EQUATION; DU(I)--FORCE EQUATION
C
C IMPLICIT DOUBLE PRECISION (A-H,O-Z)
INTEGER SCS,SWITCH,SWLIST,SETU
DOUBLE PRECISION ICOS,IFUNCT,ISIN,I0,K1,K2,K3,LA,MAG,NORMZ,
&DU(64),DPHI(64,3),EQNS(268),VALUES(268)
COMMON A(3),ANG(3),AXIMP(3),AXIMPN(60,3),A0(3),B(3),BETA(3),
&BEQ(3),BP,C(3),CB(5),CKTRAD(60),D(3),DA(3),DPC,DPDB,DTHETA(3),
&DF(3),EBEAM,EBLNC,EM,EPSI,ESAT,ETA,EWAVE,EXP1,F(3),FILL,G(3),
&GAMA(3),GSAT,ICOS(3),IFUNCT(64),INTSKP,ISIN(3),I0,K1,K2,K3,
&LA(20,6),MAG(3),NATTN,NCHNG,ND,NELECT,NORMZ,NPR,NUMF,OLDPDB,OLDZ,
&PDB,PDB1,PHI(64,3),PHVEL(3),PHVELN(60,3),PI,PINI(3),PRNT,PSAT,PW,
&RFLSS(3),RFLSSN(60,3),SCS,SETU,SKPINT,SMALLA,SMALLC,SWLIST(140),
&THETA(3),TPI,U(64),UTERM(64),UZERO,VP(3),VREL,VO,W(3),WP,WPWC,
&YFINAL,YHALT,YPRINT,Z,ZF,ZSAT,ZSTOP(140)
DO I=1,NELECT !INITIAL VALUES FOR DRIFT EQNS!
 U(I)=VALUES(I)
ENDDO
DO J=1,NUMF
 DO I=1,NELECT
 PHI(I,J)=VALUES(I+J*NELECT)
 ENDDO
ENDDO
IF (SKPINT .EQ. 0) THEN 'COMPUTE SPACE CHARGE FIELDS & INTEGRAL'
 DO I=1,NUMF
 CALL FINT(PHI,U,C(I),J,TSIN,TCOS,NELECT,UTERM,PI)
 ENDDO
IF (SCS .EQ. 2) CALL INT2(PHI,UTERM,CB,NELECT,IFUNCT,PI)
IF (SCS .EQ. 1) CALL INT1(PHI,UTERM,EXP1,NELECT,IFUNCT,PI)
END IF
SKPINT = SKPINT + 1

IF (SKPINT .GT. INTSKP) SKPINT = 0

DO I = 1, NELECT
 DO K = 1, NUMF
 CTERM = 1. + 2.*C(K)*U(I)
 BTERM = 1. + C(N)*B(N)
 DPHI(I, K) = B(N) + 2.*W(N)*U(I)/(W(1)*CTERM)
 DU(I) = WPWC*WPWC*IFUNCT(I)/(BTERM*CTERM)
 END DO
 END DO
END DO

DO I = 1, NELECT
 EQNS(I) = DU(I)
END DO

DO J = 1, NUMF
 DO I = 1, NELECT
 EQNS(I + J*NELECT) = DPHI(I, J)
 END DO
END DO

DO I = 1, NELECT
 VALUES(I) = U(I)
END DO

END

C===
SEM A

C SUBROUTINE DRIFT(Y)
C SETS THE INITIAL CONDITIONS AND CALLS THE DIFFERENTIAL EQUATION SOLVER
C FOR THE DRIFT TUBE EQUATIONS
C
C IMPLICIT DOUBLE PRECISION (A-H,O-Z)
C INTEGER SCS,SWITCH,SWLIST,SETU
C DOUBLE PRECISION ICOS,IFUNCT,ISIN,I0,K1,K2,K3,LA,MAG,NORMZ,
& VALUES(268)
C COMMON A(3),ANG(3),AXIMP(3),AXIMPN(60,3),AO(3),B(3),BETA(3),
& BETA0(3),BP,C(3),CB(5),CKRAD(60),D(3),DA(3),DPC,DPDB,DTHETA(3),
& DF(3),EBEAM,EBLNC,EM,EPSI,ESAT,ETA,EWAVE,EXP1,F(3),FILL,G(3),
& GAMA(3),GSAT,ICOS(3),IFUNCT(64),INTSKP,ISIN(3),I0,K1,K2,K3,
& LA(20,6),MAG(3),MATTN,NCHNG,ND,NELECT,NORMZ,NPR,NUMF,OLDPDB,OLDZ,
& PDB,PDB1,PHI(64,3),PHVEL(3),PHVELN(60,3),PI,PINI(3),PRNT,PSAT,PW,
& RFLSS(3),RFLSSN(60,3),SCS,SETU,SKPINT,SMLLA,SMALLC,SWLIST(40),
& TTHETA(3),TPI,U(64),UTERM(64),UZERO,VP(3),VREL,V0,W(3),WP,WPWC,
& VFINAL,YHALT,YPRINT,Z,2F,2SAT,ZSTOP(140)
C EXTERNAL DRFTEQ
DO I = 1, NELECT
 VALUES(I) = U(I)
END DO

DO J = 1, NUMF
 DO I = 1, NELECT
 VALUES(I + J*NELECT) = PHI(I, J)
 END DO
END DO

NEQN = NUMF*NELECT*NELECT
ABSERR = 1.D-09
IFLAG = 1
RELERR = 1.D-03
CALL DFSOLV(DRFTEQ,NEQN,VALUES,Y,YHALT,RELERR,ABSERR,IFLAG,SETU)

DO I = 1, NELECT
 U(I) = VALUES(I)
END DO

DO J = 1, NUMF
 DO I = 1, NELECT
 PHI(I, J) = VALUES(I + J*NELECT)
 END DO
END DO
SUBROUTINE DIFFEQ(Y,VALUES,EQNS)
C
ROWE'S LARGE SIGNAL EQUATIONS
C
DA(N) & DG(N): CIRCUIT WAVE AMPLITUDE EQUATION
C
DTHETA(N) & DF(N): CIRCUIT WAVE PHASE EQUATION
C
L?PHI(I,N): PHASE RELATION EQUATION
C
DU(I): ELECTRON FORCE EQUATION
C
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
INTEGER SCS,SWITCH,SWLIST,SETU
DOUBLE PRECISION ICOS,IFUNCT,ISIN,IO,K1,K2,K3,LA,MAG,NORMZ,
&DU(64),DPHI(64,3),DG(3),EQNS(268),VALUES(268)
COMMON A(3),ANG(3),AXIMP(3),AXIMPN(60,3),AO(3),B(3),BETA(3),
&BETA0(3),BP,C(3),CB(5),CKTRAD(60),D(3),DA(3),DPC,DPDB,DTHETA(3),
&DF(3),EBEAM,EBLNC,EM,EPsi,ETA,EWAVE,EXPI,F(3),FILL,G(3),
&GAMA(3),GSAT,ICOS(3),IFUNCT(64),INTSKP,ISIN(3),IO,K1,K2,K3,
&LA(20,6),MAG(3),NATTN,NCHNG,ND,NELECT,NORMZ,NPR,NUMF,OLDPDB,OLDZ,
&PDB,PPB1,PHI(64,3),PHVEL(3),PHVELN(60,3),PI,PINI(3),PRNT,PSAT,PW,
&RFLSS(3),RFLSSN(60,3),SCS,SETU,SKPINT,SMALLA,SMALLC,SWLIST(140),
&THETA(3),TP1,U(64),UTERM(64),UZERO,VP(3),VREL,VO,W(3),WP,WPWC,
&YFINAL,YHALT,YPRINT,Z,ZF,ZSAT,ZSTOP(140)
DO I=1,NELECT 'INITIAL VALUES FOR DIFF. EQNS!
U(I)=VALUES(I)
END DO
DO J=1,NUMF
DO I=1,NELECT
PHI(I,J)=VALUES(I-J*NELECT)
END DO
END DO
DO N=1,NUMF
J=N+K
G(N)=VALUES(J)
F(N)=VALUES(J+NUMF)
A(N)=VALUES(J+2*NUMF)
THETA(N)=VALUES(J+3*NUMF)
END DO
IF (SKPINT .EQ. 0) THEN 'COMPUTE SPACE CHARGE FIELDS & INTEGRAL!
DO I=1,NUMF
J=I
CALL FINT(PHI,U,C(1),J,TSIN,TCOS,NELECT,UTERM,PI)
ISIN(I)=TSIN
ICOS(I)=TCOS
END DO
IF (SCS .EQ. 2) CALL INT2(PHI,UTERM,CB,NELECT,IFUNCT,PI)
IF (SCS .EQ. 1) CALL INT1(PHI,UTERM,EXPI,NELECT,IFUNCT,PI)
END IF
SKPINT=SKPINT+1
DO N=1,NUMF
WW1=W(N)/W(1)
WW2=WW1*WW1
BTERM=(1.+C(N)*B(N))/C(1)
END DO
END
DTERM = 2. * C(N) * D(N)
FTERM = F(N) - W(N) / W1C1
ZNORM = AXIMP(N) / AXIMP(1)
DA(N) = G(N) ! DIFFERENTIAL EQUATIONS!
DTHETA(N) = F(N)
DG(N) = A(N) * (FTERM**2 - WNW2 * BTERM**2) - ZNORM * WNW2 * BTERM / PI*
& (ICOS(N) * DTERM * ISIN(N))
DF(N) = DTERM * WNW2 * BTERM**2 - (2. * G(N) * FTERM + ZNORM * WNW2 * BTERM / PI*
& (ISIN(N) - DTERM * ICOS(N))) / A(N)
DO I = 1, NELECT
CTERM = 1. + 2. * C(I) * U(I)
DPHI(I, N) = 2. * WNW1 * U(I) / CTERM - F(N)
END DO
END DO
END DO
DO I = 1, NELECT
C = DTERM * WNW2 * BTERM**2 - (2. * G(N) * FTERM + ZNORM * WNW2 * BTERM / PI*
& (ICOS(N) - DTERM * ICOS(N))) / A(N)
DO N = 1, NUMF
FTERM = F(N) - W(N) / W1C1
BTERM = 1. * C(N) * B(N)
CS = COS(PHI(I, N))
SN = SIN(PHI(I, N))
DU(I) = DU(I) + (G(N) * CS + A(N) * FTERM * SN) * C(I)
DU(I) = (DU(I) + WPWC * WPWC * IFUNCT(I) / BTERM) / CTERM
END DO
END DO
'RETURN
END

SUBROUTINE DIFF(Y)
C SETS THE INITIAL CONDITIONS AND CALLS THE DIFFERENTIAL
C EQUATION SOLVER FOR ROWE'S LARGE SIGNAL EQUATIONS
IMPLICIT DOUBLE PRECISION (A-H, O-Z)
INTEGER SCS, SWITCH, SMLIST, SETU
DOUBLE PRECISION ICOS, IFUNCT, ISIN, 10, K1, K2, K3, LA, MAG, NORMZ, &VALUES(268)
COMMON A(3), ANG(3), AXIMP(3), AXIMPN(60, 3), AO(3), B(3), BETA(3), &BETAO(3), BP, C(3), CB(5), CKTRAD(60), D(3), DA(3), DPC, DPDB, DTHETA(3), &DF(3), EBEAM, EBLNC, EM, EPS1, ESAT, ETA, EWAVE, EXP1, F(3), FILL, G(3), &GAMA(3), GSAT, ICOS(3), IFUNCT(64), INTSKP, ISIN(3), 10, K1, K2, K3, &LA(20, 6), MAG(3), NATTN, NCHNG, ND, NELECT, NORMZ, NPR, NUMF, OLDPDB, OLDZ,
EXTERNAL DIFFEQ
DO I=1,NELECT
VALUES(I)=U(I)
END DO
DO J=1,NUMF
DO I=1,NELECT
VALUES(I+J*NELECT)=PHI(I,J)
END DO
END DO
K=NELECT*(NUMF+1)
DO N=1,NUMF
J=N+K
VALUES(J)=G(N)
VALUES(J+NUMF)=F(N)
VALUES(J+2*NUMF)=A(N)
VALUES(J+3*NUMF)=THETA(N)
END DO
NEQN=4*NUMF+NELECT*NUMF+NELECT
ABSERR=1.D-09
IFLAG=1
RELEERR=1.D-03
CALL DESOLV(DIFFEQ,NEQN,VALUES,Y,YPRINT,RELERR,ABSERR,IFLAG,SETU)
DO I=1,NELECT
U(I)=VALUES(I)
END DO
DO J=1,NUMF
DO I=1,NELECT
PHI(I,J)=VALUES(I+J*NELECT)
END DO
END DO
K=NELECT*(NUMF+1)
DO N=1,NUMF
J=N+K
G(N)=VALUES(J)
F(N)=VALUES(J+NUMF)
A(N)=VALUES(J+2*NUMF)
THETA(N)=VALUES(J+3*NUMF)
END DO
RETURN
END

SUBROUTINE DESOLV(F,NEQN,Y,T,TOUT,RELERR,ABSERR,IFLAG,SETU)
INTEGRATES UP TO 268 DIFFERENTIAL EQUATIONS OVER THE INTERVAL
FROM T TO TOUT. DESOLV CALLS THE INTEGRATOR STEP, AND THE
INTERPOLATION ROUTINE INTRP. ALL THREE SUBROUTINES ARE
LISTED AND FULLY DOCUMENTED IN THE TEXT "COMPUTER SOLUTION
OF ORDINARY DIFFERENTIAL EQUATIONS: THE INITIAL VALUE PROBLEM"
BY L.F. SHAMPINE & M.K. GORDON.

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
LOGICAL START,CRASH,STIFF
INTEGER SETU
DIMENSION Y(NEQN),PSI(12),YY(268),WT(268),PHI(268,16),
&P(268),YP(268),YPOUT(268)
COMMON /CDE/ YY,P,YP,PSI,U,FOURU
COMMON /ABC/ PHI,WT,YPOUT
EMA SETU,TOUT
EXTERNAL F
DATA MAXNUM/2000/
EPS=MAX(RELERR,ABSErr)
ISN=ISIGN(1,IFLAG)
IFLAG=IABS(IFLAG)
IF (SETU.EQ.0) THEN
 CALL MACHIN(U)
 FOURU=4.*U
 SETU=1
END IF
IF (NEQN.LT.1.OR. NEQN.GT.268) CALL BADIN
IF (T.EQ. TOUT) CALL BADIN
IF (RELERR.LT.0.0.OR. ABSErr.LT.0.0) CALL BADIN
IF (EPS.LE.0.0.OR. IFLAG.EQ.0) CALL BADIN
IF (IFLAG.NE.1.AND. T.NE. TOLD) CALL BADIN
IF (IFLAG.LT.1.OR. IFLAG.GT.5) CALL BADIN
DEL=TOUT-T
ABSDEL=ABS(DEL)
TEND=T+10.0*DEL
IF (ISN.LT.0) TEND=TOUT
NOSTEP=0
KLE4=0
STIFF=.FALSE.
RELEPS=RELERR/eps
ABSEPS=ABSErr/eps
IF (IFLAG.EQ.1.OR. ISNOLD.LT.0) THEN
 START=.TRUE.
 X=T
 DO L=1,NEQN
 YY(L)=Y(L)
 END DO
 DELSGN=SIGN(1.0,DEL)
 H=SIGN(MAX(ABS(TOUT-X),FOURU*ABS(X)),TOUT-X)
END IF
10 IF (DELSGN*DEL.GT.0.0.AND. ABS(X-T).GE. ABSEDEL) THEN
 CALL INTRP(X,YY,TOUT,Y,YPOUT,NEQN,KOLD,PHI,PSI)
 IFLAG=2
 T=TOUT
 TOLD=T
 ISNOLD=ISN
 RETURN
END IF
IF (ISN.LE.0.OR. ABS(TOUT-X).LT. FOURU*ABS(X)) THEN
 H=TOUT-X
 CALL F(X,YY,YP)
 DO L=1,NEQN
 Y(L)=YY(L)+H*YP(L)
 END DO
 IFLAG=2
 T=TOUT
 TOLD=T
 ISNOLD=ISN
 RETURN
END IF
IF (NOSTEP.GE. MAXNUM) THEN
 IFLAG=ISN*4
IF (STIFF) IFLAG=ISN*5
DO L=1,NEQN
 Y(L)=YY(L)
END DO
END IF
H=SIGN(MIN(ABS(H),ABS(TEND-X)),H)
DO L=1,NEQN
 WT(L)=RELEPS*ABS(YY(L))+ABSEPS
END DO
CALL STEP(X,YY,F,NEQN,H,EPS,WT,START,HOLD,K,KOLD,CRASH,PHI,P,
 &
 YP,PSI,U)
IF (CRASH) THEN
 IFLAG=ISN*3
 RELERR=EPS*RELEPS
 ABSERR=EPS*ABSEPS
 DO L=1,NEQN
 Y(L)=YY(L)
 END DO
 T=X
 TOLD=T
 ISNOLD=1
 RETURN
END IF
NOSTEP=NOSTEP+1
KLE4=KLE4+1
IF (KOLD .GT. 4) KLE4=0
IF (KLE4 .GE. 50) STIFF=.TRUE.
GO TO 10
END

C==
SUBROUTINE BADIN
CWARNS USER OF BAD INPUT TO DESOLV AND STOPS PROGRAM EXECUTION
C==
LU=1
WRITE(LU,10)
10 FORMAT('INPUT TO THE DIFFERENTIAL EQUATION SOLVER IS BAD')
STOP

C==
SUBROUTINE MACHIN(U)
CALCULATES THE SMALLEST POSITIVE NUMBER U, SUCH THAT 1.0+U > 1.0. U IS COMPUTED APPROXIMATELY AS A POWER OF 1/2
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
HALFU=.5
50 TEMPl=1.+HALFU
 IF (TEMPl .LE. 1.) GO TO 100
 HALFU=.5*HALFU
 GO TO 50
100 U=2.*HALFU
RETURN
C==
SUBROUTINE STEP(X,Y,F,NEQN,H,EPS,WT,START,HOLD,K,KOLD,CRASH,
PHI,P,YP,PSI,U)

INTEGRATES THE DIFFERENTIAL EQUATIONS OVER A STEP (X TO X+H) USING
THE MODIFIED DIVIDED DIFFERENCE FORM OF THE ADAMS PECE FORMULAS.

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
LOGICAL START,CRASH,PHASE1,NORND
DIMENSION Y(NEQN),WT(NEQN),PHI(NEQN,16),P(NEQN),YP(NEQN),
&PSI(12),GSTR(13),TWO(13),ALPHA(12),BETA(12),SIG(13),W(12),
&V(12),G(13)
COMMON /CSTEP/ GSTR,TWO,ALPHA,BETA,SIG,W,V,G
AND PHI,WT
EXTERNAL F
TWO(1)=2.
TWO(2)=4.
TWO(3)=8.
TWO(4)=16.
TWO(5)=32.
TWO(6)=64.
TWO(7)=128.
TWO(8)=256.
TWO(9)=512.
TWO(10)=1024.
TWO(11)=2048.
TWO(12)=4096.
TWO(13)=8192.
GSTR(1)=.5
GSTR(2)=.0833
GSTR(3)=.0417
GSTR(4)=.0264
GSTR(5)=.0188
GSTR(6)=.0143
GSTR(7)=.0114
GSTR(8)=.00936
GSTR(9)=.00789
GSTR(10)=.00679
GSTR(11)=.00592
GSTR(12)=.00524
GSTR(13)=.00468
G(1)=1.
G(2)=.5
SIG(1)=1.
CRASH=.TRUE.
TWOU=2.*U
FOURU=4.*U
IF (ABS(H) .LT. FOURU*ABS(X)) THEN
 H=SIGN(FOURU*ABS(X),H)
RETURN
END IF
P5EPS=.5*EPS
ROUND=0.
DO L=1,NEQN
 ROUND=ROUND+(Y(L)/WT(L))**2
END DO
ROUND=TWOU*SQRT(ROUND)
IF (P5EPS .LT. ROUND) THEN
 EPS=2.*ROUND*(1.+FOURU)
RETURN
END IF
CRASH=.FALSE.
IF (.NOT. START) GO TO 10
CALL F(X, Y, YP)
SUM=0.
DO L=1, NEQN
 PHI(L,1) = YP(L)
 PHI(L,2) = 0.
 SUM = SUM + YP(L) * WT(L)
END DO
SUM = SQRT(SUM)
ABSH = ABS(H)
IF (EPS .LT. 16. * SUM * H) ABSH = 25 * SQRT(EPS/SUM)
H = SIGN(MAX(ABSH, FOURU*ABSH), H)
HOLD=0.
K=1
KOLD = 0
START=.FALSE.
PHASE=.TRUE.
NORD=.TRUE.
IF (.5*EPS .GT. 100.*ROUND) GO TO 10
NORD=.FALSE.
DO L=1, NEQN
 PHI(L,15) = 0.
END DO
10 IFAIL=0
20 K1=K+1
 K2=K+2
 KM1=K-1
 KM2=K-2
IF (H .NE. HOLD) NS = 0
NS=MINO:NS-1, KOLD+1.
NSP1=NS+1
IF (K .LT. NS) GO TO 50
BETA(NS) = 1.
REALNS = NS
ALPHA(NS) = 1./REALNS
TEMP1 = H*REALNS
SIG(NSP1) = 1.
IF (K .GE. NSP1) THEN
 DO I=1,NSP1,K
 IM1=I-1
 TEMP2 = PSI(IM1)
 PSI(IM1) = TEMPI
 BETA(I) = BETA(IM1) / PSI(IM1) / TEMP2
 TEMPI = TEMP2 - H
 ALPHA(I) = H * TEMPI
 REALI = I
 SIG(I+1) = REALI * ALPHA(I) * SIG(I)
 END DO
END IF
30 PSI(K) = TEMPI
40 IF (NS .LE. 1) THEN
 DO IQ=1, K
 TEMP3 = IQ/(IQ+1)
 V(IQ) = 1./TEMP3
 W(IQ) = V(IQ)
 END DO
 GO TO 40
END IF
50 IF (K .LE. KOLD) GO TO 30
 - 65 -
TEMP4 = K*KP
V*K = 1.0*TEMP4
NSM2 = NS+2
IF (NSM2 .LT. 1) GO TO 30
DO J = 1, NSM2
 I = K J
 V = V(I) ALPHA J-1 * V(I-1)
END DO
30 LIMIT1 = KP1 NS
TEMP5 = ALPHA NS
DO IQ = 1, LIMIT1
 V(IQ) = V(IQ) + TEMP5(IQ-1)
END DO
40 NSP2 = NS+2
IF (KP1 .GE. NSP2) THEN
 DO I = NSP2, KP1
 LIMIT2 = KP1 I
 TEMP6 = ALPHA I I
 DO IQ = 1, LIMIT2
 V(IQ) = V(IQ) + TEMP6(IQ-1)
 END DO
 END DO
IF (I .NEQ. 1) GO TO 40
END IF
50 IF (K .NEQ. NSM2) THEN
 DO I = NSM2, 1
 TEMP1 = TEMP1(I)
 DO IQ = I, NEQN
 PHII = TEMP1*PHII, IQ
 END DO
 END DO
END IF
DO I = 1, NEQN
 PHII = PHII(I) + PHII, KP1
 PHII = PHII, IQ
 P(I) = 0.
END DO
DO J = 1, K
 I = KP1 J
 IP = I+1
 TEMP2 = G(J)
 DO I = 1, NEQN
 P(I) = P(I) + TEMP2*PHII, IP
 PHII = PHII, IP + PHII, IP
 END DO
END DO
IF (NOT. NORND) THEN
 DO I = 1, NEQN
 TAG = H*P(L, PHII, 15)
 P(L) = Y(L) - TAG
 PHIL = P(L) + Y(L) + TAG
 END DO
GO TO 60
END IF
END DO
XOLD X
X X*M
ABSH ABS H)
CALL F(X,P,YP)
ERKM2: 0.
ERKM1: 0.
ERK: 0.
DO L 1,NEQN
 TEMP3=1./WT(L)
 TEMP4=YP(L)-PHI(L,1)
 IF (KM2) 90,80,70
 ERKM2=ERKM2+((PHI(L,KM1)*TEMP4)*TEMP3)**2
 ERKM1=ERKM1+((PHI(L,K)*TEMP4)*TEMP3)**2
 ERK: ERK+(TEMP4*TEMP3)**2
END DO
IF KM2: 120,110,100
ERKM2: ABSH*SIG(KM1)*GSTR(KM2)*SQRT(ERKM2)
ERKM1: ABSH*SIG(K)*GSTR(KM1)*SQRT(ERKM1)
TEMP5: ABSH*SQRT(ERK)
ERR TEMP5: G(K) G(KP1))
ERK TEMP5: SIG(KP1)*GSTR(K)
KNEW K
IF KM2: 150,140,130
110 IF MAX ERKM1,ERKM2) .LE. ERK) KNEW=KM1
GO TO 150
120 IF ERKM1 .LE. .5*ERK) KNEW=KM1
130 IF ERR .LE. EPS) GO TO 190
PHASE1 .FALSE.
XOLD
DO L 1, K
 TEMP1: 1./BETA(I)
 IP1: I+1
 DO L 1, NEQN
 PHI(L,1) TEMP1*(PHI(L,1)-PHI(L,1P1))
 END DO
END DO
IF K .GE. 2) THEN
 DO 1,2,K
 PSI(I-1)=PSI(I)-H
 END DO
END IF
IF AIL IFAIL=1
TEMP2: 5
IF (IFAIL 3) 180,170,160
160 IF (PSI/LE. .25*ERK) TEMP2=SQR(P5ESE/ERK)
170 IF K NEW K
180 H:TEMP2*H
K:KNEW
IF (ABSH) .LT. FOURU*ABS(X)) THEN
 CRASH .TRUE.
 H SIGN:FORU*ABS(X),H)
 EPS:EPS-EPS
 RETURN
END IF
GO TO 20
190 KOLD=K
HOLD H
TEMP1:H*G(KP1)
IF (NORND) GO TO 200
DO L=1,NEQN
 RHO=TEMP1*(YP(L)-PHI(L,1))-PHI(L,16)
 Y(L)=P(L)+RHO
 PHI(L,15)=(Y(L)-P(L))-RHO
END DO
GO TO 210
200 DO L=1,NEQN
 Y(L)=P(L)+TEMP1*(YP(L)-PHI(L,1))
END DO
210 CALL F(X,Y,YP)
DO L=1,NEQN
 PHI(L,KP1)=YP(L)-PHI(L,1)
 PHI(L,KP2)=PHI(L,KP1)-PHI(L,KP2)
END DO
DO I=1,K
 DO L=1,NEQN
 PHI(L,1)=PHI(L,1)*PHI(L,KP1)
 END DO
 END DO
 ERKP1=0.
 IF KNEW .EQ. KM1 OR K .EQ. 12 THEN PHASE=.FALSE.
 IF PHASE=.TRUE. GO TO 220
 IF KNEW .EQ. KM1 GO TO 230
 IF KPI .GT. NS GO TO 240
 DO L=1,NEQN
 ERKP1(ERKP1=PHI(L,KP1)) WTK(1)**2
 END DO
 ERKP1=ABS*GSTR*KP1*SORT ERKP1
 IF K .LE. 1 THEN
 IF ERKP1 .GE. E5*ERK . GO TO 240
 GO TO 220
 END IF
 IF KRM1 .LE. MIN(ERK,ERKP1) GO TO 230
 IF ERKP1 .GE. ERK .OR. K .EQ. 12 GO TO 240
220 K KPI
 ERK=ERKP1
 GO TO 240
230 K KMI
 ERK=ERKM1
240 HNEW=H+H
 IF PHASE=.TRUE. GO TO 250
 IF P5EPS .GE. ERK*TWO*K+1 GO TO 250
 HNEW=H
 IF P5EPS .GE. ERK GO TO 250
 TEMP2=K+1
 R=P5EPS/ERK**1. TEMP2
 HNEW=ABS*MAX(.5D0,MIN(.9D0,R)
 HNEW=SIGN*MAX*HNEW. FOURU*ABS H-H
250 H=HNEW
RETURN
END
SUBROUTINE INTRP.X.Y.XOUT.YOUT,YP,NEQN,KOLD,PHI,PSI
SUBROUTINE STEP APPROXIMATES THE SOLUTION NEAR X BY A
POLYNOMIAL. SUBROUTINE INTRP APPROXIMATES THE SOLUTION
AT XOUT BY EVALUATING THE POLYNOMIAL THEREF.
IMPLICIT DOUBLE PRECISION(A,H.O-Z)
DIMENSION Y(NEQN).YOUT(NEQN).YP(NEQN).PHI(NEQN,16)
&PSI(12),G(13),W(13),RHO(13)
EMA PHI,XOUT,YPOUT
G(1)=1.
RHO(1)=1.
HI=XOUT-X
KI=KOLD+1
KIP1=KI+1
DO I=1,KI
 TEMP1=I
 W(I)=1./TEMP1
END DO
TERM=0.
DO J=2,KI
 JM1=J-1
 PSIJM1=PSI(JM1)
 GAMMA=(HI+TERM)/PSIJM1
 ETA=HI/PSIJM1
 LIMIT1=KIP1-J
 DO I=1,LIMIT1
 W(I)=GAMMA*W(I)-ETA*W(I+1)
 END DO
 G(J)=W(1)
 RHO(J)=GAMMA*RHO(JM1)
 TERM=PSIJM1
END DO
DO L=1,NEQN
 YPOUT(L)=0.
 YOUT(L)=0.
END DO
DO J=1,KI
 I=KIP1-J
 TEMP2=G(I)
 TEMP3=RHO(I)
 DO L=1,NEQN
 YOUT(L)=YOUT(L)+TEMP2*PHI(L,I)
 YPOUT(L)=YPOUT(L)+TEMP3*PHI(L,I)
 END DO
END DO
DO L=1,NEQN
 YOUT(L)=Y(L)*HI*YOUT(L)
END DO
RETURN
END
1. Introduction

TWTID is a one-dimensional large-signal analysis program for helix travelling-wave tubes based on the theory developed by L. E. Price and M. K. Scherba. The program can be used to predict the performance of a helix travelling-wave tube before it is assembled. The input to the program consists of information about the beam, the input signals, and the helix. Parameters describing the helix are typically obtained from cold circuit testing, while information about the beam can come from beam analyzer results or computer design data. Prior to running TWTID, the engineer creates an input data file which lists these parameters. This manual describes how this file is to be created and how to run TWTID. Complete documentation for the program, including a source code listing, is given in AFTER report No. 17, available from the Electrical Engineering Department at the University of Utah.

2. Input Data File

The input file should be organized along the lines of Fig. A.1. The number of lines in the file is variable and is determined by the number of frequencies, velocity steps, attenuators, etc., present in the tube being modeled. The key following Fig. A.1 describes each of the variables listed in the input file, and Fig. A.2 shows a sample input file. Since the input files can become lengthy, it is strongly recommended that before using TWTID, the input data file be checked with the
program TWTIN. TWTIN is a short program which reads TWT10 input files and lists the parameters so that the engineer can verify the input being used. The sample input file shown in Fig. A.3 was checked with TWTIN, and the result is shown in Fig. A.4.

<table>
<thead>
<tr>
<th>Line</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VO 10 RAD FILL TPL ZF</td>
</tr>
<tr>
<td>2</td>
<td>NUMF NUMC NIMA NUMR</td>
</tr>
<tr>
<td>3</td>
<td>FL.1 PINI.1 PHVEL(1) AXIMP(1) RFLSS(1) THETA(1)</td>
</tr>
<tr>
<td>4</td>
<td>FL.2 PINI.2</td>
</tr>
<tr>
<td>5</td>
<td>FL.3 PINI.3</td>
</tr>
<tr>
<td>6</td>
<td>ZC(1) CKTRAD(1) TAPER(1)</td>
</tr>
<tr>
<td>7</td>
<td>ZC(2) CKTRAD(2) TAPER(2)</td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>ZC(6) CKTRAD(6) TAPER(6)</td>
</tr>
<tr>
<td>10</td>
<td>PHVELN(1,1) PHVELN(1,2) PHVELN(1,3) PHVELN(6,3)</td>
</tr>
<tr>
<td>11</td>
<td>AXIMPN(1,1) AXIMPN(1,2) AXIMPN(1,3) AXIMPN(6,3)</td>
</tr>
<tr>
<td>12</td>
<td>RFLSSN(1,1) RFLSSN(1,2) RFLSSN(1,3) RFLSSN(6,3)</td>
</tr>
<tr>
<td>13</td>
<td>ZATNS(1) ZATNE(1) LAMAX(1) ATYPE(1)</td>
</tr>
<tr>
<td>14</td>
<td>ZATNS(2) ZATNE(2) LAMAX(2) ATYPE(2)</td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>ZATNS(6) ZATNE(6) LAMAX(6) ATYPE(6)</td>
</tr>
<tr>
<td>17</td>
<td>ZRST(1) ZRST(2) ZRST(3) ZRST(10)</td>
</tr>
<tr>
<td>18</td>
<td>SCS NELECT DPC NPR INTSKP RSTART FDUMMY</td>
</tr>
</tbody>
</table>

Fig. A.1. Input data file organization.
KEY TO INPUT DATA

<table>
<thead>
<tr>
<th>Line</th>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VO</td>
<td>Dc beam voltage (volts)</td>
</tr>
<tr>
<td>1</td>
<td>IO</td>
<td>Dc beam current (amps)</td>
</tr>
<tr>
<td>1</td>
<td>RAD</td>
<td>Mean helix radius (in)</td>
</tr>
<tr>
<td>1</td>
<td>FILL</td>
<td>Beam fill factor</td>
</tr>
<tr>
<td>1</td>
<td>TPI</td>
<td>Helix pitch (turns/in)</td>
</tr>
<tr>
<td>1</td>
<td>ZF</td>
<td>Length of circuit (in)</td>
</tr>
<tr>
<td>2</td>
<td>NUMF</td>
<td>Number of input frequencies (3 maximum)</td>
</tr>
<tr>
<td>2</td>
<td>NUMC</td>
<td>Number of circuit changes and velocity tapers (6 maximum)</td>
</tr>
<tr>
<td></td>
<td>NUMA</td>
<td>Number of attenuators (6 maximum)</td>
</tr>
<tr>
<td></td>
<td>NUMR</td>
<td>Number of restart data printouts (10 maximum). The restart printout contains all the information that is needed to restart a run.</td>
</tr>
<tr>
<td>3-5</td>
<td>FI(i)</td>
<td>Frequency of ith signal (GHz)</td>
</tr>
<tr>
<td></td>
<td>PINI(i)</td>
<td>Input power of ith signal (dBm)</td>
</tr>
<tr>
<td></td>
<td>PHVEL(i)</td>
<td>Normalized phase velocity of ith signal (\frac{V}{c})</td>
</tr>
<tr>
<td></td>
<td>AXIMP(i)</td>
<td>Axial coupling impedance of ith signal (ohms)</td>
</tr>
<tr>
<td></td>
<td>RFLSS(i)</td>
<td>RF circuit loss for ith signal (dB/in)</td>
</tr>
<tr>
<td></td>
<td>THETA(i)</td>
<td>Injection angle of ith signal (degrees)</td>
</tr>
<tr>
<td>6-11</td>
<td>ZC(i)</td>
<td>Position of ith velocity step or taper (in)</td>
</tr>
<tr>
<td></td>
<td>CKTRAD(i)</td>
<td>Radius of circuit beyond ith change (in)</td>
</tr>
<tr>
<td></td>
<td>TAPER(i)</td>
<td>Length of velocity taper (in). Use 0 for velocity step.</td>
</tr>
<tr>
<td>12</td>
<td>PHVELN(i,j)</td>
<td>Normalized phase velocity of TPI of the helix for jth signal beyond ith change. If the TPI is used, the characteristics of the new section are calculated by scaling the phase</td>
</tr>
</tbody>
</table>
velocity and impedance values from the previous section. When the TPI is specified, use an axial impedance of 99. TPI scaling can only be used when the TPI of the previous section is given. Also, TPI scaling will not work when going from a vaned to an unvaned circuit, or vice versa.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>AXIMPN(i,j)</td>
<td>Axial impedance for jth signal beyond ith change (ohms)</td>
</tr>
<tr>
<td>14</td>
<td>RFLSSN(i,j)</td>
<td>RF circuit loss for jth signal beyond ith change (dB/in)</td>
</tr>
<tr>
<td>15-20</td>
<td>ZATNS(i)</td>
<td>Start position of ith attenuator (in)</td>
</tr>
<tr>
<td></td>
<td>ZATNE(i)</td>
<td>Stop position of ith attenuator (in)</td>
</tr>
<tr>
<td></td>
<td>LAMAX(i)</td>
<td>Maximum loss of ith attenuator (dB/in)</td>
</tr>
<tr>
<td></td>
<td>ATYPE(i)</td>
<td>Type of ith attenuator (1, 2, 3, or 4). See Fig. A.2 for the different attenuator shapes available.</td>
</tr>
<tr>
<td>21</td>
<td>ZRST(i)</td>
<td>Position of ith restart data printout (in)</td>
</tr>
<tr>
<td>22</td>
<td>SCS</td>
<td>Space-charge switch:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 = no space charge</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = full space charge</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 = polynomial approximation to space charge</td>
</tr>
</tbody>
</table>

The space-charge switch determines how the repulsive force between electrons is calculated. If the tube has low beam current density, or quantitative results are not required, then it is appropriate to ignore the space charge and set SCS to 0. If the tube has few circuit changes and a small step size, the polynomial approximation to the space charge will give reasonable results, and SCS should be set to 2. For highest accuracy, SCS should be set to 1 so Rowe's full space-charge expression is used.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NELECT</td>
<td>Number of electron disks (16, 32, or 64). Use 16 for one input signal; 32 for two input signals, and 64 for three input signals.</td>
</tr>
<tr>
<td></td>
<td>DPC</td>
<td>Printout interval (in)</td>
</tr>
<tr>
<td>Variable</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>NPR</td>
<td>Printout option 1, 2, 3, or 4 (see Section IV for description)</td>
<td></td>
</tr>
<tr>
<td>INTSKP</td>
<td>Number of skips between evaluation of space-charge function. Since the electron positions do not vary rapidly, the space-charge function can be evaluated intermittently to reduce computation time.</td>
<td></td>
</tr>
<tr>
<td>RSTART</td>
<td>Restart data input switch:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 = no restart data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 = read restart data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Set to 1 if the run is to be restarted. A second data set must be included after the first one.</td>
<td></td>
</tr>
<tr>
<td>FDUMMY</td>
<td>Dummy frequency (GHz). Any data set, which specifies multiple frequencies which are not harmonically related, must also specify a dummy frequency. This dummy frequency is the highest frequency of which all input signals are harmonics. The lower this frequency, the less accurate the results will be. The dummy frequency is not followed, as it is an artificial construction.</td>
<td></td>
</tr>
</tbody>
</table>
Fig. A.2. Attenuator shapes.
Fig. A.3. Sample input file.

INPUT DATA FOR FILE SAMPLE.IN

HELIX VOLTAGE (Volts) = 10200.00
CATHODE CURRENT (Amps) = 2800
MEAN HELIX RADIUS (in) = .03790
BEAM FILL FACTOR = .5000
HELIX PITCH (tpi) = 9.180
LENGTH OF CIRCUIT (in) = 3.500
NUMBER OF FREQUENCIES = 1
NUMBER OF CHANGES = 3
NUMBER OF ATTENUATORS = 1
NUMBER OF RESTART DATA PRINTOUTS = 1
NUMBER OF ELECTRON DISKS = 16
SPACE CHARGE SWITCH = 1
CIRCUIT PRINT INTERVAL (in) = .20
PRINT OUT OPTION = 1
NUMBER OF SPACE CHARGE SKIPS = 2

<table>
<thead>
<tr>
<th>FREQUENCY</th>
<th>INPUT POWER</th>
<th>PHASE VELOCITY</th>
<th>AXIAL IMPEDANCE</th>
<th>Ckt. Loss</th>
<th>Relative Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>(GHz)</td>
<td>(dBm)</td>
<td>(Vp/c)</td>
<td>(ohms)</td>
<td>(dB/in)</td>
<td>(degrees)</td>
</tr>
<tr>
<td>18.00</td>
<td>10.000</td>
<td>.1864</td>
<td>3.600</td>
<td>.750</td>
<td>0.000</td>
</tr>
</tbody>
</table>

CHANGE POSITION Ckt. Radius Taper Length

<table>
<thead>
<tr>
<th>(in)</th>
<th>(in)</th>
<th>(in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.680</td>
<td>.0379</td>
</tr>
<tr>
<td>2</td>
<td>5.300</td>
<td>.0379</td>
</tr>
<tr>
<td>3</td>
<td>8.000</td>
<td>.0379</td>
</tr>
</tbody>
</table>

CHANGE PHASE VELOCITY AXIAL IMPEDANCE Ckt. Loss

<table>
<thead>
<tr>
<th>(Vp/c)</th>
<th>(ohms)</th>
<th>(dB/in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.1988</td>
<td>3.75</td>
</tr>
<tr>
<td>2</td>
<td>.1796</td>
<td>3.44</td>
</tr>
<tr>
<td>3</td>
<td>.1827</td>
<td>3.00</td>
</tr>
</tbody>
</table>

ATTENUATION START STOP MAX. LOSS TYPE

<table>
<thead>
<tr>
<th>(in)</th>
<th>(in)</th>
<th>(dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.000</td>
<td>3.500</td>
</tr>
</tbody>
</table>

RESTART POSITION

<table>
<thead>
<tr>
<th>(in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>4.5000</td>
</tr>
</tbody>
</table>

Fig. A.4. TWTIN run for sample input file.
3. Running the Program

Once an input file has been created and checked, the engineer is ready to run TWTID. When run, the program prompts the user for the name of the input data file, the output data file, and the plot file. The output data file is where all the data from the run will be stored, and the plot file will contain the data needed to make plots of power versus position, and phase angle versus position. Although any name can be used for the output and plot files, the user is cautioned against using names of existing files. That can result in the original contents of those files being lost. It is recommended that the names of the output and plot files be related to each other so that it is easy to recall which plot file corresponds to which output file. For example, if the input file is called RUN1.DAT, the output and plot files could be named RUN1.OUT and RUN1.PLT, respectively. Figure A.5 shows the terminal display for a TWTID run. As the program runs, the axial position and power will be printed to the terminal.
4. Output Data File

The TWTID output file for the sample input file is shown in Fig. A.6. Notice that at each print interval, several variables describing the performance of the TWT are printed to the output file. Which variables are printed is determined by the variable, NPR, in the input data file. The four options available are described and illustrated in this section.
RESULTS FOR INPUT FILE SAMPLE.IN

<table>
<thead>
<tr>
<th>N</th>
<th>FREQ. (Hz)</th>
<th>INPUT PWR. (dBm)</th>
<th>REL. PHASE (rad)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>18.000000</td>
<td>10.000000</td>
<td>0.000000</td>
</tr>
</tbody>
</table>

CATHODE CURRENT (Amps) = 2800
HELIX VOLTAGE (Volts) = 10200.00
EFFECTIVE VOLTAGE (Volts) = 9008.02
NORMALIZED BEAM VELOCITY = 1.959
HELIX PITCH (tpi) = 19.180
PLASMA FREQUENCY (rads/m) = 1.141E+11
PLASMA FREQUENCY REDUCTION FACTOR = 0.5987
SPACE CHARGE PARAMETER = 0.7993
MEAN HELIX RADIUS (in) = 0.03790
BEAM FILL FACTOR = 0.5000
CIRCUIT PRINT INTERVAL (in) = 2.000
NUMBER OF ELECTRON DISKS = 16
NUMBER OF ATTENUATORS = 1
NUMBER OF CHANGES = 3

<table>
<thead>
<tr>
<th>N</th>
<th>NORM. PHASE VEL. (Vp/c)</th>
<th>AXIAL IMP. (ohms)</th>
<th>GAIN PARAMETER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.1864</td>
<td>3.6000</td>
<td>0.0318</td>
</tr>
</tbody>
</table>

RESTART INFORMATION FOR Y = 7.009

A

DA

.7872E-01 .3605E-01 -.1192E+02 -.1975E+01

ELECTRON PHASE POSITIONS

<table>
<thead>
<tr>
<th>ELECTRON VELOCITIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.250E-01 .4444E-01 .6205E-02 -.3519E-01</td>
</tr>
<tr>
<td>-7.122E-01 -.9445E-01 -.1012E+00 -.9222E-01</td>
</tr>
<tr>
<td>-7.145E-01 -.4343E-01 -.1196E+01 .1990E+00</td>
</tr>
<tr>
<td>-4.919E-01 -.7247E+00 .8605E+01 .8667E+00</td>
</tr>
</tbody>
</table>

4.688 32.075 1.60 -.12.394 9.327 -.1.459 0.0006 .0527
4.888 33.921 -46 -.12.335 9.232 .4.336 .0009 .0527

9.320 54.127 2.41 -.28.754 1.430 .4.967 .9667 .0906 .0548
9.520 54.201 2.41 -.29.300 1.497 .1.2292 .0921 .0548

ENDING PRINT OUT

SATURATED POWER (dBm) = 54.201
GAIN AT SATURATION (dB) = 44.201
SATURATION EFFICIENCY (%) = 9.213
LENGTH AT SATURATION (in) = 9.500
SMALL SIGNAL GAIN (dB) = 44.707

TWTID 1:35 PM MON., 20 JAN., 1986

Fig. A.6. TWTID output file.
NPR = 1

This is the printout option which will most often be used by tube designers. It prints out the following variables.

- **Z**: Axial position (in)
- **PDB**: Power (dBm)
- **B**: Pierce’s velocity parameter
- **THETA**: The phase angle of the circuit wave (radians)
- **DPDB**: The partial derivative of power with respect to position
- **DTDZ**: The partial derivative of phase angle with respect to position
- **ETA**: The efficiency
- **D**: Pierce’s loss parameter

NPR = 2

This option prints out all the variables in NPR = 1, as well as information about energy in the beam and in the circuit wave. This can help indicate whether or not the computer simulation is a good representation of the physical process. The variables are:

- **EBEAM**: Power lost by the beam, normalized by the total beam power
- **EWAVE**: Power contained in the circuit wave and in the field between the circuit and the beam
- **EBLNC**: \((|\text{EBEAM}| - |\text{EWAVE}|) / (|\text{EBEAM}| + |\text{EWAVE}|)\)

If the simulation is reasonable, EBLNC will be near zero. A "good" value for EBLNC is on the order of 0.1. However, this parameter does not account for the circuit wave power lost in attenuators so, in those regions, EBLNC will not be near zero.
NPR = 3

This option includes all the variables in NPR = 1, as well as information for creating electron flight diagrams and Cutler charts. The variables are:

PHI(i,l) Electron phases for the fundamental frequency
2*C(1)*U(i) Normalized electron velocities

NPR = 4

This option will print out all the variables listed above. It generates a lot of data! All of the NPR options are illustrated in Fig. A.7.
<table>
<thead>
<tr>
<th>Z</th>
<th>PDB</th>
<th>B</th>
<th>THETA</th>
<th>DPDB</th>
<th>DTDZ</th>
<th>ETA</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>9.874</td>
<td>1.60</td>
<td>.505</td>
<td>.628</td>
<td>1.0410</td>
<td>.0000</td>
<td>.0527</td>
</tr>
<tr>
<td>400</td>
<td>9.909</td>
<td>1.60</td>
<td>1.045</td>
<td>.176</td>
<td>1.1227</td>
<td>.0000</td>
<td>.0527</td>
</tr>
</tbody>
</table>

NPR 2

<table>
<thead>
<tr>
<th>Z</th>
<th>PDB</th>
<th>B</th>
<th>THETA</th>
<th>DPDB</th>
<th>DTDZ</th>
<th>ETA</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>9.874</td>
<td>1.60</td>
<td>.505</td>
<td>.628</td>
<td>1.0410</td>
<td>.0000</td>
<td>.0527</td>
</tr>
<tr>
<td>400</td>
<td>9.909</td>
<td>1.60</td>
<td>1.035</td>
<td>.176</td>
<td>1.1227</td>
<td>.0000</td>
<td>.0527</td>
</tr>
</tbody>
</table>

NPR 3

<table>
<thead>
<tr>
<th>Z</th>
<th>PDB</th>
<th>B</th>
<th>THETA</th>
<th>DPDB</th>
<th>DTDZ</th>
<th>ETA</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>9.874</td>
<td>1.60</td>
<td>.505</td>
<td>.628</td>
<td>1.0610</td>
<td>.0000</td>
<td>.0527</td>
</tr>
<tr>
<td>5049</td>
<td>.8973</td>
<td>1.290</td>
<td>1.682</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.075</td>
<td>2.468</td>
<td>2.861</td>
<td>3.254</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.647</td>
<td>4.040</td>
<td>4.433</td>
<td>4.825</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.218</td>
<td>5.611</td>
<td>6.003</td>
<td>6.396</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.3065E-04</td>
<td>.9139E-04</td>
<td>-.1291E-03</td>
<td>-.1472E-03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-.1430E-03</td>
<td>-.1196E-03</td>
<td>-.7307E-04</td>
<td>-.1809E-04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-.3965E-04</td>
<td>.9139E-04</td>
<td>-.1291E-03</td>
<td>-.1472E-03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-.1429E-03</td>
<td>-.1196E-03</td>
<td>-.7307E-04</td>
<td>-.1806E-04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NPR 4

<table>
<thead>
<tr>
<th>Z</th>
<th>PDB</th>
<th>B</th>
<th>THETA</th>
<th>DPDB</th>
<th>DTDZ</th>
<th>ETA</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>9.874</td>
<td>1.60</td>
<td>.505</td>
<td>.628</td>
<td>1.0610</td>
<td>.0000</td>
<td>.0527</td>
</tr>
<tr>
<td>1024E-07</td>
<td>10897E-06</td>
<td>-.82811</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.5049</td>
<td>.8973</td>
<td>1.290</td>
<td>1.682</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.075</td>
<td>2.468</td>
<td>2.861</td>
<td>3.254</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.647</td>
<td>4.040</td>
<td>4.433</td>
<td>4.825</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.218</td>
<td>5.611</td>
<td>6.003</td>
<td>6.396</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-3965E-04</td>
<td>-.9139E-04</td>
<td>-.1291E-03</td>
<td>-.1472E-03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-.1430E-03</td>
<td>-.1196E-03</td>
<td>-.7307E-04</td>
<td>-.1809E-04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-.3965E-04</td>
<td>.9139E-04</td>
<td>-.1291E-03</td>
<td>-.1472E-03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-.1429E-03</td>
<td>-.1196E-03</td>
<td>-.7302E-04</td>
<td>-.1806E-04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. A.7. TwTl0 printout options.
1. Restarting a Run

Often an engineer will want to examine the effect of different input helices on a tube's performance. TWTID allows the user to do this without having to rerun the input helix in each case.

If a run is to be restarted, the input file for the initial run should have the number of restarts, NUMR set to 1, and the position of the restart printout, RST, set to the position of the restart. The output file for that run will contain all the information needed to restart the run. A restart printout at 4.5 inches is illustrated in Fig. A.6. To restart the run, the data from the restart must be appended to the original input file, and the restart data input switch, RSTART, set to 1. Figure A.8 shows the input file for a restarted run. Note that all the character data have been removed from the restart data.
10200. 280 .0379 .5 19.18 9.5
1 3 1 1
18. 10. .1864 3.6 .75 0.
4.68 .0379 0
5.30 .0379 0
8.00 .0379 .5
3.75 3.44 3.00
3.00 3.50 100 2
4.5
1 16 .2 1 2 1 0 0
7.009
.7872E-01 .3605E-01 -.1192E+02 -.1975E+01
.1200E+02
.1241E+02
.1280E+02
.1318E+02
.1353E+02
.1388E+02
.1422E+02
.1458E+02
.1494E+02
.1532E+02
.1572E+02
.1614E+02
.1656E+02
.1700E+02
.1743E+02
.1786E+02
.7256E-01 .4444E-01 .6205E-02 -.3519E-01
-.7122E-01 -.9445E-01 -.1012E+00 -.9222E-01
-.7145E-01 -.4343E-01 -.1196E-01 .1990E-01
.4919E-01 .7247E-01 .8605E-01 .8667E-01

Fig. A.8. Input file for restarting a run.
MISSION
of
Rome Air Development Center

EADC plans and executes research, development, test and selected acquisition programs in support of Command, Control, Communications and Intelligence, C3I activities. Technical and organizational support within areas of competence is provided to ESC Program Offices (POs) and other ESC elements to perform effective acquisition of C3I systems. The areas of technical competence include communications, command and control, battle management, information processing, surveillance sensors, intelligence data collection and handling, fixed state sciences, electromagnetics, and integration, and electronic, maintainability, and survivability.