NUMERICAL METHODS FOR MATRIX COMPUTATIONS
USING ARRAYS OF PROCESSORS

FINAL REPORT
GENE H. GOLUB
Principal Investigator
April 30, 1987

U. S. ARMY RESEARCH OFFICE
DAAG29-83-K-0124

STANFORD UNIVERSITY
STANFORD, CA 94305

APPROVED FOR PUBLIC RELEASE:
DISTRIBUTION UNLIMITED
Numerical Methods for Matrix Computations Using Arrays of Processors

Gene H. Golub

Computer Science Department
School of Engineering
Stanford University, Stanford, CA 94305

April 30, 1987

Approved for public release; distribution unlimited.

The view, opinions, and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other documentation.

Parallel Processing
Systolic Arrays
Geodetic Computations
Domain Decomposition

The Final Report describes the scientific activity conducted under this grant. The emphasis of this research has been the solution of sparse matrix problems arising in applications, on parallel and systolic-like architectures.
1. Problem Studied

The basic objective of this project has been to consider a large class of matrix computations with particular emphasis to algorithms which can be implemented on arrays of processors. In particular, we have been interested in methods which are useful for sparse matrix computations. These computations arise in a variety of applications such as the solution of partial differential equations by multigrid methods and in the fitting of geodetic data. Some of the methods developed have already found their use on some of the newly developed architectures (see below).

2. Summary of Important Results

Five reports and papers have been written during the duration of this grant. We describe some of the results given in these reports. A complete list of the reports and papers is given in Section 3 of this report.

The serial multigrid algorithm is a fast and efficient technique for solving elliptic partial differential equations. The algorithm consists of “solving” a series of problems on a hierarchy of grids with different mesh sizes. For many problems, it is possible to prove that its execution time is asymptotically optimal. Not only is it asymptotically optimal but when properly implemented it is competitive with other algorithms on grids of a modest size. Given its success on serial computers, it is natural to consider its performance characteristics on parallel machines.

Primarily, this research considers the mapping of the multigrid algorithm to the distributed memory, message passing hypercube computer. The work illustrates how the topology of the hypercube fits the data flow of the multigrid algorithm, and therefore al-
allows parallel implementations with relatively low communication cost. It has been shown that the multigrid algorithm is an asymptotically optimal parallel algorithm in a certain sense. A timing model for the execution time of a particular implementation was developed and found to accurately model experimental results obtained from runs on the Intel iPSC system. Further, this model was used to explore the influence of machine and algorithm parameters on the efficiency of the method.

One difficulty with the parallel multigrid algorithm is a load balancing problem that creates inefficiency on large processor systems (caused by processors becoming idle on coarse grids). The current research, which is described in [1], is concerned with evaluating the magnitude of this problem and developing new algorithms which do not have these difficulties. One new algorithm exploits idle processors to accelerate the convergency of the basic multigrid method. Additional work is necessary to fully evaluate this algorithm: however, the preliminary analysis and experiments are promising.

The possibilities of systolic-like architectures (n x n grids of relatively simple and small processors) has been demonstrated in performing the direct sparse Cholesky factorization of a positive definite matrix in [5]. These matrices arise in the discretization of elliptic partial differential equations by finite elements or finite differences. The factorization and backsolve, each require O(n) parallel floating point multiplications, realizing the theoretical parallel execution times previously determined abstractly, without means of implementation. The algorithm described here has been the basis for the nested dissection program developed for the connection machine; its implementation has been quite successful.

Several algorithms have been developed, which are particularly appropriate for vector
architectures. In particular, two problems have been studied which are of a statistical nature: the computation of variances for large data samples and the geodetic data fitting problem.

The problem of computing the variance of a sample of \(N \) data points may be difficult for certain data sets, particularly when \(N \) is large and the variance is small. In [1], we studied several algorithms and their round-off error bounds. We presented a new algorithm which is highly efficient in a vector environment and which has excellent numerical properties.

In [3], we have described and compared some numerical methods for solving large dimensional linear least squares problems that arise in geodesy and, more specially, from Doppler positioning. The methods that are considered are the direct orthogonal decomposition, and the combination of conjugate gradient type algorithms with projections as well as the exploitation of “Property A”. Numerical results are given and the respective advantage of the methods are discussed with respect to such parameters as CPU time, input/output and storage requirements.

Iterative methods are often used for solving the linear systems arising from the approximation to elliptic partial differential equations. The Chebyshev and second-order Richardson methods are classical iterative schemes for solving such systems. We consider in [4], the convergence analysis of these methods when each step of the iteration is carried out inexact. This has many applications, since a preconditioned iteration requires, at each step, the solution of a linear system which may be solved inexactly using an “inner” iteration. We have also derived an error bound which applies to the general nonsymmetric inexact Chebyshev iteration. In particular, in domain decomposition (or substructuring).
it may be desirable to solve the subsystem approximately.

3. Papers and Technical Reports

4. Scientific Personnel

Gene H. Golub, Principal Investigator

Robert Schreiber, Associate Investigator

Ray Tuminaro, Student Research Assistant
END
7-87
DTIC