ON A LOWER CONFIDENCE BOUND FOR THE
PROBABILITY OF A CORRECT SELECTION: ANALYTICAL
AND SIMULATION STUDIES *

by

Shanti S. Gupta
Purdue University

TaChen Liang
Purdue University
Technical Report #87-5

PURDUE UNIVERSITY

DEPARTMENT OF STATISTICS

DISTRIBUTION STATEMENT A
Approved for public release
Distribution Unlimited
ON A LOWER CONFIDENCE BOUND FOR THE
PROBABILITY OF A CORRECT SELECTION: ANALYTICAL
AND SIMULATION STUDIES

by
Shanti S. Gupta
Purdue University

TaChen Liang
Purdue University
Technical Report#87-5

Department of Statistics
Purdue University
March 1987

The research of this author was supported in part by the Office of Naval Research Contract N00014-84-C-0167 at Purdue University and NSF Grant DMS 8606964. Reproduction in whole or in part is permitted for any purpose of the United States Government.
ON A LOWER CONFIDENCE BOUND FOR THE
PROBABILITY OF A CORRECT SELECTION: ANALYTICAL
AND SIMULATION STUDIES

by

Shanti S. Gupta* and TaChen Liang
Purdue University

Abstract

For the problem of selecting the best of several populations using the indifference (preference)
zone formulation, a natural rule is to select the population yielding the largest sample value of an
appropriate statistic. For this approach, it is required that the experimenter specify a number \(\delta^* \),
say, which is a lower bound on the difference (separation) between the largest and the second largest
parameter. However, in many real situations, it is hard to assign the value of \(\delta^* \) and, therefore,
in case that the assumption of indifference zone is violated, the probability of a correct selection
cannot be guaranteed to be at least \(P^* \), a prespecified value. In this paper, we are concerned
with deriving a lower confidence bound for the probability of a correct selection for the general
location model \(F(x - \theta_i), i = 1, \ldots, k \). First, we derive simultaneous lower confidence bounds on
the differences between the largest (best) and each of the other non-best population parameters.
Based on these, we obtain a lower confidence bound for the probability of a correct selection. The
general result is then applied to the selection of the best mean of \(k \) normal populations with both
the known and unknown common variances. In the first case one needs a single-stage procedure
while in the second case a two-stage procedure is required. Some simulation investigations are
described and their results are provided.

* Invited paper to be presented by this author at the First International Conference on Statistic
al Computing, 30 March 2 April, 1987, to be held at Cesme, Izmir, Turkey.

This research was partially supported by the Office of Naval Research Contract
N00014 84 0167 and NSF Grant DMS 8606964 at Purdue University.
AMS 1980 Subject Classification: Primary 62F25, 62F07

KEY WORDS: Correct selection, Indifference zone, Lower confidence bound, Best population
1. Introduction

Let $X_{j}, j = 1, \ldots, n$, be n independent observations from a population π_{i}, where $\pi_{1}, \pi_{2}, \ldots, \pi_{k}$ are independently distributed with continuous cumulative distribution function $G(x - \theta_{i})$, $1 \leq i \leq k$, respectively. Let $\theta = (\theta_{1}, \ldots, \theta_{k})$ and let $\theta_{(1)} \leq \cdots \leq \theta_{(k)}$ denote the ordered values of $\theta_{1}, \ldots, \theta_{k}$. It is assumed that the exact pairing between the ordered parameters and the unordered parameters is unknown. The population associated with the largest location parameter $\theta_{(k)}$ is called the best population. Assume that the experimenter is interested in the selection of the best population. For this purpose, we choose an appropriate statistic $Y_{i} = Y(X_{i1}, \ldots, X_{in})$ with cumulative distribution function $F_{n}(y - \theta_{i})$ and use the natural selection rule that selects the population yielding the largest Y_{i} as the best population. Let CS (correct selection) denote the event that the best population is selected. Then, the probability of a correct selection (PCS) applying the natural selection rule is

$$P_{\theta} \{CS \} = \int_{-\infty}^{\infty} \prod_{i=1}^{k-1} F_{n}(y + \theta_{(k)} - \theta_{(i)}) dF_{n}(y).$$

To guarantee the probability of a correct selection, Bechhofer (1954) introduced the indifference zone approach in which the experimenter is asked to assign a positive value δ^{*} such that

$$\theta_{(k)} \geq \theta_{(k-1)} + \delta^{*}.$$

Thus, the subspace $\Omega(\delta^{*}) = \{ \theta : \theta_{(k)} \geq \theta_{(k-1)} + \delta^{*} \}$ is called the preference zone and its complement $\Omega^{c}(\delta^{*}) = \{ \theta : \theta_{(k)} < \theta_{(k-1)} + \delta^{*} \}$ is the indifference zone. We also let $\Omega = \Omega(\delta^{*}) \cup \Omega^{c}(\delta^{*}) \cup \Omega_{n} \cup \Omega(\delta^{*})$, we have,

$$\inf_{\theta \in \Omega(\delta^{*})} P_{\theta} \{CS \} - \int_{-\infty}^{\infty} \prod_{i=1}^{k-1} F_{n}(y + \delta^{*}) dF_{n}(y).$$

Suppose that the function on the right-hand-side of (1.3) is an increasing function of the common sample size n and tends to one as n tends to infinity. Then, for a given probability $P^{*}(k - 1) = P^{*}$.
1), the minimum common sample size n_0 that is required to guarantee the probability of a correct selection to be at least P^* over the preference zone is determined by

$$n_0 = n_0(\delta^*, P^*) = \min\{n | \int_{-\infty}^{\infty} |F_n(y + \delta^*)|^{k-1} dF_n(y) \geq P^*\}. \quad (1.4)$$

However, in a real situation, it may be hard to assign the value of δ^* such that $\theta_{(k)} \geq \theta_{(k-1)} + \delta^*$ since the parameter values $\theta_{(k)}$, $\theta_{(k-1)}$ are unknown. So that if the above assumption is not satisfied, then the probability of a correct selection cannot be guaranteed to be at least equal to P^*.

Recently, retrospective analyses regarding the PCS have been studied by some authors. Olkin, Sobel and Tong (1976, 1982) and Gibbons, Olkin and Sobel (1977) have presented estimators of the PCS. Faltin and McCulloch (1983) have studied the small-sample properties of the Olkin-Sobel-Tong's estimator of the PCS for the case when $k = 2$. Anderson, Bishop and Dudewicz (1977) gave a lower confidence bound on the PCS in the case of normal populations having a common variance which is either known or unknown. Kim (1986) presented a lower confidence bound on the PCS for the case where the underlying probability density function $f_n(y - \theta)$ of $F_n(y - \theta)$ has the monotone likelihood ratio property in y and θ and studied its application to the case of normal populations with common known or common unknown variances.

In this paper we are concerned with deriving a lower confidence bound for the probability of a correct selection for the general location model $G(x - \theta_i)$, $i = 1, \ldots, k$. First, we derive simultaneous lower confidence bounds on the differences between the largest (best) and each of the other non-best population parameters. Based on these, we obtain a lower confidence bound for the probability of a correct selection. The general result is then applied to the selection of the best mean of k normal populations with both the known and unknown common variances. In the first case one needs a single-stage procedure while in the second case a two-stage procedure is required. Some simulation investigations are described and their results are provided.
2. A Lower Confidence Bound on PCS

For given δ^* and P^*, let n_0 be the minimum common sample size determined by (1.4). Let $Y = Y(X_i, \ldots, X_{in})$, be an appropriate statistic for inference regarding θ, and let us assume that the distribution of $Y_i - \theta_i$ is independent of θ_i, $1 \leq i \leq k$. Let $Y_{[1]} \leq \ldots \leq Y_{[k]}$ denote the order statistics of Y_i, $1 \leq i \leq k$. Also, let θ_1 denote the (unknown) parameter associated with $Y_{[i]}$. For given α, $0 < \alpha < 1$, let $c(k, n_0, \alpha)$ be the value such that

$$P_{\theta} \left\{ \max_{1 \leq i \leq k} (Y_i - \theta) - \min_{1 \leq j \leq k} (Y_j - \theta) \leq c(k, n_0, \alpha) \right\} = 1 - \alpha. \quad (2.1)$$

Let $E = \left\{ \max_{1 \leq i \leq k} (Y_i - \theta) - \min_{1 \leq j \leq k} (Y_j - \theta) \leq c(k, n_0, \alpha) \right\}$. Then, we have the following lemma.

Lemma 2.1. $E \subset \{(Y_{[k]} - Y_{[i]} - c(k, n_0, \alpha))^+ \leq \theta_{(k)} - \theta_{(i)}, 1 \leq i \leq k - 1\}$, where $(y)^+ = \max(0, y)$.

Proof: First note that for each $i = 1, \ldots, k$,

$$\min_{j \leq i} (Y_{[j]} - \theta_{[j]}) \leq \min_{j \leq i} (Y_{[i]} - \theta_{[j]}) \leq Y_{[i]} - \max_{j \leq i} \theta_{[j]} \leq Y_{[i]} - \theta_{(i)}. \quad (2.2)$$

Thus,

$$E \equiv \left\{ \max_{1 \leq i \leq k} (Y_i - \theta) - \min_{1 \leq j \leq k} (Y_j - \theta) \leq c(k, n_0, \alpha) \right\}$$

$$\subset \left\{ \max_{1 \leq i \leq k} (Y_i - \theta_{(k)}) - \min_{1 \leq j \leq k} (Y_{[j]} - \theta_{[j]}) \leq c(k, n_0, \alpha) \right\}$$

$$\subset \left\{ \{(Y_{[k]} - \theta_{(k)}) - \min_{1 \leq j \leq k-1} (Y_{[j]} - \theta_{[j]}) \leq c(k, n_0, \alpha) \right\}$$

$$\subset \left\{ \{(Y_{[k]} - \theta_{(k)}) - \min_{j \leq i} (Y_{[i]} - \theta_{[i]}) \leq c(k, n_0, \alpha), 1 \leq i \leq k - 1\} \right\}$$

$$\subset \left\{ \{(Y_{[k]} - \theta_{(k)}) - (Y_{[i]} - \theta_{(i)}) \leq c(k, n_0, \alpha), 1 \leq i \leq k - 1\} \right\} \text{(by (2.2))}$$

$$\subset \left\{ \{Y_{[k]} - Y_{[i]} - c(k, n_0, \alpha)^+ \leq \theta_{(k)} - \theta_{(i)}, 1 \leq i \leq k - 1\} \right\}$$

$$\subset \left\{ \{Y_{[k]} - Y_{[i]} - c(k, n_0, \alpha)^+ \leq \theta_{(k)} - \theta_{(i)}, 1 \leq i \leq k - 1\} \right\}.$$
Note that the last equality follows from the fact that $\theta_{(k)} - \theta_{(i)} \geq 0$ for all $i \leq i \leq k - 1$. Hence, we complete the proof of this lemma.

Note that in (1.1), the probability of a correct selection $P_0\{CS\}$ depends on the parameters $\theta = (\theta_1, \ldots, \theta_k)$ only via the differences $\theta_{(k)} - \theta_{(i)}$, $1 \leq i \leq k - 1$. For convenience, we write $P_0\{CS\} = P(\delta_1, \ldots, \delta_{k-1})$ where $\delta_i = \theta_{(k)} - \theta_{(i)}$, $1 \leq i \leq k - 1$. We see that $P(\delta_1, \ldots, \delta_{k-1})$ is a nondecreasing function of δ_i for each $i = 1, 2, \ldots, k - 1$.

For each $i = 1, \ldots, k - 1$, let

$$\hat{\delta}_{L,i} = (Y_{[k]} - Y_{[i]} - c(k, n_0, \alpha))^+,$$

$$\hat{P}_L = P(\hat{\delta}_{L,1}, \ldots, \hat{\delta}_{L,k-1}).$$

We propose \hat{P}_L as an estimator of a lower bound of the PCS. We have the following theorem.

Theorem 2.2. $P_0\{P_0\{CS\} \geq \hat{P}_L\} \geq 1 - \alpha$ for all $\theta \in \Omega$.

Proof: By nondecreasing property of $P(\delta_1, \ldots, \delta_{k-1})$ with respect to δ_i, $1 \leq i \leq k - 1$, from (2.1) and Lemma 2.1, we have, for $\theta \in \Omega$,

$$1 - \alpha = P_0\{E\} \leq P_0\{\hat{\delta}_{L,i} \leq \theta_{(k)} - \theta_{(i)}, 1 \leq i \leq k - 1\} \leq P_0\{P(\hat{\delta}_{L,1}, \ldots, \hat{\delta}_{L,k-1}) \leq P(\delta_1, \ldots, \delta_{k-1})\} = P_0\{\hat{P}_L \leq P_0\{CS\}\}.$$

This completes the proof of this theorem.

3. Selection of the Best Normal Population in Terms of Means

Let X_{ij}, $1 \leq j \leq n$ be independent observations from $N(\theta_i, \sigma^2)$, $i = 1, \ldots, k$ where the common variance σ^2 may be either known or unknown. The best population is the one associated
with the largest mean \(\theta_{(k)} \). We consider two situations according to whether the common variance \(\sigma^2 \) is known or unknown.

3.1. Lower Confidence Bound for \(PCS : \sigma^2 \) Known Case.

When the value of the common variance \(\sigma^2 \) is known, for \(\theta \in \Omega \), the probability of a correct selection applying the natural selection rule is:

\[
P_\theta \{ CS \} = \int_{-\infty}^{\infty} \prod_{i=1}^{k-1} \Phi(x + \frac{\sqrt{n_0}(\theta_{(k)} - \theta(i))}{\sigma}) d\Phi(x),
\]

where \(\Phi(\cdot) \) is the standard normal distribution function, and the value of the sample size \(n_0 \), for the indifference zone formulation, is determined by

\[
n_0 = \min \{ n \mid \int_{-\infty}^{\infty} \Phi(x + \frac{\sqrt{n_0} \delta^*}{\sigma})^{k-1} d\Phi(x) \geq P^* \}.
\]

Let \(\bar{X}_i = \frac{1}{n_0} \sum_{j=1}^{n} X_{ij} \). For given \(0 < \alpha < 1 \), choose the value \(c(k, n_0, \alpha) \) such that

\[
P_\theta \{ \max_{1 \leq i \leq k} (\bar{X}_i - \theta_i) - \min_{1 \leq j \leq k} (X_j - \theta_j) \leq c(k, n_0, \alpha) \} = 1 - \alpha.
\]

Note that here, \(c(k, n_0, \alpha) = \frac{\sigma}{\sqrt{n_0}} q_{k, \infty}^\alpha \), where \(q_{k, \infty}^\alpha \) is the 100(1 - \(\alpha \))\text{th} percentile of Tukey's studentized range statistic with parameters \((k, \infty)\). The value of \(q_{k, \infty}^\alpha \) is available from Harter (1969). Then, we define

\[
\hat{\delta}_{L,i} = (\bar{X}_{[k]} - \bar{X}_{[i]} - c(k, n_0, \alpha))^+ \quad \text{(3.4)}
\]

and

\[
\hat{P}_L = P(\hat{\delta}_{L,1}, \ldots, \hat{\delta}_{L,k-1}) = \int_{-\infty}^{\infty} \prod_{i=1}^{k-1} \Phi(x + \frac{\sqrt{n_0} \hat{\delta}_{L,i}}{\sigma}) d\Phi(x). \quad \text{(3.5)}
\]

Then, by Theorem 2.2, \(P_\theta \{ P_\theta \{ CS \} \geq \hat{P}_L \} \geq 1 - \alpha \) for all \(\theta \in \Omega \).
3.2. Lower Confidence Bound for PCS: σ^2 Unknown Case.

When the common variance σ^2 is unknown, Bechhofer, Dunnett and Sobel (1954) presented a two-stage selection rule, which is briefly described as follows.

Take a first sample of $n_0 (n_0 \geq 2)$ observations from each of the k populations. Compute $X_i = \frac{1}{n_0} \sum_{j=1}^{n_0} X_{ij}, \; (1 \leq i \leq k)$, and $S^2 = \frac{1}{k(n_0-1)} \sum_{i=1}^{k} \sum_{j=1}^{n_0} (X_{ij} - X_i)^2$. Define $N = \max\{n_0, \lceil \frac{S^2 h^2}{\delta^2} \rceil \}$ where the symbol $\lceil y \rceil$ denotes the smallest integer not less than y, and h is a positive value such that

$$\int_0^{\infty} \int_{-\infty}^{\infty} \Phi(z + wh)^k \Phi(z) dF_W(w) = P^*,$$

(3.6)

$k^{-1} < P^* < 1$, and $F_W(\cdot)$ is the distribution function of the nonnegative random variable W with $k(n_0 - 1)W^2$ following $\chi^2 (k(n_0 - 1))$ distribution.

Then, take additional $N - n_0$ observations from each population. Compute the overall mean $\bar{X}_i(N) = \frac{1}{N} \sum_{j=1}^{N} X_{ij}, \; 1 \leq i \leq k$. We then select the population yielding the largest observation $\bar{X}_{[k]}(N)$ as the best population.

For this two-stage selection rule, the probability of a correct selection is:

$$P_2^c(CS) = P_2^c(\bar{X}_{[k]}(N) > \bar{X}_{(i)}(N), i \neq k)$$

$$= P_2^c\left\{ \frac{\sqrt{N}(\bar{X}_{[k]}(N) - \theta_{(k)})}{\sigma} > \frac{\sqrt{N}(\bar{X}_{(i)} - \theta_{(i)})}{\sigma}, i \neq k \right\}$$

$$\geq P_2^c\left\{ \frac{\sqrt{N}(\bar{X}_{[k]}(N) - \theta_{(k)})}{\sigma} + \frac{h(\theta_{(k)} - \theta_{(i)})}{\delta^*} S \frac{\sqrt{N}(\bar{X}_{(i)} - \theta_{(i)})}{\sigma}, i \neq k \right\}$$

(since $N \geq \lceil \frac{S^2 h^2}{\delta^*} \rceil$)

$$= P\{Z_k + \frac{h(\theta_{(k)} - \theta_{(i)})}{\delta^*} W > Z_i, \; i \neq k\}$$

$$= \int_0^{\infty} \int_{-\infty}^{\infty} \prod_{i=1}^{k-1} \Phi(z + \frac{h(\theta_{(k)} - \theta_{(i)})}{\delta^*} w) d\Phi(z) dF_W(w),$$

(3.7)

where Z_1, \ldots, Z_k are iid random variables having standard normal distribution, and $W = S/\sigma$ with $k(n_0 - 1)W^2 \sim \chi^2 (k(n_0 - 1))$ and (Z_1, \ldots, Z_k) and W are independent.
Thus, to obtain a lower confidence bound for $P_\theta^*\{\mathrm{CS}\}$, it suffices to find simultaneous lower confidence bounds for $\theta_k - \theta_{(i)}$, $1 \leq i \leq k - 1$. Then, replacing the $\theta_{(k)} - \theta_{(i)}$, $1 \leq i \leq k - 1$, by the corresponding lower confidence bounds into the function on the right-hand-side of (3.7), we obtain a lower confidence bound for $P_\theta^*\{\mathrm{CS}\}$. For convenience, we let

$$Q(\delta_1, \ldots, \delta_{k-1}) = \int_0^\infty \int_{-\infty}^\infty \Phi(z + \frac{h(\theta_k - \theta_{(i)})}{\delta^*}) d\Phi(z) dF(w).$$

(3.8)

Let $c = S_{q_k, k(n_0 - 1)}/\sqrt{N}$, where $q_{k, k(n_0 - 1)}$ is the 100(1 - α)%th percentile of Tukey's studentized range statistic with parameters $(k, k(n_0 - 1))$. Define

$$\hat{\delta}_{L,i} = (\overline{X}_{[i]}(N) - \overline{X}_{[i]}(N) - c)^+, \quad (3.9)$$

and

$$\hat{Q}_L = Q(\hat{\delta}_{L,1}, \ldots, \hat{\delta}_{L,k-1}). \quad (3.10)$$

We propose \hat{Q}_L as an estimator of a lower bound of $P_\theta^*\{\mathrm{CS}\}$.

Lemma 3.1. Let $E = \{ \max_{1 \leq i \leq k} (\overline{X}_i(N) - \theta_i) - \min_{1 \leq j \leq k} (\overline{X}_j(N) - \theta_j) \leq c \}$. Then, $P_\theta^*\{E\} = 1 - \alpha$ for all $\theta \in \Omega$.

Proof:

$$P_\theta^*(E) = P_\theta\{ \max_{1 \leq i \leq k} (\overline{X}_i(N) - \theta_i) - \min_{1 \leq j \leq k} (\overline{X}_j(N) - \theta_j) \leq c \}$$

$$= P_\theta\{ \max_{1 \leq i \leq k} \sqrt{N} (\overline{X}_i(N) - \theta_i) - \min_{1 \leq j \leq k} \sqrt{N} (\overline{X}_j(N) - \theta_j) = S_{q_k, k(n_0 - 1)} \}$$

$$= 1 - \alpha,$$

where the last equality follows from the definition of $q_{k, k(n_0 - 1)}$.

Lemma 3.2. $P_\theta^*\{\hat{\delta}_{L,i} \leq \theta_k - \theta_{(i)}, 1 \leq i \leq k - 1 \} \geq 1 - \alpha$ for all $\theta \in \Omega$.

Proof: Following the same argument as in Lemma 2.1, we have \(E \subset \{ \hat{\theta}_{L,i} \leq \theta_{(i)} - \theta_{(i)}, \ 1 \leq i \leq k - 1 \} \). Then using Lemma 3.1 leads to the conclusion of Lemma 3.2.

Lemma 3.2 and the increasing property of the function \(Q(\delta_1, \ldots, \delta_{k-1}) \) with respect to \(\delta_i, \ 1 \leq i \leq k - 1 \), lead to the following main result.

Theorem 3.3. \(P_{\theta}\{P_{\theta}\{CS\} \geq \hat{Q}_L\} \geq 1 - \alpha \) for all \(\theta \in \Omega \).

Proof: Note that \(P_{\theta}\{CS\} \geq Q(\delta_1, \ldots, \delta_{k-1}) \) for all \(\theta \in \Omega \). Therefore, \(P_{\theta}\{P_{\theta}\{CS\} \geq \hat{Q}_L\} \geq P_{\theta}\{Q(\delta_1, \ldots, \delta_{k-1}) \geq \hat{Q}_L\} \geq 1 - \alpha \) for all \(\theta \in \Omega \).

4. Remark and Example

Anderson, Bishop and Dudewicz (1977) and Kim (1986) have also studied the problem of finding a lower confidence bound on PCS. They considered the retrospective analysis to approach a lower confidence bound for PCS no matter what the sampling rule is. However, our approach is different from theirs. We use the following example to illustrate our procedure and describe the difference between ours and Kim's approach.

Example (The data is taken from Problem 3.1, page 97, of Gibbons, Olkin and Sobel (1977)).

The experimenter wants to compare dry shear strength of \(k = 6 \) different resin glues for bonding yellow birch plywood. Assume that the distributions of the strength for each glue are normal with common unknown variance \(\sigma^2 \). Based on some past information, the experimenter assigns \(\delta^* = 20 \). Then, using indifference zone formulation, a two-stage natural selection rule is applied here. Let \(P^* = 0.90 \) and let the initial sample size of \(n_0 \) be 6. The observations (readings) are taken to measure the strength of the glue. Thus, large values are more desirable in this application. The data are given in the upper part of Table 1.

Now, \(N := \max\{n_0, \left[\frac{S^2 h^2}{6 \delta^{2}} \right]\} \). For \(k = 6 \), \(n_0 = 6 \), \(P^* = 0.90 \), from Gupta, Panchapakesan and Sohn (1985), \(h = 1.97982\sqrt{2} \). Therefore, \(N = 10 \) and hence \(N - n_0 = 4 \).
Table 1. Shear Strength of Six Types of Glue

<table>
<thead>
<tr>
<th>Glue</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>102</td>
<td>70</td>
<td>100</td>
<td>120</td>
<td>151</td>
<td>220</td>
</tr>
<tr>
<td></td>
<td>58</td>
<td>83</td>
<td>102</td>
<td>110</td>
<td>156</td>
<td>243</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>78</td>
<td>80</td>
<td>182</td>
<td>192</td>
<td>189</td>
</tr>
<tr>
<td></td>
<td>79</td>
<td>93</td>
<td>119</td>
<td>130</td>
<td>162</td>
<td>176</td>
</tr>
<tr>
<td></td>
<td>68</td>
<td>98</td>
<td>59</td>
<td>95</td>
<td>166</td>
<td>176</td>
</tr>
<tr>
<td></td>
<td>63</td>
<td>66</td>
<td>99</td>
<td>143</td>
<td>158</td>
<td>181</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. of observations taken at the first-stage</th>
<th>58</th>
<th>83</th>
<th>102</th>
<th>110</th>
<th>156</th>
<th>243</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>45</td>
<td>78</td>
<td>80</td>
<td>182</td>
<td>192</td>
<td>189</td>
</tr>
<tr>
<td></td>
<td>79</td>
<td>93</td>
<td>119</td>
<td>130</td>
<td>162</td>
<td>176</td>
</tr>
<tr>
<td></td>
<td>68</td>
<td>98</td>
<td>59</td>
<td>95</td>
<td>166</td>
<td>176</td>
</tr>
<tr>
<td></td>
<td>63</td>
<td>66</td>
<td>99</td>
<td>143</td>
<td>158</td>
<td>181</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>n₀</th>
<th>6</th>
<th>6</th>
<th>6</th>
<th>6</th>
<th>6</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>X₁</td>
<td>69.17</td>
<td>81.33</td>
<td>93.17</td>
<td>130.00</td>
<td>164.17</td>
<td>197.50</td>
</tr>
</tbody>
</table>

\[S^2 = \frac{1}{k(n₀ - 1)} \sum_{i=1}^{k} \sum_{j=1}^{n₀} (X_{ij} - \bar{X}_i)^2 = 479.51 \]

<table>
<thead>
<tr>
<th>Observations taken at the second-stage</th>
<th>94</th>
<th>79</th>
<th>109</th>
<th>140</th>
<th>157</th>
<th>233</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>99</td>
<td>134</td>
<td>128</td>
<td>123</td>
<td>233</td>
<td>162</td>
</tr>
<tr>
<td></td>
<td>63</td>
<td>131</td>
<td>138</td>
<td>132</td>
<td>238</td>
<td>179</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N</th>
<th>10</th>
<th>10</th>
<th>10</th>
<th>10</th>
<th>10</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>X₁(N)</td>
<td>78.8</td>
<td>92.4</td>
<td>103.4</td>
<td>128.8</td>
<td>178.6</td>
<td>196.5</td>
</tr>
</tbody>
</table>

\[S^2(N) = \frac{1}{k(N - 1)} \sum_{i=1}^{k} \sum_{j=1}^{N} (X_{ij} - \bar{X}_i(N))^2 = 656.98 \]

Additional observations should be taken from each population. The observations taken at the second-stage are given in the lower part of Table 1.

We then have the overall sample means: \(\bar{X}_1(N) = 78.8, \bar{X}_2(N) = 92.4, \bar{X}_3(N) = 103.4, \bar{X}_4(N) = 128.8, \bar{X}_5(N) = 178.6, \bar{X}_6(N) = 196.5 \). According to the two-stage natural selection rule, Glue 6 which yields the largest sample mean is selected as the best.

However, we do not know whether the largest and the second largest unknown means differ at least by \(\delta^* = 20 \) or not. A reasonable question is: What kind of confidence statement can be made regarding the PCS? By the method described in Section 3.2, for \(\alpha = 0.10 \), from Harter (1969), \(q^*_{k, k(n₀ - 1)} = 3.851 \). Thus, \(c = S q^*_{k, k(n₀ - 1)}/\sqrt{N} = 26.667 \). Therefore, \(\hat{\delta}_{L,1} = 91.033, \hat{\delta}_{L,2} = \)
77.433, $\hat{\delta}_{3,L} = 66.433$, $\hat{\delta}_{4,L} = 41.033$, $\hat{\delta}_{5,L} = 0$. After some computation, we have $\hat{Q}_L = 0.5000$. Therefore, we can state that with at least 90% confidence that $PCS \geq \hat{Q}_L = 0.5000$ for all values of true unknown means.

For the problem of selecting the largest normal mean from among k ($k \geq 2$) normal populations having a common unknown variance σ^2, Kim (1986) proposed a lower confidence bound using a retrospective analysis based on the observations X_{ij}, $1 \leq i \leq k$, $1 \leq j \leq n$, where the common sample size n is arbitrary. His proposed lower confidence bound is given as follows: With at least $100(1 - \alpha)\%$ confidence,

$$PCS \geq \int_{-\infty}^{\infty} \Phi^{k-1}[x + \sqrt{2h}(\frac{\sqrt{n}(\bar{X}_j - \bar{X}_{i-1})}{\sqrt{2S}})]d\Phi(x) \quad (4.1)$$

where $\nu = k(n - 1)$ and the function $h_\nu(\cdot)$ is implicitly defined by

$$\int_0^{\infty} [\Phi(h_\nu(t) - tw) + \Phi(-h_\nu(t) - tw)]dF_W(w) = \alpha \quad (4.2)$$

for $t \geq t_\frac{1}{2}(\nu)$ and $h_\nu(t) = 0$ for $0 \leq t \leq t_\frac{1}{2}(\nu)$. Here, $t_\frac{1}{2}(\nu)$ is the upper $\frac{\alpha}{2}$ quantile of the t distribution with ν degrees of freedom and $F_W(\cdot)$ is the distribution of a non-negative random variable W with $\nu W^2 \sim \chi^2(\nu)$. Kim (1986) also provided some tables for the $h_\nu(t)$ values to implement his procedure.

For the data set given above, following Kim’s procedure, we have $n = 10$, $\nu = k(n - 1) = 54$, and the pooled sample standard deviation based on the total 60 observations is $S = 25.63$. Thus, $t = \frac{\sqrt{n}(\bar{X}_{10} - \bar{X}_{9})}{\sqrt{2S}} = 1.562 < t_\frac{1}{2}(\nu) \approx 1.671$ where $\alpha = 0.10$. Therefore, by the definition of $h_\nu(\cdot)$, $h_\nu\left(\frac{\sqrt{n}(\bar{X}_{10} - \bar{X}_{9})}{\sqrt{2S}}\right) = 0$. Then, by (4.1), one can only claim: With at least 90% confidence, $PCS \geq \frac{1}{k} = \frac{1}{5}$. Clearly, our lower confidence bound, in this example, is better than that of Kim.

5. Simulation Studies

For the normal means selection problem, for various parameter configurations, the behaviors of \hat{P}_L and \hat{Q}_L were simulated. Two types of parameter configurations were simulated: a slippage
configuration $\theta_{(1)} = \ldots = \theta_{(k-1)} = \theta_{(k)} - \Delta$ and an equally spaced configuration $\theta_{(s)} = \theta_{(s-1)} - \Delta$, $i = 2, \ldots, k$. For simulation, we suppose that the assigned value of δ^* is 1 and also the assigned probability levels are $P^* = 0.90$ and $P^* = 0.95$. When the common variance σ^2 is known, the common sample size n_0 is determined by (3.2). When σ^2 is unknown, the initial common sample size is set equal to ten. The simulation process was repeated $M = 1000$ times for the case where σ^2 is known and $M = 400$ times for the σ^2 unknown case. For each simulation, the random observation X_{ij} is generated from $N(\theta_i, \sigma^2)$ with $\sigma^2 = 1$. The values of \hat{P}_L and \hat{Q}_L were computed. The averages of the 1000 \hat{P}_L and 400 \hat{Q}_L are reported in Table 2 and Table 3, respectively. In each table, the numbers in the parentheses are the standard errors of the corresponding estimators.

For convenience, we let $\hat{P}_L(P^*, \Delta, \alpha, T)$ and $\hat{Q}_L(P^*, \Delta, \alpha, T)$ denote the corresponding \hat{P}_L and \hat{Q}_L for given values of P^*, Δ, α and T, where T denotes the type of parameter configuration. The slippage configuration is denoted by S and the equally spaced configuration is denoted by ES.

The simulation results indicate the following:

1. Note that for fixed P^*, α and T, the PCS is a nondecreasing function of Δ. Therefore, it is reasonable to expect that both $\hat{P}_L(P^*, \Delta, \alpha, T)$ and $\hat{Q}_L(P^*, \Delta, \alpha, T)$ be nondecreasing in Δ.

The simulation results indicate that this is so.

2. For fixed P^*, α and Δ, the PCS under equally spaced parameter configuration is larger than the PCS under the slippage configuration. The simulation results also indicate that this behavior holds. That is, from the simulation results, we find: $\hat{P}_L(P^*, \Delta, \alpha, ES) > \hat{P}_L(P^*, \Delta, \alpha, S)$ and $\hat{Q}_L(P^*, \Delta, \alpha, ES) > \hat{Q}_L(P^*, \Delta, \alpha, S)$.

3. For fixed values P^*, Δ and T, the simulation results indicate that $\hat{P}_L(P^*, \Delta, 0.2, T) > \hat{P}_L(P^*, \Delta, 0.1, T)$ and $\hat{Q}_L(P^*, \Delta, 0.2, T) > \hat{Q}_L(P^*, \Delta, 0.1, T)$. These results are as expected since $q_{k,\nu}^*$ is nondecreasing in α for fixed k and ν.
4 For fixed \(\Delta, \alpha \) and \(T \), \(\hat{\theta}_L(P^*, \Delta, \alpha, T) \) is nondecreasing in \(P^* \). Note that according to the sampling rule used in this paper, assigning large \(P^* \)-value implicitly implies taking more observations. Thus the simulation results seem to indicate that \(\hat{\theta}_L(P^*, \Delta, \alpha, T) \) is nondecreasing in the sample size. For the \(\sigma^2 \) unknown case, for both \(k = 3 \) and \(5 \), the corresponding values of \(\hat{\theta}_L(P^*, \Delta, \alpha, T) \) are also nondecreasing in \(P^* \).
Table 2: Simulated Values of P_L for $k = 3$, σ^2 Known

Δ	90% lower confidence bound		80% lower confidence bound														
	Shippage	Equally Spaced	Shippage	Equally Spaced													
P^*	P^*	P^*	P^*	P^*	P^*	P^*	P^*	P^*	P^*	P^*	P^*	P^*	P^*	P^*	P^*	P^*	P^*
0.5	0.3497	0.3573	0.3609	0.3678	0.3763	0.3895	0.4048	0.4170	0.4397	0.4490	0.4640	0.4739	0.4879	0.4975	0.5040		
0.8	0.3703	0.3989	0.4186	0.4437	0.4802	0.5037	0.5395	0.5540	0.5875	0.6031	0.6000	0.6538	0.6946	0.7346	0.7751		
1.0	0.3960	0.4455	0.5007	0.5823	0.6376	0.6577	0.6955	0.7136	0.7555	0.7695	0.7865	0.8557	0.8729	0.8731	0.8824		

Table 2 (continued): Simulated Values of P_L for $k = 5$, σ^2 Known

Δ	90% lower confidence bound		80% lower confidence bound														
	Shippage	Equally Spaced	Shippage	Equally Spaced													
P^*	P^*	P^*	P^*	P^*	P^*	P^*	P^*	P^*	P^*	P^*	P^*	P^*	P^*	P^*	P^*	P^*	P^*
0.5	0.2720	0.2762	0.3034	0.3419	0.3757	0.4158	0.4250	0.4329	0.4397	0.4398	0.4614	0.4784	0.5069	0.5298	0.5484		
0.8	0.2237	0.2322	0.2574	0.3151	0.3620	0.3760	0.3815	0.3870	0.3900	0.3916	0.4251	0.4296	0.4579	0.4786	0.5310		
1.0	0.2000	0.2088	0.2258	0.2820	0.3330	0.3530	0.3690	0.3820	0.3920	0.3920	0.4293	0.4343	0.4593	0.4700	0.5101		
1.2	0.1813	0.1863	0.1980	0.2522	0.3041	0.3240	0.3370	0.3500	0.3580	0.3580	0.4029	0.4078	0.4329	0.4484	0.4844		
1.4	0.1621	0.1661	0.1757	0.2276	0.2851	0.3051	0.3180	0.3310	0.3400	0.3400	0.3851	0.3901	0.4152	0.4307	0.4667		
1.6	0.1421	0.1451	0.1537	0.1932	0.2517	0.2716	0.2840	0.2970	0.3060	0.3060	0.3521	0.3570	0.3822	0.3977	0.4336		
Table 2: Simulated Values of P_L for $k = 10$, σ^2 Known

<table>
<thead>
<tr>
<th>λ</th>
<th>Slippage</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P^* 0.90</td>
<td>P^* 0.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.1021</td>
<td>0.1029</td>
<td>0.2996</td>
<td>0.3269</td>
<td>0.1045</td>
<td>0.1059</td>
<td>0.3146</td>
<td>0.3534</td>
<td>0.1045</td>
<td>0.1059</td>
<td>0.3146</td>
<td>0.3534</td>
<td>0.1045</td>
<td>0.1059</td>
<td>0.3146</td>
<td>0.3534</td>
</tr>
<tr>
<td></td>
<td>(0.0003)</td>
<td>(0.0003)</td>
<td>(0.0023)</td>
<td>(0.0026)</td>
<td>(0.0004)</td>
<td>(0.0005)</td>
<td>(0.0026)</td>
<td>(0.0030)</td>
<td>(0.0004)</td>
<td>(0.0005)</td>
<td>(0.0026)</td>
<td>(0.0030)</td>
<td>(0.0004)</td>
<td>(0.0005)</td>
<td>(0.0026)</td>
<td>(0.0030)</td>
</tr>
<tr>
<td>20</td>
<td>0.1090</td>
<td>0.1141</td>
<td>0.4157</td>
<td>0.4688</td>
<td>0.1164</td>
<td>0.1251</td>
<td>0.4526</td>
<td>0.4981</td>
<td>0.1164</td>
<td>0.1251</td>
<td>0.4526</td>
<td>0.4981</td>
<td>0.1164</td>
<td>0.1251</td>
<td>0.4526</td>
<td>0.4981</td>
</tr>
<tr>
<td></td>
<td>(0.0007)</td>
<td>(0.0010)</td>
<td>(0.0032)</td>
<td>(0.0036)</td>
<td>(0.0011)</td>
<td>(0.0016)</td>
<td>(0.0037)</td>
<td>(0.0041)</td>
<td>(0.0011)</td>
<td>(0.0016)</td>
<td>(0.0037)</td>
<td>(0.0041)</td>
<td>(0.0011)</td>
<td>(0.0016)</td>
<td>(0.0037)</td>
<td>(0.0041)</td>
</tr>
<tr>
<td>30</td>
<td>0.1213</td>
<td>0.1505</td>
<td>0.4984</td>
<td>0.5431</td>
<td>0.1355</td>
<td>0.1588</td>
<td>0.5345</td>
<td>0.5798</td>
<td>0.1355</td>
<td>0.1588</td>
<td>0.5345</td>
<td>0.5798</td>
<td>0.1355</td>
<td>0.1588</td>
<td>0.5345</td>
<td>0.5798</td>
</tr>
<tr>
<td></td>
<td>(0.0014)</td>
<td>(0.0021)</td>
<td>(0.0038)</td>
<td>(0.0042)</td>
<td>(0.0020)</td>
<td>(0.0029)</td>
<td>(0.0044)</td>
<td>(0.0048)</td>
<td>(0.0020)</td>
<td>(0.0029)</td>
<td>(0.0044)</td>
<td>(0.0048)</td>
<td>(0.0020)</td>
<td>(0.0029)</td>
<td>(0.0044)</td>
<td>(0.0048)</td>
</tr>
<tr>
<td>40</td>
<td>0.2187</td>
<td>0.3118</td>
<td>0.6643</td>
<td>0.7103</td>
<td>0.2769</td>
<td>0.3843</td>
<td>0.7696</td>
<td>0.7879</td>
<td>0.2769</td>
<td>0.3843</td>
<td>0.7696</td>
<td>0.7879</td>
<td>0.2769</td>
<td>0.3843</td>
<td>0.7696</td>
<td>0.7879</td>
</tr>
<tr>
<td></td>
<td>(0.0045)</td>
<td>(0.0061)</td>
<td>(0.0065)</td>
<td>(0.0070)</td>
<td>(0.0055)</td>
<td>(0.0069)</td>
<td>(0.0059)</td>
<td>(0.0057)</td>
<td>(0.0055)</td>
<td>(0.0069)</td>
<td>(0.0059)</td>
<td>(0.0057)</td>
<td>(0.0055)</td>
<td>(0.0069)</td>
<td>(0.0059)</td>
<td>(0.0057)</td>
</tr>
<tr>
<td>50</td>
<td>0.4773</td>
<td>0.6715</td>
<td>0.8357</td>
<td>0.9167</td>
<td>0.5947</td>
<td>0.7508</td>
<td>0.8797</td>
<td>0.9423</td>
<td>0.5947</td>
<td>0.7508</td>
<td>0.8797</td>
<td>0.9423</td>
<td>0.5947</td>
<td>0.7508</td>
<td>0.8797</td>
<td>0.9423</td>
</tr>
<tr>
<td></td>
<td>(0.0076)</td>
<td>(0.0098)</td>
<td>(0.0082)</td>
<td>(0.0090)</td>
<td>(0.0078)</td>
<td>(0.0067)</td>
<td>(0.0046)</td>
<td>(0.0032)</td>
<td>(0.0078)</td>
<td>(0.0067)</td>
<td>(0.0046)</td>
<td>(0.0032)</td>
<td>(0.0078)</td>
<td>(0.0067)</td>
<td>(0.0046)</td>
<td>(0.0032)</td>
</tr>
</tbody>
</table>

Table 3: Simulated Values of Q_L for $k = 10$, σ^2 Unknown, $n_i = 10$

<table>
<thead>
<tr>
<th>λ</th>
<th>Slippage</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P^* 0.90</td>
<td>P^* 0.95</td>
</tr>
<tr>
<td>10</td>
<td>0.4937</td>
<td>0.4947</td>
<td>0.6114</td>
<td>0.6158</td>
<td>0.3689</td>
<td>0.4757</td>
<td>0.4633</td>
<td>0.5791</td>
<td>0.3689</td>
<td>0.4757</td>
<td>0.4633</td>
<td>0.5791</td>
<td>0.3689</td>
<td>0.4757</td>
<td>0.4633</td>
<td>0.5791</td>
</tr>
<tr>
<td></td>
<td>(0.0021)</td>
<td>(0.0003)</td>
<td>(0.0043)</td>
<td>(0.0085)</td>
<td>(0.0087)</td>
<td>(0.0082)</td>
<td>(0.0005)</td>
<td>(0.0008)</td>
<td>(0.0087)</td>
<td>(0.0082)</td>
<td>(0.0005)</td>
<td>(0.0008)</td>
<td>(0.0087)</td>
<td>(0.0082)</td>
<td>(0.0005)</td>
<td>(0.0008)</td>
</tr>
<tr>
<td>20</td>
<td>0.4831</td>
<td>0.4813</td>
<td>0.5933</td>
<td>0.5759</td>
<td>0.4541</td>
<td>0.5519</td>
<td>0.5352</td>
<td>0.6641</td>
<td>0.4541</td>
<td>0.5519</td>
<td>0.5352</td>
<td>0.6641</td>
<td>0.4541</td>
<td>0.5519</td>
<td>0.5352</td>
<td>0.6641</td>
</tr>
<tr>
<td></td>
<td>(0.0034)</td>
<td>(0.0003)</td>
<td>(0.0060)</td>
<td>(0.0060)</td>
<td>(0.0035)</td>
<td>(0.0081)</td>
<td>(0.0004)</td>
<td>(0.0071)</td>
<td>(0.0035)</td>
<td>(0.0081)</td>
<td>(0.0004)</td>
<td>(0.0071)</td>
<td>(0.0035)</td>
<td>(0.0081)</td>
<td>(0.0004)</td>
<td>(0.0071)</td>
</tr>
<tr>
<td>30</td>
<td>0.5068</td>
<td>0.5069</td>
<td>0.8233</td>
<td>0.9091</td>
<td>0.8154</td>
<td>0.9737</td>
<td>0.8860</td>
<td>0.9839</td>
<td>0.8154</td>
<td>0.9737</td>
<td>0.8860</td>
<td>0.9839</td>
<td>0.8154</td>
<td>0.9737</td>
<td>0.8860</td>
<td>0.9839</td>
</tr>
<tr>
<td></td>
<td>(0.0024)</td>
<td>(0.0004)</td>
<td>(0.0043)</td>
<td>(0.0043)</td>
<td>(0.0060)</td>
<td>(0.0014)</td>
<td>(0.0004)</td>
<td>(0.0054)</td>
<td>(0.0060)</td>
<td>(0.0014)</td>
<td>(0.0004)</td>
<td>(0.0054)</td>
<td>(0.0004)</td>
<td>(0.0054)</td>
<td>(0.0004)</td>
<td>(0.0054)</td>
</tr>
</tbody>
</table>
Table 3 (continued) Simulated Values of Q_1 for $k = 5$, σ^2 Unknown, $n_0 = 10$

<table>
<thead>
<tr>
<th>d</th>
<th>90% Lower Confidence Bound</th>
<th>80% Lower Confidence Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Suppave</td>
<td>Equally Spaced</td>
</tr>
<tr>
<td>P^*</td>
<td>0.90</td>
<td>0.95</td>
</tr>
<tr>
<td>0.8</td>
<td>0.2687</td>
<td>0.2887</td>
</tr>
<tr>
<td>(0.0001)</td>
<td>(0.0005)</td>
<td>(0.0024)</td>
</tr>
<tr>
<td>1.0</td>
<td>0.2331</td>
<td>0.5614</td>
</tr>
<tr>
<td>(0.0001)</td>
<td>(0.00022)</td>
<td>(0.0031)</td>
</tr>
<tr>
<td>2.0</td>
<td>0.7844</td>
<td>0.9430</td>
</tr>
<tr>
<td>(0.0050)</td>
<td>(0.0017)</td>
<td>(0.0004)</td>
</tr>
</tbody>
</table>

6. A Lower Confidence Bound on PCS for Scale Parameter Model

The results in Section 2 are derived for a location parameter model. Similar results for a scale parameter model can also be obtained. For the situation of selecting the population with the largest scale parameter $\theta_{(k)}$, the Y_i in (1) is replaced by

$$P_{\max} \{ S_i \} = \prod_{y_{(1)}} F(y_{(k)}) dy_{(k)}$$

where $F(y_{(k)})$ is the cumulative distribution function of an appropriate nonnegative statistic $Y_{(k)}$ for Y_i. The minimum sample size was determined as a function of sample size. Suppose that the distribution of $Y_{(k)}$ is independent of θ, and fix A for given n_i, and $d = \alpha$. Let \min be the smallest value such that

$$P_{\max} \{ S_i \} = 1 - \alpha$$

Note that $P_{\max} \{ S_i \} = 1 - \alpha$ since $\min Y_{(k)} \geq Y_{(1)}$.

A lower on the critical constant S_i now from

$$P_{\max} \{ S_i \} = 1 - \alpha$$

for which the minimum sample size is given by

$$P_{\max} \{ S_i \} = 1 - \alpha$$

for A.
where $(y)^n = \max (y, 1)$. Replacing $\theta_{(k)} / \theta_{(1)}$ in (6.1) by $\hat{\delta}_{L,i}$, we obtain

$$\hat{P}_L = \int_0^\infty \left(\prod_{i=1}^k F_n(\hat{\delta}_{L,i}) \right) dF_n(y).$$

(6.5)

We propose \hat{P}_L as an estimator of a lower bound for the PCS. We have

$$P_y \{ P_y \{ GS \} > \hat{P}_L \} = 1 - \alpha \text{ for all } \theta \in \Omega$$

(6.6)

References

For the problem of selecting the best of several populations using the indifference (preference) zone formulation, a natural rule is to select the population yielding the largest sample value of an appropriate statistic. For this approach, it is required that the experimenter specify a number a, say, which is a lower bound on the difference (separation) between the largest and the second largest parameter. However, in many real situations, it is hard to assign the value of a and, therefore, in cases that the assumption of indifference zone is violated, the probability of a correct selection cannot be approximated to be at least $1-a$, a truncated value.
In this paper, we are concerned with deriving a lower confidence bound for the probability of a correct selection for the general location model $F(x-\theta_i)$, $i = 1, \ldots, k$. First, we derive simultaneous lower confidence bounds on the differences between the largest (best) and each of the other non-best population parameters. Based on these, we obtain a lower confidence bound for the probability of a correct selection. The general result is then applied to the selection of the best mean of k normal populations with both the known and unknown common variances. In the first case one needs a single-stage procedure while in the second case a two-stage procedure is required. Some simulation investigations are described and their results are provided.